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Neuroinflammation as an etiological trigger 
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Abstract 

Patients with inflammatory bowel disease (IBD) suffer from depression at higher rates than the general population. 
An etiological trigger of depressive symptoms is theorised to be inflammation within the central nervous system. It is 
believed that heightened intestinal inflammation and dysfunction of the enteric nervous system (ENS) contribute to 
impaired intestinal permeability, which facilitates the translocation of intestinal enterotoxins into the blood circula-
tion. Consequently, these may compromise the immunological and physiological functioning of distant non-intestinal 
tissues such as the brain. In vivo models of colitis provide evidence of increased blood–brain barrier permeability 
and enhanced central nervous system (CNS) immune activity triggered by intestinal enterotoxins and blood-borne 
inflammatory mediators. Understanding the immunological, physiological, and structural changes associated with 
IBD and neuroinflammation may aid in the development of more tailored and suitable pharmaceutical treatment for 
IBD-associated depression.
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Introduction
Inflammatory bowel disease (IBD) is believed to affect up 
to 7 million people globally with the incidence rising in 
many western countries [1]. Patients diagnosed with IBD 
have higher rates of depression and anxiety compared to 
the general population [2]. Depression is often associ-
ates with poorer compliance to treatment regimens and 
increases the risk of morbidity and mortality of individu-
als with a chronic medical condition [3, 4]. The gut-brain 
axis is believed to play a significant role in pathogeneses 
and/or relapse of IBD symptoms [5]. This review aims 
to reveal the pathophysiological alterations in the gut 
and brain in IBD patients and animal models of colitis. 

It may provide an insight into neurobiological mecha-
nisms, which could be targeted to relieve depression in 
IBD patients. Better-suited pharmacological approaches 
to IBD patients with depression will help to relieve 
the immense psychological burden of this debilitating 
chronic disease and potentially help to correct the gut-
brain axis to prevent the recurrence of intestinal inflam-
mation. Moreover, underlying mechanisms of depression 
comorbid with IBD may be highly translatable to other 
diseases such as rheumatoid arthritis, obstructive pul-
monary disease, and diabetes, which demonstrate higher 
rates of depression compared to the general population 
[6,7,8].

Background
Inflammatory bowel disease (IBD) is an idiopathic con-
dition that manifests as chronic inflammation within 
the gastrointestinal (GI) tract and affects approximately 
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7 million people worldwide [1]. The two major forms 
of IBD are ulcerative colitis (UC) and Crohn’s disease 
(CD). UC is characterized by chronic inflammation lead-
ing to ulceration which affects primarily the colon and is 
restricted to the intestinal mucosa layer [9]. On the con-
trary, CD appears as transmural inflammatory lesions 
that present anywhere within the GI tract from the oro-
pharynx to perianal areas [9]. Clinical symptoms includ-
ing abdominal pain, hypersensitivity, diarrhea, blood and 
mucus in the stools, fatigue, and weight loss are similar 
between both pathologies of IBD [9]. Although the etiol-
ogy of IBD remains largely obscure, it has been postulated 
that elements of an individual’s genetics, environmen-
tal exposures, microbiota dysbiosis, and a dysregulated 
immune response may attribute to IBD pathogenesis 
[9, 10]. It has been established that structural and func-
tional abnormalities of the enteric nervous system (ENS), 
the intrinsic innervation of the GI tract, are associated 
with recurrence of symptoms and disease severity of 
IBD [11, 12]. The combination of these factors induces 
abnormal innate and adaptive immunological responses 
that threaten the intestinal barrier integrity, cumula-
tively leading to systemic fallout and malfunctioning of 
the gut-brain axis [10]. Although IBD is an idiopathic 
disease affecting the GI tract, both human and animal 
studies have found a significant correlation between 
intestinal inflammation and psychological disorders 
[13]. Depression is as high as 21–27% in patients with 
IBD compared to 12–13% in healthy controls with the 
rate of depression rising to 35% during active IBD, with 
no notable differences between CD and UC pathologies 
[14, 15]. A postulated aetiological trigger of depressive 
symptoms in IBD patients suggests systemic low-grade 
neuroinflammation [16]. It has been reported that neu-
roinflammation induces one or more of the following: 
(1) dysregulation of the hypothalamus–pituitary–adre-
nal (HPA) axis [17], (2) depletion of serotonin levels [18], 
and (3) alteration of neurogenesis in the hippocampus 
[19], all of which involved in major depressive disorder 
(MDD) [16]. Moreover, neuroinflammation-associated 
depressive symptoms may involve systemic immune fac-
tors as an etiological trigger. This has been supported 
by (i) high levels of pro-inflammatory cytokines in the 
circulation are seen in patients with MDD [20], (ii) dis-
ease treatments requiring exogenous administration 
of cytokines evoke psychiatric changes [21], (iii) in ani-
mals and humans, administration of lipopolysaccharide 
(LPS) accompanied by the release of pro-inflammatory 
cytokines provokes depressive symptoms referred to as 
sickness syndrome [22], (iv) peripheral inflammatory 
diseases such as rheumatoid arthritis, obstructive pul-
monary disease type 1 and diabetes are often comor-
bid with depression [6–8]. It has been postulated that 

neuroinflammation-induced depression in IBD involves 
peripheral inflammatory mediators originating from the 
inflamed gut penetrating the BBB and either directly 
or indirectly activating the resident macrophage-like 
microglial cells within the central nervous system (CNS) 
[16, 23,24,25]. Activated microglial cells can produce 
enzymes and mediators that deplete serotonin availabil-
ity, impair maturation and proliferation of hippocampal 
progenitor cells and promote neurodegeneration [26, 27].

This review explores in detail the structural and physi-
ological alterations in the GI tract, blood circulation and 
CNS in IBD patients and corresponding animal models 
of IBD. The aim is to provide a link between the gut and 
the brain with a special focus on circulating immune fac-
tors and expose neurobiological and/or immunological 
overlap between MDD and IBD to elucidate an etiologi-
cal framework for IBD comorbid with depression.

Intestinal barrier dysfunction in IBD
Structural changes to intercellular and intracellular 
proteins of the intestinal epithelium and significant 
alterations of intestinal mucous production imply dys-
functional intestinal barrier integrity in IBD patients 
enabling luminal antigens to penetrate and initiate local 
immune responses within the lamina propria [28, 29].

The intestinal mucosa and epithelium
The intestinal barrier includes a thick secreted hydrated 
mucus layer which provides a physical and chemical bar-
rier against luminal microbiota and antigens, as well as 
lubricating the epithelium [28]. The epithelial barrier is 
composed of several different classes of intestinal epithe-
lial cells involved in regulating and maintaining barrier 
functions [28]. These cells include the goblet and Paneth 
cells, which synthesize and produce the mucin glyco-
proteins and some anti-microbial proteins, whose syn-
thesis in Goblet cells is under control of ENS produced 
IL-18 [28, 30]. Mucin proteins such as MUC2 provide the 
mucus layer with viscous properties [31] and enable the 
mucus to retain antimicrobial proteins such as defensins, 
cathelicidins, lysosomes, and immunoglobulins (Ig) such 
as soluble IgA, IgG, and IgM [28]. Patients with CD 
show goblet cell hypertrophy as expected with increased 
mucus formation and a moderate increase in expression 
of MUC2 and MUC3, and high expression of MUC4 [32]. 
UC patients exhibit a reduction in the number of goblet 
cells, MUC2, MUC3, and MUC4 resulting in a dimin-
ished mucosal barrier [32] (Fig. 1).

Although a dysfunctional mucus layer is observed in 
patients with IBD, in vivo animal models of colitis have 
revealed conflicting results. The Math1 gene, also known 
as the Atonal homologue 1, is a transcription factor 
involved in the differentiation of goblet cells and Paneth 
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cells [33]. Use of an in  vivo murine model of intesti-
nal Math1 knockout demonstrated that 75–90% loss of 
secretory cells in the crypts and villi did not generate 
spontaneous colitis [34]. Moreover, transgenic mice pos-
sessing the toxic diphtheria gene, driven by the murine 

intestinal trefoil factor promoter that facilitated targeted 
ablation of goblet cells, had a decreased body weight loss 
and mortality rate (5% vs 55%) compared to non-trans-
genic mice following administration of dextran sulfate 
sodium (DSS) [35]. These findings suggest increased 

Fig. 1  Schematic overview of the mechanisms underlying intestinal barrier dysfunction commonly seen in human IBD and animal models of colitis. 
Impaired mucous production and composition and/or impaired tight junction protein localisation and production result in luminal microbiota 
and toxin paracellularly translocating into the intestinal lamina propria layer. Immune cells in this region interacting with antigens trigger the 
production of inflammatory mediators, which facilitate the recruitment of other leukocytes and lymphocytes. Inflammatory mediators enter 
peripheral circulation whereby they may trigger distant immunological activation. FADD Fas-associated protein with death domain; IFN Interferon; 
IL Interleukin; MLC myosin light chain; MLCK myosin light-chain kinase; MMP metalloproteinase, P phosphate; PI3K phosphoinositide 3-kinase; ROCK 
Rho associated protein kinase; TJ tight junction; TLR toll-like receptor; TNF tumour necrosis factor; ZO zonula occludens
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resistance to chemical administration of DSS following 
goblet cell reduction. These studies contrast with find-
ings in the Winnie mouse model of spontaneous chronic 
colitis, which possesses a missense mutation on the Muc2 
gene resulting in robust intestinal inflammation with a 
phenotype and characteristics similar to UC patients [36, 
37]. Histological and immunological presentation include 
increased intestinal production of pro-inflammatory 
cytokines, epithelial dysfunction, and endoplasmic retic-
ulum stress within goblet and Paneth cells likely via aber-
rant folding and assembly of the mucin complex [36, 37]. 
These paradoxical in vivo findings require further investi-
gation and suggest that a combination of normal mucous 
secretion and protein composition is a key to facilitating 
healthy physiological function. Overall, perturbations in 
mucous production are involved in robust inflammatory 
responses, which can eventuate in intestinal epithelial 
barrier dysfunction and may lead to invasion of intesti-
nal contents and/or inflammatory mediators into blood 
circulation.

The intestinal tight junctions
The single-cell layer of the epithelium relies on paracel-
lular protein junctional complexes such as tight junctions 
(TJs), adherens junctions, and desmosomes for structural 
integrity and cohesion [38]. TJs are on the apical side of 
the epithelial cells and provide a boundary between the 

basolateral and apical membranes [38]. TJs consist of 
transmembrane proteins such as claudin, occludin, junc-
tional adhesion molecule (JAM), and tricellulin which 
interacts with peripheral membrane linker proteins 
such as zonula occludens (ZO) and cingulin which bind 
to cytoskeleton proteins including F-actin and myo-
sin [38]. The TJ protein complex acts like a “gate” which 
restricts paracellular entry of large hydrophilic molecules 
[38]. Altered TJ patterns have been observed in both 
IBD patients and animal models of intestinal inflamma-
tion with their dysfunctions enabling entry of luminal 
antigens into the lamina propria triggering inflamma-
tion [38]. Claudin proteins consist of 27 isoforms, which 
can be subdivided based on their functional roles [39]. 
Claudin-2 has been described to increase paracellular 
permeability, whereas claudin-1, -3, -4, -5, and -8 pro-
vide barrier strengthening properties for the cells of the 
epithelium [39, 40] (Table  1). The different claudin iso-
forms have been found to be both up and downregulated 
in the inflamed intestine from patients with IBD [39, 40] 
(Table 1). Dampened expression for claudin-3, -4, and -7 
and increased expression of claudin-1 and 2 are observed 
in the intestinal epithelium of UC patients [40,41,42,43] 
(Table  1). Similarly, patients with CD have reduced 
expression of claudin-3, -4, -5, and -8 proteins with an 
increased claudin-1 and -2 intestinal epithelial expression 
[40, 44] (Table 1).

