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Abstract 

Background:  In conditions of brain injury and degeneration, defining microglial and astrocytic activation using cel-
lular markers alone remains a challenging task. We developed the MORPHIOUS software package, an unsupervised 
machine learning workflow which can learn the morphologies of non-activated astrocytes and microglia, and from 
this information, infer clusters of microglial and astrocytic activation in brain tissue.

Methods:  MORPHIOUS combines a one-class support vector machine with the density-based spatial clustering of 
applications with noise (DBSCAN) algorithm to identify clusters of microglial and astrocytic activation. Here, activation 
was triggered by permeabilizing the blood–brain barrier (BBB) in the mouse hippocampus using focused ultrasound 
(FUS). At 7 day post-treatment, MORPHIOUS was applied to evaluate microglial and astrocytic activation in histological 
tissue. MORPHIOUS was further evaluated on hippocampal sections of TgCRND8 mice, a model of amyloidosis that is 
prone to microglial and astrocytic activation.

Results:  MORPHIOUS defined two classes of microglia, termed focal and proximal, that are spatially adjacent to the 
activating stimulus. Focal and proximal microglia demonstrated activity-associated features, including increased 
levels of ionized calcium-binding adapter molecule 1 expression, enlarged soma size, and deramification. MORPHI-
OUS further identified clusters of astrocytes characterized by activity-related changes in glial fibrillary acidic protein 
expression and branching. To validate these classifications following FUS, co-localization with activation markers were 
assessed. Focal and proximal microglia co-localized with the transforming growth factor beta 1, while proximal astro-
cytes co-localized with Nestin. In TgCRND8 mice, microglial and astrocytic activation clusters were found to correlate 
with amyloid-β plaque load. Thus, by only referencing control microglial and astrocytic morphologies, MORPHIOUS 
identified regions of interest corresponding to microglial and astrocytic activation.

Conclusions:  Overall, our algorithm is a reliable and sensitive method for characterizing microglial and astrocytic 
activation following FUS-induced BBB permeability and in animal models of neurodegeneration.

Keywords:  Machine learning, Microglial activation, Astrocytic activation, Cellular morphology, Focused ultrasound

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
Across neurodegenerative diseases, microglia and astro-
cytes represent important glial cell populations that are 
activated in response to pathology. Depending on the 
context, this activation can either ameliorate or exacer-
bate disease progression [1, 2]. Microglial and astrocytic 
activation is accompanied by distinct morphological 
characteristics and several machine learning approaches 
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have been developed to classify and understand activated 
states based on cellular morphology. Commonly, these 
methods deploy unsupervised learning algorithms (e.g., 
K-means clustering, hierarchical clustering) [3–7]. In 
general, these approaches aim to classify activated and 
non-activated cellular morphologies into distinct groups 
based on the similarities of their features. However, given 
that the activation of microglia and astrocytes exhibit a 
range of morphologies [4, 7–10], it remains difficult to 
define strict classification boundaries to accurately iden-
tify activated cells.

Supervised learning algorithms have shown promises 
in classifying cell types and learn rules based on patterns 
in labelled data to discriminate between multiple classes 
of features [11]. Among many applications, supervised 
learning algorithms have been used to identify activated 
microglia following traumatic brain injury [12], and to 
distinguish between macrophage activation states [13]. 
While powerful, supervised learning classifiers must 
be provided with labelled data, where the class label of 
each data point is known. For many clinical, preclinical, 
and basic biological applications, including for detect-
ing activated microglia and astrocytes, standardized data 
sets with labelled data are not available and they are chal-
lenging to generate. Moreover, because supervised classi-
fiers are trained using predefined classes, they suffer from 
an inability to discover new categories of classification, 
which is of interest to biologists [11].