Table 1  A comparison of tight junction expression in patients with CD and UC and experimental models of colitis

↑ upregulated; ↓ downregulated; – no explicit data; JAM junctional adhesion molecule; MLC myosin II regulatory light chain; MLCK myosin light chain kinase

Junction complex protein Function Human IBD Mouse models of 
colitis

CD UC TNBS DSS

Claudin-1 Decreases paracellular permeability [39] ↑
[45]

↑
[43]

↓
[46]
[47]

↑
[48]

Claudin-2 Increases paracellular permeability. Important pore forming protein [39] ↑
[42, 43]

↑
[42, 43]

↓
[49]

↑
[50]

Claudin -3 Decreases paracellular permeability [40] ↓
[42]

↓
[42]

↓
[47]

↓
[48]

Claudin-4 Decreases paracellular permeability [39] ↓
[42]

↓
[42]

– ↓
[51]

Claudin-5 Decreases paracellular permeability [39] ↓
[44]

– No change
[47]

↓
[48]

Claudin-7 Acts as an anion barrier and pore [40] No change
[44]

↓ – ↓
[48]

Claudin-8 Decreases permeability [39] ↓
[44]

– ↓
[47]

↓
[48]

Occludin Regulates paracellular permeability and cellular adhesion [39] ↓
[52]

↓
[52]

↓
[47]

↓
[53]

ZO-1 Facilitates connection between TJ and intracellular actin cytoskeleton [39] ↓
[54]

↓
[55]

↓
[47]

↓
[46]

MLCK Phosphorylates MLC causing contraction of peri junctional actomyosin [56] ↑
[57]

↑
[57]

↑
[58]

↑
[59]

Phosphorated (active) MLC MLC facilitates internalisation of TJ [56] ↑
[57]

↑
[57]

↑
[60]

↑
(59)
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Other TJ proteins like occludins, JAM, and ZO have 
altered expression patterns in the inflamed intestinal 
mucosa from IBD patients. Occludin consists of four 
transmembrane domains and two extracellular loops 
[38]. Its phosphorylation state on serine and threonine 
residues determines its cellular localisation and hence 
TJ stability and permeability. A high phosphoryla-
tion state localises occludin in the membrane, whereas 
decreased phosphorylation correlates with cytoplas-
mic localisation [38]. Moreover, the occludin promoter 
can be downregulated by pro-inflammatory cytokines 
such as tumour necrosis factor (TNF)-α and interferon 
(IFN)-γ [61]. IBD patients show decreased occludin 
protein and mRNA expression in the colonic mucosa, 
which may reflect occludin modulation via inhibition of 
its promoter [52, 61]. Treatment of the intestinal epithe-
lial model of colorectal adenocarcinoma cells-2 (Caco-2) 
with TNF-α diminished expression of activated phospho-
rylated occludin which resulted in increased transepi-
thelial permeability [62] (Fig. 1). The transmembrane TJ 
protein JAM has also been implicated in TJ dysfunction 
observed in colitis [63]. Reduced JAM-A protein expres-
sion at the level of the intestinal epithelium correspond-
ing with enhanced intestinal permeability was observed 
in IBD patients [63]. Additionally, mice subjected to 
DSS-induced colitis in  vivo following JAM-A deletion 
had an increased incidence of severe colitis and showed 
enhanced intestinal permeability [63]. It has been estab-
lished that in vitro co‐stimulation of epithelial cells with 
INF‐γ can induce the internalization of JAM-A [64].

Additionally, TNF-α treatment of Caco-2 cells has 
profound effects on the linker protein ZO [65]. TNF-α 
induced downregulation and altered localization of ZO-1 
protein, accompanied by an increase in epithelial per-
meability in  vitro [65]. It was found that IFN-γ affects 
ZO-1 and occludin protein expression via the adenosine 
monophosphate-activated protein kinase-dependent 
pathway [54]. ZO proteins anchored to the cytoskeleton 
actomyosin ring can facilitate TJ contractions and endo-
cytosis resulting in increased intestinal permeability [56]. 
Myosin light chain kinase (MLCK) and Rho-associated 
coiled containing protein kinase (ROCK) phosphorylate 
myosin light chain (MLC) causing contraction of peri-
junctional actomyosin rings [56] (Fig. 1). Increased acti-
vation of RhoA/ROCK has been detected in inflamed 
colonic mucosa from patients with CD and the rat model 
of trinitrobenzene sulfonic acid (TNBS)-induced coli-
tis [66]. Intestinal tissue samples from patients with 
IBD have increased ileal epithelial MLCK and increased 
colonic expression of phosphorylated MLC-2 [56, 57]. 
These findings in IBD patients may be due to increased 
local production of TNF-α which increases MLCK1 
synthesis [67]. Moreover, numerous pro-inflammatory 

cytokines implicated in IBD such as IFN-γ, TNF-α, and 
interleukin (IL)-1β can induce TJ protein endocytosis 
through a Rho-ROCK-MLCK-MLC mediated contrac-
tion of the peri-junctional actomyosin ring [68,69,70] 
(Fig.  1). Matrix metalloproteinases  (MMPs)-9 synthesis 
and secretion are significantly induced after exposure to 
the cytokines (TNF-alpha, IL-1 alpha) and MMP-9 has 
been implicated in TJ epithelial dysfunction via a p38 
kinase signal transduction pathway [71,72,73] (Fig. 1).

ENS and intestinal permeability
The ENS is believed to play a role in modulating intes-
tinal permeability through the release of neurotransmit-
ters and via the secretion of peptides and lipids by enteric 
glial cells (EGC) [74, 75]. The ENS is the largest division 
of the autonomic nervous system (ANS) and consists of a 
mesh-like system of neurons that influences GI functions 
such as segmentation, peristalsis, and secretion [74]. 
Importantly, the ENS is capable of acting independently 
of the sympathetic and parasympathetic nervous systems 
but can be modulated by them under certain circum-
stances [74]. The ENS can be subdivided into two major 
nerve plexi: the myenteric plexus, which functions to 
provide motor innervation to the longitudinal and circu-
lar muscles and to coordinate motility and secretion, and 
the submucosal plexus, which regulates secretion, vaso-
dilation and probably has a role in immune responses 
[75].

Abnormalities of the ENS such as axonal damage and 
necrosis, neuronal death, and hyperplasia of EGCs are 
seen in IBD [76]. This affects normal gut functioning 
controlled by the ENS, which includes maintenance of 
the intestinal barrier.

Acetylcholine, endocannabinoids, neuropeptide Y 
(NPY), and VIP released by enteric neurons have been 
shown to alter intestinal permeability [77,78,79]. NPY 
is implicated in upregulation of the pore-forming clau-
din-2, which can increase intestinal permeability [80]. 
This is believed to be facilitated through a phosphatidyl 
inositol-3-kinase (PI3K) pathway and influenced by TNF 
given that TNF inhibitors reduce expression of NPY [80]. 
It is speculated that NPY and TNF may operate bidirec-
tionally as in vivo studies in mice with complete knock-
out of NPY showed reduced secretion of TNF by enteric 
neurons accompanied by reduced intestinal permeability 
[80].

Cholinergic pathways are also implicated in intesti-
nal permeability. The cholinergic agonist, nicotine, pre-
vented an increased Caco-2 permeability produced by 
exposure to cytomix which consists of cytokines known 
to increase intestinal permeability including TNF-α, INF-
γ, and IL-1β [81]. Nicotine-induced barrier preservation 
is believed to be due to nicotine-activated EGCs, which 
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prevents increased phosphorylation of IκBα and NF-κB 
expression [81]. Primary cultures of porcine colono-
cytes exposed to the cholinergic agonist, carbachol, and 
the muscarinic agonist, oxotremorine, demonstrated 
enhanced transepithelial electrical resistance indicative 
of increased epithelial tightness [82].

Vasoactive intestinal polypeptide (VIP) may play a role 
in decreasing intestinal permeability following electri-
cal field stimulation of submucosal neurons in vitro [79]. 
These findings were accompanied by enhanced expres-
sion of ZO-1 [79]. Impaired VIP signalling was observed 
in (TNBS)-induced colitis which is associated with a dra-
matic reduction of slow excitatory synaptic transmission 
in VIP-expressing secretomotor neurons in the submu-
cosal plexus of guinea-pig [83]. Moreover, using sterically 
stabilized micelles for VIP administration (VIP-SSM), it 
was observed that a single dose of VIP-SSM significantly 
improved histological score, alleviated diarrhoea, and 
decreased pro-inflammatory cytokines in mice with DSS-
induced colitis [84]. It could be theorised that reduced 
VIP levels may be in part responsible for impaired intes-
tinal barrier noted in IBD patients, so VIP may be a use-
ful therapeutic target in the future.

Cannabinoid signalling is an important mechanism 
of synaptic modulation in the nervous system and is 
believed to play a role in the intestinal barrier. Exog-
enous cannabinoids and endocannabinoids act on the 
G-protein coupled cannabinoid receptor (CBR) 1, which 
predominantly exists on nerve terminals where they 
may modulate neurotransmitter release, and on CBR2, 
which are found mainly on immune cells where they 
can mediate immune suppression [85]. CBR1 has been 
localized on myenteric neurons of the rat and guinea-pig 
intestine where nearly all cholinergic neurons express 
CBR1 and has been shown to preserve intestinal bar-
rier integrity [86]. CBR1−/− mice exposed to stressful 
stimuli had enhanced expression of pro-inflammatory 
enzymes including cyclooxygenase-2 (COX2) and NOS2, 
increased colonic permeability to chromium-51-labelled 
ethylenediaminetetraacetic acid, and enhanced translo-
cation of bacteria to the mesenteric lymph nodes com-
pared to stressed wild type mice [78]. Degradation of 
barrier function was postulated to be due to NO-induced 
cytoskeleton rearrangement and subsequent tight junc-
tion dysfunction since in  vitro and in  vivo findings of 
NOS2 activity promoted intestinal epithelial permeability 
through NO synthesis [78, 87, 88].

The enteric glial population has a vital role in main-
taining mucosal barrier function. Transgenic mice with 
targeted ablation of EGCs have a disrupted mucosal bar-
rier and resultant inflammation with enhanced mucosal 
paracellular permeability to small fluorescent probes 
[89]. Moreover, Caco-2 cells co-cultured with enteric glia 

showed significantly greater transepithelial resistances 
and diminished permeability to fluorescein isothiocy-
anate (FITC)-dextran and fluorescein sulfonic acid. This 
correlated with a significant up-regulation of ZO-1 and 
occludin as increased F-actin accumulation to lateral 
membranes [89]. These findings may be explained by 
EGC-derived neurotrophic factors, such as glial-derived 
S-nitrosoglutathione (GSNO) and glial cell line-derived 
neurotrophic factor (GDNF), which have been implicated 
in altering intestinal permeability [89,90,91,92]. GSNO 
administration in  vitro and in  vivo restored the appro-
priate localization and expression of ZO-1 and occludin, 
F-actin accumulation to the lateral membranes, as well as 
reduced phosphorylation of MLC in the intestinal epithe-
lium [89, 91, 92]. Moreover, GSNO attenuated enhanced 
intestinal permeability induced by cytomix and LPS in 
Caco-2 cell cultures and rats, respectively [91, 92]. GSNO 
may influence tight junctions through S-nitrosylation of 
inhibitory κB kinase (IKK), which prevents phosphoryl-
ation of the inhibitor of κB (IκB) [91, 92]. Interestingly, 
higher concentrations of GSNO have been shown to 
impair epithelial barrier function in vitro characterised by 
a marked disruption of the F-actin network [89]. Biopsy 
samples from CD patients, which trend toward higher 
mucosal permeability compared to controls, showed a 
significant reduction in permeability to FITC-inulin fol-
lowing the addition of GSNO [89]. This may suggest that 
the EGC network may be disrupted in intestinal mucosa 
of CD patients, resulting in lower tissue GSNO concen-
tration. Lower concentrations of GSNO may impair tight 
junction expression and enhance intestinal permeabil-
ity through an NFκB pathway [91, 92]. EGCs have been 
shown to be the main source of GDNF, which affects gut 
barrier properties [93]. GDNF administration to imma-
ture intestinal cell lines promoted linearized and aug-
mented staining patterns of the tight junction proteins 
occludin and claudin-1, 5 at the cell borders as well as 
enhanced epithelial proliferation and decreased perme-
ability assessed by FITC-dextran and transepithelial elec-
trical resistance (TEER) [90]. Administration of GDNF 
in vitro or co-culture with EGCs reduced downregulation 
of tight junctions in rat intestinal epithelial cells and pre-
vented the drop in TEER following ischemia–reperfusion 
injury [94]. Moreover, EGCs significantly increase GDNF 
expression when stimulated by hypoxia-reoxygenation 
[94]. Furthermore, GDNF has a potent anti-apoptotic 
effect on colonic epithelial cells via activation of both 
mitogen-activated protein kinase (MAPK) and PI3K/
AKt signalling pathways [95, 96]. Expression of GDNF 
and glial marker glial fibrillary acidic protein (GFAP) is 
significantly higher in inflamed colonic biopsies from UC 
patients than in healthy controls [97]. This may be due 
to enhanced pro-inflammatory cytokines being effective 
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stimuli for GDNF secretion [93]. In contrast, reduced 
GFAP and GDNF expression is noted in CD patients [97]. 
In rats with DSS-induced colitis, recombinant adenoviral 
vectors encoding GDNF administered via the rectum sig-
nificantly ameliorated the severity of inflammation [95].

Thus, the ENS plays a vital role in the maintenance of 
the intestinal barrier keeping the sterile lamina propria 
free of immunoreactive luminal antigens. During intes-
tinal inflammation, the ENS may become damaged and 
lose its capacity to maintain the intestinal epithelial bar-
rier contributing to impaired tight junction regulation, 
mucosal cell regeneration, and the invasion of luminal 
microbiota into the immune-rich lamina propria. Con-
sequently, this helps facilitate entry of systemic inflam-
matory mediators into circulation, which may influence 
CNS neurobiology and mood states.

Intestinal endothelial dysfunction
The consequence of impaired epithelial integrity, mucus 
production and ENS dysfunction, is a translocation of 
luminal exogenous factors such as microbiota, toxins, 
and antigens into the lamina propria [98]. As a result, a 
robust inflammatory response facilitates the uptake of 
inflammatory mediators into peripheral circulation [99]. 
Following penetrations into lamina propria, luminal 
antigens are recognised by pattern recognition recep-
tors such as toll-like receptors (TLR), nucleotide-binding 
and oligomerization domain, and C-type lectin recep-
tors triggering the activation of a nuclear transcription 
factor NF-κB and inflammasomes [100]. This elicits the 
production of pro-inflammatory cytokines in the local 
tissue, including IL-1β, IL-6, TNFα, IFN-γ, and cytokines 
involved in the IL-23/Th17 pathway [100, 101]. Inflam-
mation leads to endothelial cell dysfunction and therefore 
may facilitate translation of pro-inflammatory mediators 
from gut to the peripheral circulation [102, 103]. Human 
intestinal microvascular endothelial cell cultures can pro-
duce different cytokines (IL-1β, IL-3, and IL-6) on stimu-
lation with pro-inflammatory cytokines such as TNF-α 
and IL-1 [103]. Additionally, gut endothelial cells consti-
tutively express TLR5 on their basolateral surface [104]. 
The binding of flagellin, a prominent antigen in IBD, can 
induce these endothelial cells to produce pro-inflamma-
tory cytokines and adhesion molecules [103, 105] (Fig. 1).

Many anti-inflammatory cytokines have been impli-
cated in the pathogenesis of IBD and have varying impli-
cations in endothelial functions, including transforming 
growth factor beta (TGF-β) and IL-10. TGF-β secretion 
was found enhanced in lamina propria localised mono-
nuclear cells in UC patients but decreased in CD patients 
[106]. Moreover, the expression of TGF-β and its recep-
tors was increased in intestinal cells of patients with IBD 
[107]. TGF-β can have a detrimental effect and contribute 

to intestinal fibrosis in IBD patients which worsens dis-
ease outcomes [108]. In the context of endothelial func-
tion, TGF-β has been suggested to increase endothelial 
permeability through activin receptor-like kinases 
(ALK) receptors 5 [109, 110]. TGF-β and ALK5 ligation 
is believed to activate TGF-β induced ALK5 signalling, 
which leads to phosphorylation of Smad2 and Smad3, 
inhibition of angiogenesis, and increased endothelial per-
meability [109, 110].

Studies have indicated reduced IL-10 expression is 
a pathophysiological trait in IBD and an inducer of 
increased vascular permeability [111, 112]. An IL-10 
knockout mouse model of colitis shows increased 
endothelial permeability assessed by monolayer electrical 
resistance, increased albumin permeability, and reduced 
expression of occludin [112]. Moreover, endothelial cell 
dysfunction in IL-10 knockout mice is mediated by IFN-γ 
activity, suggesting that endothelial barrier permeability 
is regulated reciprocally by IL-10 and INF-γ [112].

Additionally, endothelial dysfunction corresponds 
with infiltration of leukocytes such as neutrophils and 
monocytes [103]. Accumulation of intestinal neutrophils 
and monocytes in the lamina propria induces release of 
mediators that jeopardise endothelial junctions via pro-
tease secretion and upregulation [103]. For instance, 
neutrophil-derived elastase proteins are elevated during 
IBD pathogenesis and can degrade endothelial junctional 
proteins such as cadherin [103, 113]. Overall, interac-
tions between inflammatory mediators and gut antigens 
likely to enhance endothelial permeability and/or pro-
duction of pro-inflammatory cytokines contributing to 
significant increases in systemic circulating inflammatory 
mediators. Serological studies have confirmed elevations 
in many immune mediators in the serum of IBD patients 
[114, 115]. Evidence of circulating immune factors in the 
serum of patients with IBD is important given that it pro-
vides a route by which the gut can modulate distant sites 
such as the brain, which may induce mood disturbances 
such as depression.

Humoral response in inflammatory bowel disease
Several studies investigated serological cytokine signa-
tures in paediatric patients with IBD in order to identify 
inflammatory biomarkers in the blood for diagnosing 
and evaluating IBD. Analytes included IL-13, IL-1β, IL-4, 
IL-6, INF-γ, TNF-α, IL-1 receptor antagonist, IL-12, IL-8 
IL-5, IL-7, CCL11, IFNγ-induced protein 10 (IP-10), 
macrophage inflammatory protein, granulocyte–colony-
stimulating factor, and fibroblast growth factor (FGF) 
which were detected in sera acquired from IBD patients 
compared to healthy controls [114, 115]. Plasma infil-
tration of LPS with endotoxemia is present in 48% of 
CD patients and 28% of UC patients [116]. Moreover, 
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sera levels of LPS and 1,3-β-D-glucan were found to be 
increased in patients with active CD compared to those 
in remission and controls, with sera TNF-α correlated 
with LPS and 1,3-β-D-glucan [117].

These studies provide a fundamental understanding of 
the biomarker signatures for IBD. However, inflamma-
tory mediators have been postulated to induce systemic 
fallout resulting in other system compromises, including 
damage to the blood–brain barrier (BBB) in patients with 
IBD [118].

Cytokine‑induced damage to the blood–brain barrier
Serological inflammatory mediators seen in IBD and ani-
mal models of colitis may impede TJ regulation in brain 
endothelial cells ultimately leading to a dysfunctional 
BBB marked by enhanced permeability [119]. In vivo and 
in vitro studies have shown that circulating cytokines can 

under some circumstances modulate expression of TJ 
proteins in cerebral endothelial cells [120,121,122,123] 
(Fig. 2). For instance, IL-1β has been shown to suppress 
astrocytic sonic hedgehog (SHH) production [123]. 
In  vitro, using a SHH conditioned media, SHH, or an 
SHH signal agonist strengthens the BBB integrity by 
upregulation tight junction proteins, including claudin-5, 
ZO-1, and occludin [123]. These effects were abrogated 
by a SHH signal inhibitor [123].

Conversely, in vivo IL-10 attenuated the increased BBB 
permeability in rat models of severe acute pancreatitis 
by reducing brain microvascular endothelial cells apop-
tosis through a signal transducer and activator of tran-
scription 3 (STAT3) pathway mediated downregulation 
of claudin-5 expression  [124]. Similarly, IL-25 has been 
shown to preserve BBB and is expressed by brain capil-
lary endothelial cells (BCECs) [125]. In  vitro, IL-25 is 

Fig. 2  Schematic diagram of neuroinflammatory changes seen in and postulated in human and animals with intestinal inflammation. Circulating 
inflammatory mediators enter into brain parenchyma through the suggested mechanisms whereby they may modulate local glia populations such 
as the microglia. Microglia can impact the various neurobiological correlates of depression including neurodegeneration, serotonin biosynthesis, 
and hippocampal neurogenesis. 5-HT 5-hydroxytryptamine (serotonin); BDNF brain-derived neurotrophic factor; CCL2 chemokine (C–C motif ) ligand 
2; CNS central nervous system; COX cyclooxygenase; CVO circumventricular organ; EC endothelial cells; Glu glutamate; IDO indoleamine-pyrrole 
2,3-dioxygenase; IL interleukin; NO nitric oxide; NOS nitric oxide synthase; PGE2 prostaglandin E2; PVN perivascular macrophages; QA quinolinic acid; 
ROS reactive oxygen species; TJ tight junction; TNF tumour necrosis factor; TNFR1 tumour necrosis factor receptor-1; TRP tryptophan
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downregulated by many pro-inflammatory cytokines, 
including TNF-α, IL-1β, and IL-6 [125]. IL-25 has been 
shown to restore the reduced expression of tight junc-
tion proteins, occludin, JAM, and claudin-5, induced by 
TNF-α in BCECs, leading to the restoration of TNF-α-
induced BBB permeability [125]. Cytokine-induced regu-
lation of BBB permeability may explain findings in animal 
models of colitis. A reduction in occludin and claudin-5 
observed in the hippocampus and cortex of DSS-treated 
mice was suggested to be due to elevated serum IL-6 lev-
els [126]. Increased BBB permeability to tracers in animal 
models of intestinal inflammation may reflect modulation 
of cerebral endothelial cells by serologic immune factors 
[127, 128]. A significant increase in BBB leakage predom-
inantly in and around the circumventricular organs and 
focal areas of the brain parenchyma indicating impaired 
BBB integrity was observed in TNBS-induced colitis in 
Sprague–Dawley rats [128]. Moreover, enhanced infil-
tration of fluorescein, but not FITC-dextran, showing 
increased BBB permeability to smaller molecules, was 
observed in rabbits with either acetic acid or TNBS-
induced colitis [127]. Importantly, this study confirmed 
that intestinal inflammation, not the treatment method, 
conferred BBB permeability given that both treatments 
enhanced permeability. Moreover, colitis has been asso-
ciated with decreased transcription of ZO-1 (Tjp1) and 
claudin-5 (Cldn5) in the brain [129]. Transcription of 
TNF-α, IL-1β, and IL-6 correlated with decreased tran-
scription of Tjp1, but not Cldn5 which could indicate that 
these cytokines may increase BBB permeability through 
ZO-1 downregulation [129].

Overall, these findings provide evidence that circulat-
ing pro-inflammatory cytokines result in injury to the 
endothelial cells of the BBB. Moving forward, diminished 
BBB integrity predisposes translocation of circulating 
neuroinflammatory mediators into brain parenchyma, 
which may affect the neuroglial networks and their regu-
lation in the various regions of the brain.

Cytokine entry and inflammatory responses in the central 
nervous system
Circulating inflammatory mediators derived from the 
inflamed gut penetrate the brain following BBB dys-
function as noted in animal models of colitis. Circulat-
ing inflammatory mediators also affect the CNS through 
other mechanisms. For instance, they (i) enter through 
“leaky regions” in circumventricular organs [130] (Fig. 2), 
(ii) activate peripheral vagal nerve afferents that relay 
cytokine signals to the nucleus of the solitary tract and 
hypothalamus or HPA axis [131, 132], (iii) activate and 
induce the release of local inflammatory mediators by 
endothelial cells and perivascular macrophages in the 
cerebral vasculature [133] (Fig. 2), (iv) induce activation 

and diapedesis of peripheral monocytes/macrophages 
and T lymphocytes into the brain parenchyma [134], and 
(v) through the utilisation of endothelial transporter pro-
tein channels [119] (Fig.  2). Whether through the listed 
mechanisms or via BBB dysfunction, inflammatory medi-
ators may penetrate and modulate local CNS glial cells. 
Indeed, evidence of local immune activity in the brains of 
animals with colitis has been found [126, 135, 136].