We developed a method to identify regions of inter-
est corresponding to activated astrocytes and microglia 
using a one-class support vector machine. Support vec-
tor machines in general have been widely used in biology 
and are both capable of modelling significant complexity 
while also regularizing against overfitting [14, 15]. Tra-
ditionally, support vector machines are supervised, and 
determine a decision boundary by evaluating the larg-
est margin from which to separate classes of data. In 
contrast, one-class support vector machines require the 
input of a baseline class and the selection of a probability 
quantity (i.e., nu), which helps to define whether a data-
point should be considered consistent with the baseline, 
or, deemed an outlier [16]. In this way, data can be clas-
sified based on patterns learned solely from a baseline 
class.

Using a one-class support vector machine, we devel-
oped a novel approach to identify classes of microglial 
and astrocytic activation; a workflow that we termed 
MORPHological Identification of Outlier clUSters 
(MORPHIOUS). MORPHIOUS learns the feature pat-
terns of "normal", here non-activated microglia or astro-
cytes, and uses this information to segment regions of 
cells which are classified to be "abnormal" and, therefore, 
inferred to be activated. This definition for activation, 

i.e., spatial clusters of abnormal cellular morphologies, 
is flexible, and thus enables the robust identification of a 
range of activation-associated morphologies. To facilitate 
its use, MORPHIOUS provides a set of ImageJ scripts 
to extract features from immunofluorescence images. 
MORPHIOUS is available to users as a stand-alone soft-
ware package with a graphical user interface  written in 
python.

To validate its utility, we used MORPHIOUS to quan-
tify the activation of microglia and astrocytes in the 
hippocampus of C57BL/6  J mice treated with focused 
ultrasound (FUS) and intravenously injected microbub-
bles to induce a localized and reversible permeabilization 
of the blood–brain barrier, which is known to transiently 
activate microglia and astrocytes [17]. We further dem-
onstrated the utility of MORPHIOUS by evaluating 
microglial and astrocytic activation in the TgCRND8 
mouse model of amyloidosis [18]. Through our analysis, 
we show that MORPHIOUS can segment regions of acti-
vated microglia and astrocytes from surrounding non-
activated tissue based on morphology alone.

Methods
Animals
For the focused ultrasound (FUS) data set, male 
C57BL/6 J mice (N = 4) at 3.5 months of age were treated 
with FUS unilaterally in the left hippocampus and sacri-
ficed at 7 day (D) post-FUS. For the amyloidosis data set, 
4 TgCRND8 mice [18] (2 males, 2 female) and 4 nonTg 
C3H/C57BL6 controls (2 males, 2 females) at 7  months 
of age were used. Mice were sacrificed under anesthesia 
of ketamine/xylazine and perfused with 4% paraformal-
dehyde, brains were extracted and post-fixed in 4% para-
formaldehyde over night at 4 °C.

Brains were switched to 30% sucrose for > 24 h and sec-
tioned at 40 µm using a microtome. Free floating sections 
were stored in cryoprotectant at -20 °C until use. All pro-
cedures were conducted in accordance with guidelines 
established by the Canadian Council on Animal Care and 
protocols approved by the Sunnybrook Research Institute 
Animal Care Committee.

Magnetic resonance imaging guided focused ultrasound
Prior to FUS treatment, mice were anesthetized with 
5% isoflurane, and maintained at 2% isoflurane. Fur 
was removed from the head using depilatory cream. 
A 26-guage angiocatheter was inserted into the tail 
vein. Animals were imaged using a 7.0-T MRI (Bruker), 
and T2-weighted axial scans were used to position 
four focal spots targeting the hippocampus. FUS was 
conducted using an in-house system with a spheri-
cally focused transducer (1.68-MHz frequency, 75 mm 
diameter, 60  mm radius of curvature) and the BBB 
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was permeabilized using standard parameters (10  ms 
bursts, 1  Hz burst repetition frequency, 120-s dura-
tion)  [19]. At the initiation of sonication, mice were 
injected via the tail vein separately with Definity micro-
bubbles (0.02  ml/kg; Lantheus Medical Imaging) and 
Gadovist (0.2 ml/kg, Schering AG). Each injection was 
followed by a 150ul flush with saline. Acoustic emis-
sions were monitored using a polyvinylidene fluoride 
(PVDF) hydrophone. Acoustic pressure was increased 
after each pulse in a stepwise manner. Once subhar-
monic emissions were detected, the acoustic pres-
sure was reduced to 25%, and maintained there for the 
remainder of the pulse schedule [20]. BBB permeabil-
ity was confirmed based on the presence of Gadovist 
enhancement on T1 weighted MR images.