Neuroinflammation in the CNS during colitis
Inflammatory markers associated with neuroinflammation 
in colitis
Several studies in animal models of colitis have identi-
fied inflammatory markers in the hippocampal and cor-
tical brain regions [126, 135,136,137,138,139,140,141,14
2,143]. There is a significant increase in IL-1β and IL-6 
mRNA expression in the cortex and IL-1β and TNF-α in 
the hippocampus of mice with DSS-induced colitis [126]. 
This is accompanied by significantly higher serum levels 
of IL-6 and TNF-α in mice with colitis [126, 135]. Moreo-
ver, using TNBS-induced model of colitis in rats, Wang 
et  al. (2010) reported intestinal morphological damage, 
increased myeloperoxidase activity, and increased mRNA 
and distribution of IL-6 in the inflamed colon and spe-
cific regions of the brain including the cerebral cortex 
and hypothalamus [144]. Neuroinflammatory changes 
are considered to be an indicator of alterations in ani-
mal behaviour in in  vivo models of IBD [136]. In mice 
with dinitrobenzene sulfonic acid (DNBS)-induced coli-
tis, a significant increase in the expression of TLR-2 and 
-4, TNF-α, IL-6 and damage-associated molecular pat-
terns like high mobility group box protein 1 (HMGB1), 
intracellular signalling proteins such as myeloid differ-
entiation primary response 88, and brain-derived neu-
rotrophic factor (BDNF) was found in the hippocampal 
regions [136]. Enhanced innate immune responses in 
the brains of animal models of colitis have been associ-
ated with depressive behavioural traits seen as decreased 
mobility time in the forced swim and tail suspension 
tests, decreased grooming in the splash test and sucrose 
intake in the sucrose preference test [136]. Moreover, 
the inflammatory activity associated with anxiety and 
depression in mice with colitis was accompanied by alter-
ations to hippocampal mitochondrial parameters [136]. 
These include decreased antioxidant glutathione (GSH) 
and adenosine triphosphate levels together with over-
production of reactive oxygen species (ROS) (Fig. 2), sug-
gesting mitochondrial dysfunction and possible oxidative 
stress in the hippocampus of mice with colitis [136].

These findings are pertinent in IBD-associated depres-
sion given that brain metabolism impairments charac-
terised by mitochondrial dysfunction and the generation 
of ROS have been implicated in the pathogenesis of 
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depression and anxiety [145, 146]. Moreover, GSH, a 
major brain antioxidant that ameliorates oxidative spe-
cies, is reduced in the prefrontal cortex of MDD patients 
[147].

In another study, mice with TNBS-induced colitis 
showed heightened behavioural despair and increased 
hippocampal TNF-α, inducible nitric oxide synthase 
(iNOS), and nitrite expression [137]. In this study, only 
male mice were used in order to remove the confounding 
variable of high estrogen in females given its correlation 
with elevated serum cytokine production in chemically-
induced colitis [148]. Future studies should determine 
the influence of estrogen on neuroinflammatory changes 
associated with colitis. Elevated iNOS activity in the hip-
pocampus region and associated behavioural despair in 
this study [137], may suggest elevated nitric oxide (NO) 
production. NO is thought to play a central role in the 
neurobiology of depression [149]. In line with this, iNOS-
inhibitors reduce behavioural despair of mice with colitis 
[137]. NO-associated depression may be due to impaired 
neurotransmitter synthesis and/or neurodegeneration 
[150, 151]. However, currently no studies in animal mod-
els of colitis have elucidated this mechanism. Indeed, 
in rats inhibition of NOS elevates levels of extracellular 
serotonin and dopamine in the ventral hippocampus, 
a major brain region correlated with depression [150]. 
During inflammatory pro-oxidant states, excessive NO in 
the brain can combine with superoxide anions to create 
peroxynitrate which induces neural degeneration and cell 
death via protein nitration [151] (Fig. 2). Given that there 
is evidence of ROS production and oxidative damage in 
animals with colitis [136, 137], further studies should 
investigate CNS changes indicative of oxidative damage 
in animals with colitis.

In a recently published study, DSS-induced colitis 
found upregulation of inflammatory-related proteins 
S100A8, S100A9 (also known as myeloid related pro-
tein (MRP) 8 and MRP14), and lipocalin-2 (Lcn2, also 
known as neutrophil gelatinase-associated  lipocalin) in 
the brain. Though S100A9 and Lcn2 are upregulated in 
colitis, this is the first study to observe evidence of these 
proteins in the brain of mice with colitis [138]. Neutro-
phils, macrophages, and monocytes are the main source 
of these proteins, although other cells can also release 
them during infection [152]. The S100A8 and S100A9 
proteins form a heterodimeric complex S100A8/A9 
(also known as calprotectin), which has antimicrobial 
activity by sequestering trace metals essential for bacte-
rial growth [152, 153]. Following inflammatory stimuli, 
these proteins are significantly upregulated and released 
into the extracellular environment, where they can acti-
vate immune and endothelial cells [152, 154]. Up regula-
tion of S100A8 and S100A9 has been observed in many 

inflammatory diseases [155,156,157,158], and faecal 
calprotectin is used as a marker for IBD severity as its 
level significantly correlates with intestinal inflamma-
tion [153, 159]. Paquinimod, an orally active immu-
nomodulatory quinoline-3-carboxamide derivative, 
which blocks the interaction of S100A9 with TLR4 and 
receptors for advanced glycation end products (RAGE), 
prevented upregulation of Lcn2 and S100A8/A9 in 
the brain and S100A8/A9 in the colon and ameliorated 
symptoms of colitis [138, 153, 160, 161]. The upregula-
tion of S100A8 and S100A9 in the brain could be related 
to the infiltration of peripheral inflammatory cells into 
the brain (monocytes and neutrophils) observed in this 
study [138]. However, S100A8 and S100A9 upregulation 
may be stressed-related as mice with chronic stress have 
upregulated genes encoding these proteins in the hip-
pocampus [162].

Whilst S100A8 and S100A9 may play a central role in 
propagating neuroinflammation in colitis models, it has 
been suggested that NLR family pyrin domain contain-
ing 3 (NLRP3) protein activation may be involved [139]. 
NLRP3 largely functions as an intracellular sensor that 
detects microbial motifs, endogenous danger signals 
and environmental irritants [163]. Activation of NLRP3 
results in the assembly and activation of the NLRP3 
inflammasome, which leads to cleaving of inactive pro-
IL-1β and pro-IL-18 into their active forms via caspase 1 
[163, 164].

Increased NLRP3 inflammasome activity, microglial 
and astrocyte activation in the hippocampus and cor-
tex, accumulation of gut-derived T cells along menin-
geal lymphatic vessels observed in the brains of wild 
type mice with DSS-induced colitis, were not found in 
NLRP3 knockout mice [139]. These findings could be the 
results of a NLRP3 facilitating dysfunction of the “glym-
phatic” system. The glymphatic system facilitates the 
entry of subarachnoid cerebrospinal fluid (CSF) into the 
brain interstitium where it mixes with brain interstitial 
fluid (ISF) [165, 166]. CSF-ISF then flows through the 
interstitium, being drained via para venous pathways to 
the meningeal lymphatic vessels, reaching the cervical 
lymphatics [165, 166]. Astrocytes allow the movement 
of fluid between paravascular spaces and the interstitium 
via water channels such as aquaporin-4 (AQP4), which 
requires the polarization of AQP4 [167]. This movement 
of fluid through the brain allows the removal of extracel-
lular proteins, such as amyloid-β peptide (Aβ) and tau, 
from deeper areas of the brain, where interstitial solutes 
cannot normally reach the BBB [165, 168]. Impaired 
glymphatic drainage may lead to Aβ and tau protein 
accumulation, which has been associated with trigger-
ing and propagating neuroinflammation playing a central 
role in neurodegenerative conditions such as Alzheimer’s 
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disease [169,170,171]. Glymphatic dysfunction, lead-
ing to impaired clearance of Aβ and aggravated cogni-
tive decline seen in mice with DSS-induced colitis were 
attenuated in NLRP knockout mice [155]. This may be 
due to the binding of IL-1β to cognate receptors on astro-
cytes leading to the loss of AQP4 polarity [152]. Moreo-
ver, this study [139] and others [129, 138, 139] suggest a 
role of immune cells migrating from the gut to the brain 
in colitis-induced neuroinflammation. Meninges local-
ised T cells have been shown to infiltrate the CSF, induce 
microglial activation, and enhance local pro-inflamma-
tory cytokine production [139, 172]. Additionally, other 
peripheral immune cells have been shown to be elevated 
in brain samples from animals with colitis including 
monocytes and neutrophils [129, 138]. Whilst the evi-
dence of neuroinflammation in colitis models is appar-
ent, the underlying mechanisms still require exploration.

Microglial cells during neuroinflammation in colitis
After entering the CNS, inflammatory mediators may 
modulate local neuroglial cells in specific brain regions 
triggering neuroinflammation in animals with coli-
tis [126, 136]. Among the neuroglial cell populations, 
microglial cells can migrate and become activated dur-
ing cytokine-induced neuroinflammation [173]. Micro-
glia are derived from the embryonic mesoderm and are 
closely related to peripheral macrophages [174]. Func-
tionally, they eliminate cell debris, remove damaged cells 
and destroy pathogenic agents [175]. Moreover, they 
support and regulate neurogenesis, maintain oligoden-
drocyte progenitor cells, neuronal morphology, neural 
circuitry pathways, and neuronal outgrowth and posi-
tioning in the developing brain. During neuroinflam-
mation, the inflammatory milieu activates microglial 
cells initiating their immunological response [176, 177] 
(Fig. 2).

Several studies provide evidence that microglia are 
activated in the brains of mice with colitis [126, 135, 
138,139,140,141,142,143]. In DSS-treated mice, sig-
nificantly higher cortical and CA1 hippocampal 
immunofluorescence for a microglial marker, ionized 
calcium-binding adaptor protein-1 (Iba-1), has been 
observed [126, 141]. Since Iba-1 is a marker of both 
resting and activated microglia, an increase in Iba-1 
immunoreactivity in DSS-treated mice was attributed 
to a change in microglia morphology and localisation as 
opposed to increased cell number and consistent with 
increased microglia reactivity [138]. Increased Iba-1 
immunoreactivity may be transient as mice with DSS-
induced colitis revealed increased hippocampal Iba-1 
expression in acute colitis (day 7 post initial DSS treat-
ment), and showed no difference after chronic colitis 
(day 29 post initial DSS treatment) [135]. Moreover, DSS 

administered to weaning (postnatal day 21) mice revealed 
enhanced gene expression for markers associated with 
microglia such as Iba-1, Nos2, and IL-1β along with 
increased microglia cell numbers, decreased numbers of 
dendritic processes, and decreased length of processes 
[140]. However, DSS was administered at the weaning 
stage, which is a critical point for the maturation of gut 
microbiota and may be due to gut dysbiosis [140, 178]. 
Furthermore, rats with TNBS-induced colitis, displayed 
microglial activation, increased excitability of hippocam-
pal neurons, altered hippocampal glutamatergic trans-
mission, and lowered seizure threshold [142, 143]. An 
intracerebroventricular injection of anti-TNF-α antibody 
and minocycline (an inhibitor of microglial/macrophage 
activation), reversed these findings, which may suggest 
CNS microglial/macrophage and/or TNF-α involvement 
in neuroinflammation associated with colitis [142, 143]. 
In another recent study, the number of microglia was 
significantly increased in the cortex and hippocampus in 
DSS-fed WT mice but reduced in the NLRP3 knockout 
mice [139].

Thus, the proinflammatory cytokines and NLRP3 
appear to play a critical role in perturbation in microglia 
activity in these models. Whether these microglia are 
activated via mediators originating from the gut is yet to 
be confirmed and requires more investigation.

Microglia activation, migration and neurodegeneration
Increased expression of microglia, suggested in mod-
els of colitis, may be due to CNS-derived or circulating 
cytokines or antigens, which may activate neuroglial 
cells. As discussed, patients with IBD present with ele-
vated serum levels of many pro-inflammatory cytokines 
and antigens inclusive of TNF-α, IL-1β, IL-6, and LPS 
[114,115,116,117]. If BBB dysfunction is indeed found 
in patients with IBD, these circulating factors may enter 
the brain parenchyma and alter microglial function con-
ducive to the progression of neuroinflammation. Impor-
tantly we see evidence of upregulation of TNF-α, IL-1β, 
and IL-6 in various brain regions of colitis models [126, 
129, 136, 137], which may be sourced from or interact 
with neurons, microglia, and other cells.

Indeed, in  vitro studies demonstrate the capability of 
cytokines to activate microglial cells and induce their 
release of pro-inflammatory and neurotoxic media-
tors [176, 177, 179]. For instance, stimulation of micro-
glia with recombinant TNF-α induces upregulation of 
many pro-inflammatory mediators such as TNF-α, Nos2, 
and Il-1β via an NF-kB p65 pathway [176]. As mentioned 
above, excessive NO may trigger neuronal cytotoxic-
ity through protein nitration [180]. Whether NO neu-
rotoxicity from microglia occurs in the CNS of colitis 
models is yet to be explored, but, as discussed earlier, 
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TNBS-induced colitis was associated with a significant 
increase in hippocampal TNF-α and iNOS protein lev-
els which could reflect reactive microglia activity [137]. 
Furthermore, stimulation of mouse microglial cell line 
BV-2 with IL-1β induces expression of pro-inflamma-
tory markers such as COX-2, chemoattractant protein-1 
(CCL2), and IL-6 via a PI3K/Akt pathway [177]. This 
pathway and associated inflammatory markers could be 
relevant in colitis as NLRP3 inflammasome activity (criti-
cal for caspase 1-dependent release of IL-1β and IL-18) 
in the CNS has been implicated in the exacerbation of 
neuroinflammation by DSS-induced colitis in aging mice 
[139, 181]. Moreover, increased levels of mRNAs for 
TNF-α, IL-1β and COX-2 protein expression were found 
in isolated rat cerebral cortex microglial cell cultures 
treated with recombinant IL-6 compared to untreated 
control [179]. COX-1 and -2 catalyse the formation of 
prostaglandins, thromboxane, and levuloglandins [182]. 
In  vivo, systemic TNF-α and LPS administration acti-
vated microglia and increased expression of brain pro-
inflammatory factors in WT mice, but not in TNF R1/R2 
deficient mice [183]. Indeed, this may be consistent with 
studies that observed normalisation of synaptic transmis-
sion following either anti-TNF-α or minocycline treat-
ment in animals with colitis [142, 143, 184].

Enhanced prostaglandin activity might contribute to 
the mechanisms involved in the increased BBB perme-
ability observed in models of colitis [126, 127]. Different 
prostaglandin receptors appear to have varying functions 
in terms of BBB permeability. In ischemic stroke models, 
pharmacological or genetic inhibition of PGE2 recep-
tors suggests that EP1 and EP3 receptors contribute to 
BBB breakdown observed in these models [185,186,187]. 
EP4 was reported to attenuate BBB dysfunction induced 
by stroke [188, 189]. However, in animals administered 
with LPS, prostaglandins show varying effects including 
blocking, enhancing, or having no effect on the actions 
of LPS on BBB permeability [190,191,192]. Furthermore, 
systemic LPS challenge has been shown to induce upreg-
ulation of prostaglandin enzyme COX-1 in microglia 
and perivascular macrophages with PGE2  increase seen 
primarily in the hippocampus and thalamus [193]. Mice 
with DSS-induced colitis exhibited more anxiety and less 
social behaviour than control mice and occurred in par-
allel with increased circulating IL-6, NPY, and IL-18 lev-
els as well as an increase in hypothalamic Cox-2 mRNA 
[194]. In a recent study using DSS-induced colitis, ele-
vated expression of the Ptgs2 gene, which encodes COX-
2, was noted [138].

Systemic LPS challenge in mice elicits the increased 
amounts of CCL2 mRNA and protein in the hypothala-
mus and hippocampus, in conjunction with upregula-
tion of chemokine receptor 2 (CCR2) expression by 

microglia [195]. CCR2 studies in the CNS of mice with 
colitis are very limited and require further investigation. 
However, no changes in seizure threshold in colitis mice 
with impaired CCR2 functioning were found, which sug-
gested that monocytes do not play a major role in colitis-
induced neuronal hyperexcitability [129]. CCR2 appears 
in two isoforms (CCR2A and CCR2B) with CCR2B being 
the dominant isoform making up 90% of all CCR2 expres-
sion and is observed on microglia, astrocytes, and neu-
rons, while CCR2A is observed in certain mononuclear 
and smooth muscle cells [196,197,198]. CCL2-CCR2 axis 
can induce the secretion of pro-inflammatory cytokines, 
such as IL-1β and IL-18 by microglia [197]. Moreo-
ver, CCR2 appears critical for microglial accumulation 
as indicated in CCR2 knockout models [199]. Studies 
should entice to investigate whether CCR2 is upregulated 
in brain tissue from animals with colitis, which may help 
elucidate possible mechanisms underpinning microglial 
activity seen in animals with colitis. Given that in  vitro 
and in  vivo studies evidence the capacity of circulat-
ing inflammatory mediators and endotoxins in inducing 
microglial changes, it may be plausible that alteration in 
microglia noted in animal models of colitis could be due 
to systemic infiltration of antigens and immune media-
tors. Moreover, COX2, PGE2, and CCR2 would be plau-
sible future targets to investigate in the CNS of animals 
with colitis, given their role in the progression of events 
relevant to neuroinflammation.

Mechanisms of colitis‑associated suppression 
of hippocampal neurogenesis
Impaired hippocampal neurogenesis has previously 
been associated with microglial cell activity leading to 
depression and maybe a neurobiological mechanism 
underlying IBD-associated depression [200]. The asso-
ciation between reduced neurogenesis and depression 
in humans can only be inferred through reduced hip-
pocampal volume noted in depressed individuals [201]. 
However, post-mortem cellular changes in depressed 
humans revealed alterations in the neuropil, altered fluid 
content, and changes in granule cell and pyramidal cell 
density. [202]. This may be responsible for hippocampal 
volume changes in humans. Further research to confirm 
neurogenesis as a neurobiological correlate of depression 
is needed.

Adult neurogenesis mainly occurs in the subgranu-
lar (SGZ) and subventricular zones in the dentate gyrus 
of the hippocampus resulting in the formation of new 
granule cells from neural progenitor cells [203]. Micro-
glia play a vital role in facilitating the complex process 
of neurogenesis. In vitro studies have demonstrated that 
microglial conditioned media enhance precursor cell 
differentiation, neuroblast production, and neuronal 
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survival [204, 205]. In addition, microglia are implicated 
in eliminating apoptotic neuroblasts and adult neurons 
through phagocytosis, which is vital given that most of 
the newborn cells undergo death by apoptosis within the 
first 1–4 days of their life [206].

Given that increased microglial expression 
is noted in in  vivo animal models of IBD [126, 
135,138,139,140,141,142,143], microglia-facilitated 
impairment of neurogenesis may be responsible for 
triggering or potentiation of colitis-associated depres-
sive symptoms. Imaging studies show an increase in 
gray matter volume in the hippocampus of CD patients 
which may be related to immune activation that induces 
alterations in glial cells activity [207]. There are limited 
studies confirming hippocampal dysfunction because 
of activated microglial cells in animal models of colitis. 
However, enhanced microglial cell activity in the hip-
pocampus is correlated with a reduction in a neuronal 
marker, doublecortin (DCX), associated with reduced 
neurogenesis and behavioural abnormalities in mice 
with DSS-induced colitis [140]. Moreover, it has been 
speculated that reduced neurogenesis seen in animals 
with colitis may be induced by cyclin-dependent kinase 
inhibitor p21Cip1  (p21) activity in the hippocampus. 
Functionally, p21 restrains cell cycle progression and 
arrests the cell in the G1 phase [208]. p21 can be induced 
in early neuronal progenitors and immature neurons in 
the SGZ and can function to limit these cells’ prolifera-
tion and ultimately suppresses neurogenesis [135, 204, 
209, 210]. In addition, acute systemic inflammation and 
pro-inflammatory cytokines, originating from microglia 
or other cells, can increase p21 expression and restrain 
hippocampal precursor cells of neuronal lineage in the 
SGZ [210]. In a study using mice with DSS colitis, acute 
colitis was correlated with increased p21 expression in 
the hippocampus [210]. However, in the chronic phase 
of inflammation, a fourfold increase in p21 mRNA levels 
was noted [210]. Markers of neuronal stem/early pro-
genitor cells, inclusive of nestin and brain lipid-binding 
protein, and DCX were downregulated [210]. The nuclear 
protein Ki-67 and marker of cell proliferation co-labelled 
with DCX showed a decrease in number during chronic 
colitis in the SGZ [210].

Microglial-associated cytokines IL-1β, TNF-α, and 
IL-6 have been shown in  vitro to induce p21 expres-
sion in differentiating neuronal progenitors and may be 
partly responsible for the above findings [210] (Fig.  2). 
Importantly, pro-inflammatory cytokines noted in 
the hippocampus of animals with colitis, whether 
secreted by microglia or other cells, or peripherally 
sourced, have been suggested to suppress neurogenesis 
through different mechanisms. For instance, Cacci et al. 
(2005) revealed that the co-culture of an embryonic 

hippocampus‐derived HiB5 cell line with LPS-activated 
microglia results in TNFα-mediated apoptosis suppress-
ing neuronal development and differentiation [211]. 
Moreover, altered hippocampal neurogenesis is seen 
in vivo in mice with depleted TNF receptor (TNFR)1 and 
TNFR2 [212]. TNFR knockout mice showed an increased 
rate of neural progenitor proliferation and neurogen-
esis in the hippocampus [212]. This study suggests that 
microglial activation may suppress hippocampal neuro-
genesis via the release of TNF-α binding to TNFR1 on 
hippocampal progenitors, which is known to be related to 
a fas-associated protein with death domain-caspase-8/3 
which induces apoptosis likely contributing to impaired 
generation of new neurons [213] (Fig. 2). Increased hip-
pocampal expression of TNF-α has been noted in DNBS, 
TNBS, and DSS-induced colitis [129, 135,136,137, 142, 
143, 204]. Importantly, in DSS-colitis, cleaved caspase-8 
was found upregulated in the brain and cleaved caspase-3 
was found upregulated in the hippocampus, which may 
suggest the action of the above pathway [135, 138].

Cytokine or antigen challenge can induce microglia to 
release IL-1β, which has been implicated in the modula-
tion of neurogenesis. Studies have shown IL-1R1 expres-
sion in vitro in rat embryonic forebrain NPCs [214] and 
adult rat hippocampal cells [215]. The binding of IL-1β is 
associated with decreased proliferation in hippocampal 
progenitor cells [216]. Furthermore, mice with chronic 
stress-induced depression display increased IL‐1β expres-
sion in the dorsal hippocampus that decreases dentate 
gyrus hippocampal neurogenesis [217]. Moreover, IL-1β 
dysregulation dampens BDNF secretion associated with 
neurodegeneration [218]. Reduced BDNF mRNA expres-
sion in the  dentate gyrus  and CA3 region of the hip-
pocampus was seen in mice exposed to contextual fear 
conditioning followed by social isolation [218]. In  vivo 
treatment of contextual fear-conditioned mice with an 
IL-1R antagonist, suppressed IL-1β signalling improving 
BDNF expression and preventing impairments in hip-
pocampally-dependent contextual fear conditioning tests 
following social isolation [218] (Fig.  2). Limited studies 
in models of chemically-induced colitis provide evidence 
that BDNF expression is reduced in the hippocampus 
(DNBS) and forebrain (DSS) with IL-1β expression ele-
vated in DSS models [135, 136, 138].

Alteration in hippocampal neurogenesis in IBD ani-
mal models may be due to abnormal excitatory synap-
tic properties in the hippocampus. Hippocampal tissue 
from Sprague–Dawley rats with TNBS-induced colitis 
revealed enhanced Schaffer collateral-induced excita-
tory field potentials in CA1 stratum radiatum [142]. 
Schaffer collaterals are axon collaterals from CA3 
pyramidal cells projecting to CA1 area [219]. This was 
associated with larger-amplitude miniature excitatory 
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postsynaptic currents (mEPSCs), but unchanged 
mEPSC frequencies and paired-pulse ratios, suggesting 
altered postsynaptic effects. Both α-amino-3-hydroxy-
5-methyl-4-isoxazole propionic acid receptor (AMPA)- 
and N-methyl-d-aspartate (NMDA)-mediated synaptic 
currents were enhanced in the rats [142]. Moreover, 
AMPA-mediated currents revealed increased contribu-
tion of GluR2-lacking receptors and mRNA and pro-
tein levels of the glutamate ionotropic receptor AMPA 
type subunit 2 (GluR2) subunit were reduced in the 
hippocampus [142]. Interestingly, the chronic admin-
istration of minocycline, a microglial/macrophage 
activation inhibitor, lowered the level of TNF-α in the 
hippocampus and completely abolished the effect of 
peripheral inflammation on observed transient electri-
cal signals and synaptic plasticity [142]. The authors 
had previously shown in vivo that enhanced brain excit-
ability during colitis requires both elevated cytokines 
TNF-α and microglial activation [143]. Indeed, TNF-α 
has been evidenced to facilitate the insertion of GluR2-
lacking AMPA receptors in the membrane [204, 220, 
221].

The increase in hippocampal NMDA and AMPA 
receptors may make neurons more prone to glutamate-
induced excitotoxicity, though no evidence of increased 
release or availability of glutamate was found [142]. The 
presence or absence of the GluR2 subunits determines 
the Ca2+ permeability of the AMPA receptor [222]. The 
low expression of GluR2 enables the formation of AMPA 
receptors with high Ca2+  permeability, which contrib-
utes to neuronal degeneration [222,223,224]. In relation 
to NMDA receptors, the 2A and 2B subtypes are widely 
distributed in the hippocampus. Moreover, quinolinate 
phosphoribosyltransferase, which converts NMDA ago-
nist quinolinic acid (QA) into nicotinamide adenine 
dinucleotide, is low in the hippocampus reducing the 
capacity to clear QA in the hippocampus [225]. QA may 
then function as an excitotoxin and damage the hip-
pocampal neurons [207].

It has been revealed that activation of adenosine 
monophosphate-activated protein kinase (AMPK) can 
enhance hippocampal neurogenesis through the AMPK/
BDNF pathway [226]. Furthermore, there is evidence 
indicating that activation of AMPK attenuates inflamma-
tion in the CNS [227]. Neuroinflammation and suppres-
sion of hippocampal neurogenesis in models of colitis 
could be due to impairments in the AMPK/BDNF signal-
ling pathway. A study tested this theory using an activa-
tor of AMPK, called liver hydrolysate (LH), that has been 
shown to increase hippocampal neurogenesis through 
the AMPK/BDNF pathway and has an antidepressant 
effect in an animal model of depression [228]. In a study 
using DSS-treated mice, LH prevented depressive-like 

behaviours and enhanced hippocampal neurogenesis 
through the AMPK/BDNF pathway and hippocampal 
activation of microglia and astrocytes [229].

HMGB1 expression could play a critical role in synaptic 
dysfunction and/or impaired neurogenesis in colitis mod-
els. HMGB1 is a 215 residue protein that consists of two 
consecutive L-shaped basic domains referred to as HMG 
boxes and a 30 amino-acid long tail with acidic properties 
[230]. HMGB1 is commonly found in the nucleus where 
it binds to the minor group of B type DNA and distorts 
and bends the double helix DNA of 90 degrees or more. 
HMGB1 can function to modulate transcriptional activ-
ity through its interaction with transcription factors such 
as p53 and nuclear factor kappa-light-chain-enhancer 
of activated B cells (NF-κB) [230]. Moreover, HMGB1 
can function as a damage-associated molecular pattern 
(endogenous danger molecule released from damaged 
or dying cells inducing immune response by interact-
ing with pattern recognition receptors) and bind to hip-
pocampal TLR-4 inducing the activation of NF-κB and 
Activator protein 1, which facilitate the synthesis of pro-
inflammatory mediators such as IL-6, TNF-α and iNOS 
[231]. As mentioned above, the induction of pro-inflam-
matory cytokines, including IL-1β, TNF-α, and IL-6, 
have been shown to inhibit hippocampal neurogenesis 
[210,211,212, 216, 217]. Using an experimental model 
of chronic cerebral hypoperfusion in rats, anti-HMGB1 
neutralizing Ab reduced hippocampal glial activity and 
inflammatory cytokines, such as TNF-α, IL-1β, and IL-6, 
as well as increased antioxidants superoxide dismutase 
and catalase, which was associated with improved CA1 
neuronal survival and cognitive tasks [232].

In DNBS-induced colitis, increased expression of the 
HMGB1 gene in the hippocampus has been suggested to 
be detrimental to hippocampal neurogenesis and func-
tion [136]. Additionally, HMGB1 has also been shown 
to be involved in hippocampal neurobiological functions 
including memory and long-term potentiation [233, 234]. 
HMGB1 can inhibit hippocampal long-term potentiation 
and memory via TLR-4 and RAGE, which is accompa-
nied by activation of NF-κB and c-Jun N-terminal kinase 
[233].

Overall, pro-inflammatory cytokines, HMGB1, glial 
cells and, synaptic dysfunction could independently or 
in unison be responsible for alterations in neurobiologi-
cal pathways which promote suppression of neurogenesis 
seen in colitis [140, 210]. However, the exact mechanisms 
whereby colitis can alter pathways and the relationship 
between contributing factors is yet to be determined.

Microglia and the serotonin–kynurenine pathway
Impairments in serotonin biosynthesis could be an 
underlying mechanism behind behavioural changes seen 
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in animals with colitis. However, the serotonin biosyn-
thesis theory of depression is still debated. In treatment 
for tuberculosis and schizophrenia, iproniazid (inhibits 
the breakdown of monoamines) and imipramine (blocks 
serotonin and norepinephrine transport) were found 
to reduce depressive symptoms [235]. Moreover, reser-
pine, which can deplete monoamines, was implicated 
in triggering depressive symptoms. These observations 
helped formulate the theory that depression is caused 
by the depletion of monoamine transmission [235, 236]. 
But whilst serotonin biosynthesis has been implicated 
in depression pathogenesis, many studies have found 
evidence contradicting this theory. For instance, selec-
tive serotonin reuptake inhibitors increase extracellular 
serotonin within short periods following administration 
[237, 238], however, the beneficial antidepressant effects 
arise following weeks of continuous treatment [239]. 
Moreover, reducing serotonin synthesis through dietary 
reductions in tryptophan fails to induce depression in 
non-depressed individuals [240]. This review discusses 
the microglia-associated reduction of serotonin bioavail-
ability as a possible mechanism underlying IBD-associ-
ated depression, however, caution should be taken as this 
proposed theory is still debated.

Microglial cell activity can modulate the serotonin-
kynurenine pathway which plays an important role in 
depression [241]. Microglia express the tryptophan-cat-
abolizing enzyme IDO in the presence of pro-inflamma-
tory cytokines [242]. IDO converts tryptophan (amino 
precursor of serotonin [5-HT, 5-hydroxytryptamine]), 
into kynurenine (KYN) which can then be catabolized 
by the enzyme kynurenine 3‐monooxygenase (KMO) 
into excitotoxic metabolites 3‐hydroxy‐kynurenine (3‐
HK), 3‐hydroxy‐anthralinic acid, QA, and finally the 
end‐point co‐enzyme nicotinamide adenine dinucleotide 
[243]. Conversely, KYN can also be metabolized through 
a neuroprotective pathway to kynurenic acid (KYNA) by 
the enzyme kynurenine–aminotransferase (KAT) [243]. 
Importantly, KMO is expressed by leukocytes such as 
monocytes, macrophages, and microglial cells, whereas 
KAT is present in astrocytes [242, 244]. Quinolinic acid 
reduces the expression of astrocyte glutamate reuptake 
pumps while stimulating release of glutamate from astro-
cytes which may result in glutamate neurotoxicity and 
neurodegeneration [245, 246] (Fig. 2).

Studies linking colitis with the TRY/KYN alteration 
in the CNS are limited. However, mice infected with 
a parasite Trichuris muris (T. muris), which induces 
colitis, have higher levels of serum kynurenine and an 
increased kynurenine/tryptophan ratio when com-
pared to non-infected mice [247]. Moreover, T. muris-
infected mice displayed behavioural abnormalities as 
assessed by a light/dark preference test and elevated 

levels of circulating pro-inflammatory cytokines such as 
TNF-α and IFN-γ which were all alleviated with either 
a corticosteroid (budesonide) or an anti-TNF-α agent 
(etanercept) interventions that normalized circulating 
kynurenine levels [247]. Similarly, mice with DSS and 
TNBS colitis revealed a reduction in serum levels of tryp-
tophan and increased intestinal expression of IDO [248, 
249]. In humans, serum obtained from CD and control 
participants elucidated a marked reduction in trypto-
phan and an increased K/T ratio in active CD. Whether 
these findings are due to upregulation in microglial 
IDO is unknown. Indeed, increased IDO-1 gene expres-
sion was observed in the medial prefrontal cortex (PFC) 
of mice with colitis, however, this was accompanied by 
reduced microglia expression [250]. It should be con-
sidered that alterations noted in serum tryptophan and 
K/T ratios could be due to changes in IDO-1 expression 
in the gut. IDO overexpressed has been noted in lesional 
biopsies from patients with IBD with CD123+ dendritic 
cells being the primary cell to express the enzyme [251]. 
Moreover, although appearing detrimental in the con-
text of depression, IDO expression appears beneficial 
in suppressing intestinal inflammation. In TNBS colitis, 
inhibition of IDO results in more severe colitis and a sig-
nificantly increased colonic pro-inflammatory cytokine 
expression [249]. This may be due to enhanced availabil-
ity of tryptophan and increased 5-HT synthesis in the 
intestines. Indeed, 5- HT has been implicated in worsen-
ing colitis as mice with tryptophan hydroxylase-1 knock-
out experienced reduced 5-HT in the GI tract and had 
reduced severity of DSS-induced colitis [252]. It appears 
that there may be paradoxical findings in the brain and 
gut whereby reduced serotonin worsens depressive 
symptoms and increased serotonin contributing to more 
severe colitis. Overall, more research is warranted to elu-
cidate the presence of IDO-expressing neuroglia cells in 
the brains of animals with colitis and whether serum lev-
els of tryptophan and K/T ratio alteration noted in IBD 
and animals with colitis contribute to/or are caused by 
IDO expression in the CNS.

HPA axis dysregulation in IBD
The HPA functions to coordinate neural, endocrine and 
immune responses to diverse stimuli that threaten physi-
ological homeostasis. Glucocorticoids, corticosteroid 
hormones are the final products of HPA axis activa-
tion and function to alter cellular metabolism and the 
immune system [253]. The homeostatic regulation of the 
HPA involves bi-directional communication and integra-
tion between the brain, endocrine and immune systems 
[254]. The functional balance between pro- and anti-
inflammatory mediators is critical for control of the HPA 
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axis and the dysregulation in its activity, a characteristic 
of numerous chronic inflammatory diseases [254].

Following the immunological or emotional challenge, 
the hypophysiotropic neurons in the medial paraven-
tricular nucleus (PVN) can synthesise and secrete the 
corticotrophin-releasing factor (CRF) into the hypophy-
sial-portal circulation [255, 256]. CRF can then access 
CRF-Receptor-1 at the anterior pituitary corticotropes 
and stimulate the rapid release of adrenocorticotropic 
hormone (ACTH) [257]. ACTH enters systematic cir-
culation and binds to melanocortin type 2 receptor in 
parenchymal cells of the adrenocortical zona fasciculata, 
which induces the release of glucocorticoids, including 
cortisol in humans and corticosterone in rodents [257, 
258].

Inflammatory mediators, which are abnormally ele-
vated in the serum of IBD patients [114, 115] and the 
brains of animals with colitis [126, 135,136,137,138,13
9,140,141,142,143], can also interact with the HPA axis 
at various points. These include (i) stimulation of vagal 
nerve afferents [259]; (ii) interaction with brain ECs, 
which induce the synthesis/release of secondary mes-
sengers such as prostaglandins [260, 261]; (iii) cross-
ing the BBB at “leaky” regions such as the fenestrated 
endothelium circumventricular organs or areas where 
BBB dysfunction is present, whereby they activate neu-
rons that project to the hypothalamus [262]. Inflamma-
tory cytokines can also act directly on glucocorticoid 
receptors (GR) and suppress their function. For instance, 
activation of mitogen-activated protein kinase pathways 
such as ERK, JNK, and p38 by inflammatory cytokines 
can inhibit GR function by either directly phosphorylat-
ing GR at serine-246, indirectly via a GR co-factor, or by 
inhibiting translocation of the GR from the cytoplasm to 
the nucleus [263,264,265]. Further, cytokines can activate 
NF-κB, which is implicated in the inhibition of GR by the 
physical association in the nucleus [266].

Modulation of the HPA axis by circulating cytokines 
may explain evidence of a dysfunctional HPA axis in IBD 
patients. The cytokine IL-6, which induces cortisol secre-
tion [267], shows no relationship to serum concentrations 
of cortisol in IBD patients [268, 269]. Impaired regulation 
of IL-6 plays a crucial part in the uncontrolled intestinal 
inflammatory processes in IBD. Increased formation of 
IL-6-sIL-6R complexes with gp130 on the membrane of 
CD4+ T-cells causes a STAT3-mediated transcription 
of anti-apoptotic genes, such as Bcl-xl resulting in T-cell 
expansion contributing to the perpetuation of chronic 
intestinal inflammation [270,271,272]. It has been sug-
gested that the ANS and HPA axis are uncoupled in IBD 
patients as high morning vagal tone is associated with a 
low evening cortisol level in healthy subjects but no asso-
ciation was found in IBD patients [273].  Additionally, 

plasma NPY, a marker of ANS activity, was not positively 
correlated with serum cortisol in IBD patients as was 
observed in healthy controls [274]. In  vivo, mice with 
DSS-induced colitis presented with brain region-specific 
alterations in HPA axis-related peptides, glucocorticoid 
receptor gene expression, and factors including NPY, 
NPY receptor Y1, CRF, CRF receptor 1, and BDNF [275, 
276]. Interestingly, chemical stimulation with glutamic 
acid of the PVN, which is a major source of brain CRH, 
alleviated TNBS-evoked colitis as assessed by a reduction 
in colonic damage scores and levels of IL-6 and IL-17 
[277]. A possible mechanism underlying these findings 
could be neuroinflammatory damage in brain regions 
implicated in the regulation of the HPA [278, 279]. Direct 
inflammatory insult regions of the brain could be a 
potential mechanism underlying HPA axis dysfunction in 
IBD and is supported by studies implicating neuroinflam-
mation in animals with colitis.

A major brain region of the ANS and the stress 
response is the locus coeruleus (LC), which is a cluster 
of NA-containing neurons located in the upper dor-
solateral pontine tegmentum of the brainstem [280]. 
Nerve fibres from the LC provide the sole source of NA 
to the cortex, hippocampus, cerebellum, and thalamus 
[280]. CRF-releasing neuronal afferent originating from 
the PVN project to the LC and noradrenergic neurons 
from the LC project to the PVN [281,282,283]. A posi-
tive feedback loop appears to exist between the HPA axis 
and the ANS with the firing rate of LC neurons increased 
by CRF which induces the release of NA by LC neurons 
[284,285,286]. Consequently, NA has then been shown to 
promote CRF mRNA expression in the PVN [287]. Con-
sistent with this, lesions of the LC attenuate the HPA axis 
response to acute restraint stress but not chronic stress 
[288]. Importantly, it has been suggested that the Cen-
tral Autonomic Network (CAN), which includes the PFC 
and limbic structures such as the hippocampus can exert 
tonic inhibitory control of the ANS, HPA axis, and amyg-
dala [289,290,291,292].

The central autonomic network and neuroinflammation
The activity level of the ANS and HPA axis, repre-
sented by peripheral measures, such as heart rate and 
cortisol variability, is associated with the activity of the 
PFC and amygdala, respectively [293]. The amygdala 
is under tonic inhibition from gamma-aminobutyric 
acid (GABA)ergic fibres projecting from the PFC [293]. 
The medial and central amygdaloid nuclei are believed 
to stimulate the HPA axis [294]. Hence, the uncou-
pling between the ANS and HPA axis observed in IBD 
patients may be due to inflammatory insult in the PFC, 
as seen in animal models of IBD, which consequently 
impairs its role in tonic inhibition of the LC, amygdala, 
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and HPA axis (Fig.  3). However, whether neuroin-
flammation or other factors contribute to proposed 
PFC hypoactivity in IBD patients has yet to be eluci-
dated. Indeed, inflammation in the PFC may produce 
damage with varying implications on glucocorticoid 
release depending on regions of the PFC impacted. For 
instance, lesions of the prelimbic divisions (PLD) and 
anterior cingulate (AC) of the mPFC enhance adreno-
corticotropic hormone and corticosterone secretion 
and induce PVN activity as determined by the neu-
ronal activity marker c-fos following restraint stress 
[295,296,297]. However, lesions of the right infralimbic 
cortex reduce corticosterone release caused by restraint 
stress [298]. Importantly, the PFC is suggested to be 
involved in the negative feedback system, which inhib-
its the HPA axis. GR density is high layers II, III, and VI 
of the PFC [299]. In support of this function, the release 
of ACTH and corticosterone following restraint stress 

was found attenuated after infusion of glucocorticoids 
into the mPFC [257, 297, 300].

Studies investigating neuroinflammation in the CNS 
of animals with colitis should explore regions such as the 
PLD and AC given their suggested role in the inhibition 
of the HPA axis.

Studies have implicated the hippocampus in inhibition 
of the HPA axis [301, 302], supported by findings that the 
stimulation of the hippocampus decreases glucocorticoid 
secretion in rats and humans [303, 304]. This may be rel-
evant to HPA axis dysfunction in IBD given that animal 
models of colitis provide evidence of reduced hippocam-
pal neurogenesis, enhanced oxidative stress, mitochon-
drial dysfunction, and impaired synaptic transmission 
[136, 140, 142, 143]. Indeed, damage to the hippocam-
pus appears to trigger a disrupted HPA response. For 
instance, hippocampectomy, fimbria-fornix lesions, or 
excitotoxic lesions increase corticosterone and/or CRH 

Fig. 3  Schematic representation of neuroinflammatory-induced impairment of the HPA axis functioning. Resultant neuroinflammation associated 
with animal models of colitis may induce damage or neurobiological alteration in important regions associated with inhibition of the HPA axis. This 
may trigger the aberrant secretion of hippocampal, pituitary, or adrenal hormones triggering worsening of intestinal and cortical inflammation and 
depressive symptoms. ACTH adrenal corticotrophin-releasing hormone; CA1 cornu ammonis 1; CNS, central nervous system; CRH corticotrophin 
releasing hormone; HPA hypothalamic–pituitary–adrenal; PVN paraventricular nucleus
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secretion [305,306,307,308]. It is believed that the CA3, 
dentate gyrus (including CA4), and subiculum region of 
the hippocampus are involved in the inhibition of the 
HPA axis [309], whereas the dorsal hippocampus appears 
to excite the HPA axis [310]. Future studies should inves-
tigate the role of these brain regions in HPA axis dysfunc-
tion evidenced in IBD patients and colitis models and 
ascertain whether neuroinflammatory events precipitate 
this dysfunction. While it could be proposed that inflam-
mation in key regions of the brain is responsible for HPA 
axis dysfunction, other factors such as stress could be 
involved.

Stress and IBD
IBD patients have been shown to have a high incidence of 
psychological distress and comorbidities, such as depres-
sion, anxiety disorders, obsessive–compulsive disorders, 
and bipolar disorder [311, 312]. Stress has also been sug-
gested to increase the susceptibility of individuals to IBD. 
Approximately two-thirds of patients who had both anxi-
ety disorder and IBD developed psychiatric symptoms 
predating the IBD diagnosis by over 2  years with the 
onset of IBD also arising much earlier in patients with 
lifelong anxiety [313]. Recurrence and aggravation of 
IBD symptoms have also been shown following stressors 
with high perceived stress suggested as impacting the fre-
quency of symptomatic flares [314].

Stress likely plays a role in IBD generation, recurrence, 
or aggravation due to impact on CRF. Stress directly 
influences the PVN to release CRF which can bind to 
CRF receptors expressed in the brain and the gut [257, 
315]. Ligation of gut CRF receptors with CRF can mod-
ulate intestinal secretion, peristalsis, and the mucosal 
barrier permeability [316]. Moreover, CRF can trig-
ger degranulation of mast cells that leads to enhanced 
mucosal permeability and promotion of pathophysiologi-
cal mechanism underlying IBD [317]. Consistent with 
this, chronic stress in WT rats can induce intestinal bar-
rier dysfunction, inflammatory cell infiltration, and mast 
cell proliferation and activation [318]. However, intestinal 
dysfunction in chronically-stressed mice has been abro-
gated in mast cell-deficient rats [318]. Further, using a 
mouse model of chronic restraint stress, the neuropep-
tide substance P and its receptors increased CRH expres-
sion and CRH release by eosinophils that resulted in a 
mast cell-mediated increase in epithelial barrier dysfunc-
tion [319].

Overall, whether arising due to colitis-induced cen-
tral neuroinflammation, elevations of serum inflam-
matory mediators, or the neuroendocrinology of the 
stress response, inappropriate glucocorticoid secretion 
could have various implications in the brain and gut 
inflammation.

Glucocorticoids: good or bad in IBD?
Glucocorticoids are known for their mainly immunosup-
pressive action. Glucocorticoids induce the synthesis of 
anti-inflammatory proteins such as IL-10, lipocortin 1, 
and IL-1 receptor antagonists, and promote apoptosis 
in inflammatory cell types such as T cells and eosino-
phils [320, 321]. Moreover, glucocorticoids can inhibit 
the transcription factors AP-1 and NF-kB reducing the 
synthesis of several pro-inflammatory cytokines and 
chemokines including IL-1, IL-6, and TNF-α [322]. Treat-
ment of severe exasperations of intestinal inflammation 
in IBD often involves corticosteroids, such as prednisone, 
hydrocortisone, and dexamethasone (DXM), to induce 
remission [323].

However, glucocorticoid hormones may increase 
intestinal inflammation and potentially worsen neuro-
inflammation. For instance, glucocorticoids induce the 
synthesis of NLRP3 inflammasome mRNA and protein 
and enhance ATP-mediated release of pro-inflammatory 
cytokines such as IL-1β, TNF-α, and IL-6 [324]. Moreo-
ver, glucocorticoids induce expression of TLR and secre-
tion of inflammatory mediators by endothelial cells via 
P2Y2 purinergic receptors [325, 326]. They also modu-
late significant neurobiological mechanisms correlated 
with depression. Foetal hippocampal progenitor cells 
treated with corticosterone display reduced proliferation 
and differentiation, whereas DXM treatment only sup-
presses proliferation [327] (Fig.  3). Furthermore, mice 
treated with DXM demonstrated a cyclin-dependent 
kinase 5 phosphorylation of an axonal transport pro-
tein huntingtin, preventing cortical delivery of BDNF 
to the hippocampus resulting in impaired neurogenesis 
[328] (Fig. 3). Cortisol activates tryptophan 2,3-dioxyge-
nase (TDO) which, like IDO, converts tryptophan into 
kynurenine [329]. These findings become even more 
relevant when one notes that cortisol is associated with 
enhanced serotonin reuptake and reductions in serotonin 
levels as seen in animals and humans [330, 331] (Fig. 3). 
Stress-induced cortisol increases intestinal barrier dys-
function, as shown by crypt analyses sourced from both 
humans and rodents [332]. Moreover, administration of 
cortisol in a porcine model caused a shift in microbiota 
composition [333]. These studies suggest a role of cortisol 
in regulating both intestinal inflammation and microbi-
ota composition.

Through inflammation-associated damage to CNS 
regions responsible for its inhibition or through hyper-
secretion of cortisol triggered by circulating immune 
factors, the HPA plays a significant role in intestinal 
inflammation, neuroinflammation and depression in 
IBD patients. Future studies should ask whether regions 
and neural pathways of the brain responsible for inhi-
bition of the HPA axis are damaged or fail to function 
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appropriately in animal models of IBD. Moreover, it 
would be interesting to ascertain whether there is evi-
dence of GR downregulation due to hypersecretion of 
cortisol in these animals.

Dysfunction of vagal nerve tone in IBD
The vagus nerve (VN), or cranial nerve X, is a mixed 
parasympathetic nerve with 10–20% consisting of vagal 
efferent fibres and 80–90% afferent nerve fibres [334]. 
In the context of the GI tract, the VN’s efferent fibres 
transmit information to the CNS about the mechanical 
distortion of the mucosa, luminal osmolarity, carbohy-
drate levels, bacterial products, neurotransmitters, the 
transformation of secondary bile acids, short-chain fatty 
acids, branched-chain amino acids, and gut hormones 
[334, 335]. Sensory information travels to the nucleus 
tractus solitarius, located in the medulla oblongata [334, 
335]. From there, nerve fibres project sensory informa-
tion to different brain regions, including the ventrolat-
eral medulla, amygdala, LC, thalamus, and hypothalamus 
[336]. Activation of the vagus afferent transmission can 
trigger the synthesis and release of the CRF by the PVN 
into the hypophysial-portal circulation, which then 
through downstream pathways discussed above, induce 
the release of glucocorticoids [334, 335].

Preganglionic neurons of vagal efferent fibres exit the 
brain from the medulla oblongata in the groove between 
the olive and the inferior cerebellar peduncle and in 
relation to the gut, innervate the muscular and mucosal 
layers of the gut both in the lamina propria and in the 
muscularis externa [334, 335]. Vagal afferent innerva-
tion of the intestines regulates the contraction of smooth 
muscles and glandular secretion [334, 335].

In IBD, VN tone dysfunction is suggested by vagus 
nerve stimulation (VNS) and functional studies. For 
instance, VN function was evaluated by a non-invasive 
test based on the heart reactions to deep breathing (E/I 
ratio) and tilt (acceleration and brake index). UC patients 
had a significantly lower E/I ratio than controls, indicat-
ing vagal nerve dysfunction [337, 338]. Furthermore, 
VNS significantly improved the multivariate index of 
colitis in rats with TNBS-induced colitis [339] and 
chronic VNS in the same model improved colitis and 
decreased the production of pro-inflammatory cytokines 
(TNF-α and IL-6) [340]. In patients with CD, 12-month 
administration of VNS restored a homeostatic vagal tone 
and reduced the inflammatory state [341].

Studies have suggested that both the PFC and hip-
pocampus hold modulatory roles of VN function [342, 
343]. The PFC plays an indirect role in VN tone through 
its role in the regulation of anatomical centres involved 
in emotional and stress responses, such as the amyg-
dala [293, 344]. Similarly, studies have indicated that 

the hippocampus is implicated in vagal functioning 
[345,346,347]. Electrical stimulation of the anterior hip-
pocampus triggers depression of cardiovascular activa-
tion with cardiovascular responses requiring an intact 
PFC [345] Moreover, the anterior hippocampus has 
connections with anatomical areas regulating stress and 
emotions, including medial PFC, the amygdala and vari-
ous subnuclei of the hypothalamus, including the anterior 
hypothalamus and lateral hypothalamus [346,347,348].

The VN has been established to suppress intestinal 
inflammation via the cholinergic anti-inflammatory 
pathway [279, 349]. This is believed to be mediated by 
the neurotransmitter‐gated superfamily of ion channels, 
called α7nAChR, on macrophages [278, 279]. Stimulation 
of macrophage α7nAChR results in the inhibition of LPS‐
mediated activation of the NF‐κB [350]. In macrophages, 
this effect is facilitated through the phosphorylation of 
Janus kinase 2 followed by activation of a STAT3 sig-
nalling pathway [278]. This causes direct inhibition of 
inflammatory cytokine production [278].

Upon activation, the VN releases ACh in the celiac 
mesenteric ganglia, which activates postsynaptic 
α7nAChR on adrenergic neurons of the splenic nerve, 
leading to the release of noradrenaline (NA) in the 
spleen [351]. Adrenergic nerve fibres stimulate splenic 
memory T cells to synthesise ACh which can interact 
with α7nAChR on adjacent macrophages [351]. In the 
intestines, the VN does not innervate directly resident 
macrophages but indirectly through nNOS-VIP-ACh 
interneurons projecting nerve endings in close proxim-
ity to resident macrophages and releasing ACh following 
appropriate stimulation [352].

Perhaps, neuroinflammation in brain areas implicated 
in the modulation of vagal tone is a contributing factor to 
VN dysfunction in IBD patients. Conversely, emotional 
and stress responses to the burden of IBD, genetics, or 
other unknown mechanisms may be at play. Future stud-
ies should investigate whether VN dysfunction seen in 
IBD patients may be triggered by neuroinflammation.

Proposed treatment strategies
Microglial activation and production of inflammatory 
mediators are believed to play pivotal roles in depres-
sion and anxiety noted in models of colitis [126, 135, 136, 
140, 141, 247]. Microglia or the inflammatory mediators 
implicated in their activation may be therapeutic targets 
for treating depressive symptoms as well as intestinal 
inflammation in IBD patients. The microglial inhibitor 
minocycline, a tetracycline antibiotic, suppressed LPS-
stimulated inflammatory cytokine secretion and TLR 
expression as well as facilitating recovery from depressive 
behaviour and anhedonia in mice [353]. These findings 
were paralleled by a reduction in mRNA levels of IL-1β, 
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IL-6, and IDO in the hippocampus and cortex, which 
suggests improved neuronal functioning and prevention 
of neurodegeneration [353]. Importantly, treatment with 
minocycline inhibits IFN-α induced impairment of hip-
pocampal neurogenesis by suppressing microglial activa-
tion [354]. Minocycline is believed to selectively suppress 
microglial M1 polarization by inhibiting transcription 
and nuclear translocation of NF-κB [355]. Minocycline 
treatment has also shown success in treating intestinal 
inflammation, it reduces macroscopic and microscopic 
damage in intestinal tissues of TNBS-treated mice [356]. 
However, to date, no research has explored the neuroin-
flammatory and behavioural impact of microglial inhibi-
tors in animals with colitis, which may provide valuable 
insight into the role of microglia in depressive symptoms 
in IBD patients. As pro-inflammatory cytokines are capa-
ble of reducing serotonin bioavailability and hippocampal 
neurogenesis, targeting these cytokines may be thera-
peutically beneficial in the treatment of IBD-associated 
psychological impairments [211, 243]. TNF-α inhibitor, 
infliximab, significantly improved the disease state as 
well as psychological functioning in IBD patients [357]. 
However, TNF-α inhibitors are known to cause signifi-
cant immunosuppression and may increase susceptibility 
to infections which may outweigh any benefits as an anti-
depressive treatment in these patients [358].

Antioxidants may offer a therapeutic advantage as ROS 
appear to be elevated in mice with colitis [135, 137]. The 
antioxidant, salvianolic acid B (SalB), is shown to sig-
nificantly affect microglia and expression of pro-inflam-
matory cytokines in the cortex and hippocampus [359, 
360]. In mice exposed to chronic mild stress, SalB treat-
ment did not induce morphological changes or expres-
sion levels of microglia in the hippocampus or cortex, 
but induced switching from microglial M1 polarization 
to M2 in the hippocampus and cortex [359]. Moreover, 
SalB aided in the recovery of impaired neurogenesis and 
volumetric decreases in the dentate gyrus and the gran-
ule cell layer [359]. Additionally, rats treated with SalB 
showed reduced NLRP3 inflammasome formation in the 
CA1 region of the hippocampus and restored autophagy 
function following the LPS challenge [360]. This suggests 
that SalB may promote autophagy clearance of excessive 
NLRP3 formation, suppressing the formation of NLRP3 
pro-inflammatory cytokines such as IL-18 and IL-1β 
[360]. Within the intestines, SalB has been shown to 
improve intestinal barrier tight junction dysfunction in 
mice with IL-1β-induced colitis [361].

Another promising therapeutic could be hydrogen-
rich water (HRW), a potent antioxidant, which can 
penetrate the cell membrane and selectively reduce 
hydroxide radicals and peroxynitrites without influ-
encing physiological ROS [362, 363]. This has shown 

promising results in managing intestinal inflamma-
tion. Mice with DSS-induced colitis treated intraperi-
toneally with HRW showed reduced disease severity, 
pro-inflammatory cytokine production, and oxidative 
stress markers compared to untreated mice with DSS-
induced colitis [364]. Importantly, mice given HRW 
and exposed to chronic unpredictable mild stress 
(CUMS) exhibit reduced ROS expression in the hip-
pocampus and prefrontal cortex compared to mice 
exposed to CUMS without HRW [365]. Moreover, the 
HRW-treated group had significant reductions in IL-1β 
and inflammasome enzyme caspase-1 in the hippocam-
pus and cortex, and did not experience depressive 
symptoms compared to the untreated group following 
CUMS [365].

Given there has been evidence of reduced antioxi-
dant GSH in mice with colitis, administration of GSH 
may offer therapeutic benefits for depressive symptoms 
[136]. This is assumed given that reduction in GSH has 
been noted in post-mortem PFC samples of patients with 
various psychiatric diseases such as MDD, schizophrenia, 
and bipolar disorder [147]. There appear to be limited 
studies exploring the therapeutic benefits of direct GSH 
treatment, however, the antioxidant precursor to GSH, 
N-acetylcysteine, which can raise brain GSH levels, has 
shown some therapeutic success in treating depression 
[366]. GSH may also aid in treating intestinal inflam-
mation as IBD mucosal samples show the deficiency of 
GSH and hypoactivity of the enzyme producing GSH, 
γ-glutamyl cysteine synthetase [367].

Expression of NOS in the hippocampus was paral-
leled with depressive symptoms observed in mice with 
colitis [136, 137]. Moreover, excessive production of NO 
by iNOS is noted in the inflamed gut of patients with 
IBD; inhibition of iNOS reduced the severity of intesti-
nal inflammation in animal models of colitis [368, 369]. 
Therefore, targeting NOS with inhibitors may offer treat-
ment for intestinal inflammation and depression. Promis-
ing results have been seen in mice with TNBS-induced 
colitis, in which administration of the NOS inhibitor 
N-nitroarginine methyl ester resulted in an anti-depres-
sant effect determined by reduced immobility time in the 
forced swim test [137].

Whilst no studies have shown COX upregulation in 
the brains of animals with colitis, it is known that inflam-
matory signalling can induce COX1 and 2 expression by 
microglia in rodent and human brains and correlates with 
neurodegenerative changes [370]. Hence, if they are pre-
sent in the brains of IBD models, targeting COX enzymes 
may be a novel approach for the treatment of depres-
sion. This is premised on studies where patients receiving 
the COX-2 inhibitor, celecoxib, with the antidepressant 
sertraline or reboxetine had a greater improvement in 
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depressive symptoms compared to the sertraline/rebox-
etine only group [371, 372].

Conclusions
This review aimed to describe the structural and physi-
ological alterations in the GI tract, blood circulation, and 
the CNS in IBD patients and corresponding animal mod-
els of IBD in detail. The findings support the idea that 
CNS neuroinflammation is either a cause or contributor 
to the depression so often seen in IBD patients. Moreo-
ver, potential new neurobiological or intestinal targets for 
future studies have been revealed for the development of 
better therapeutic options for IBD-associated depression. 
Importantly, many underlying mechanisms of depression 
comorbid with IBD may be highly translatable to other 
systemic inflammatory diseases such as rheumatoid 
arthritis, obstructive pulmonary disease, and diabetes, 
which exhibit higher rates of depression compared to the 
general population.
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