Immunofluorescence staining
Serial sections (1:24) were antigen retrieved (10  mM 
sodium citrate, 80  °C, 30  min), washed (1X phosphate 
buffered saline), blocked (5% Donkey Serum with 
0.3% Triton-X), and incubated for 3  days at 4  °C with 
primary antibodies. Primary antibodies include rab-
bit anti-IBA1 (Wako, cat: 016-20001; 1:500), goat anti-
IBA1 (Abcam, cat: ab107159; 1:1500), goat anti-GFAP 
(Santacruz Biotech, cat: sc-6170; 1:250), goat anti-
GFAP (Novus Biological, cat: NB100-53809; 1:2000), 
rabbit anti-TGFβ1 (Abcam, cat: ab215715; 1:250), rat 
anti-CD68 (Biolegend, cat: 137002, 1:400), goat anti-
Nestin (Novus biologicals, cat: NB100-1604, 1:400), 
rabbit anti-S100β (Abcam, cat: ab41548; 1:1500) and 
mouse anti-amyloid beta (6F3D) (Dako, cat: M0872; 
1:200). After washing, antibodies were incubated in 
secondary antibodies (Jackson Immunoresearch; 1:200) 
for 1 h at room temperature, washed, and mounted. For 
plaque staining, sections were pre-treated for 5 min in 
10% formic acid, followed by 10  min in 0.1  M borate 
buffer (PH 8.0). After 3 days of primary antibody, sec-
tions were incubated with anti-mouse biotin (Jackson 
ImmunoResearch, cat: 715-065-150; 1:200) for 2  h at 
room temperature, washed, and incubated with strepta-
vidin-Alexa488 (Jackson ImmunoResearch, cat: 016-
540-084; 1:400) for 1  h at room temperature, washed, 
and mounted.

Imaging
All images were acquired using a Zeiss Z1 Observer/
Yokogawa spinning disk (Carl Zeiss) microscope. Tiled 
images encompassing the entire hippocampus were 
acquired using 40  µm z-stacks with a 1  µm step-size at 
with a 20X objective. All analysis was conducted using 
images at 20X magnification.

Intensity and branching feature generation
All image analyses procedures were performed using Fiji/
ImageJ [21]. Microglia soma, branching, and intensity 
measures were visualized using IBA1 immunofluores-
cence. Similar to previous work, astrocytes were double 
labelled with S100β and GFAP [22]. S100β was used to 
demarcate soma, while branching and intensity meas-
ures were evaluated with GFAP. For all images, a region 
of interest (ROI) was drawn around the hippocam-
pus. Regions outside this ROI were cleared and therein 
excluded from the analysis. Z-stacked images were con-
verted to maximum intensity projections. Prior to analy-
sis, images were background subtracted, and despeckled. 
Images of astrocytes were contrast-enhanced to ensure 
full arborization could be detected. To collect features, 
for each image, a 100 µm × 100 µm sliding window was 
applied to the image which was iteratively translated 
across the image in the X and Y directions with a 50% 
overlap. A local threshold was first applied to the image 
(Method: Phansalkar, radius: 60, parameter 1: 0, parame-
ter 2: 0). For each iteration, immunoflourescence features 
(Mean, IntDen, Area) were quantified using the “Meas-
ure” command, and the fractal dimension (D) was meas-
ured using the “Fractal Dimension” command. Images 
were further binarized (i.e., “Binarize” command) based 
on the local threshold, skeletonized (i.e., “Skeletonize 
(2D/3D)” command) and branch features were collected 
(“Analyze 2D/3D Features”).

Cell soma features
Microglial and astrocytic cell bodies were segmented 
using custom imageJ scripts. For each 100 × 100  µm 
window, mean soma area, soma circularity, and near-
est neighbour distance (NND), were evaluated. Soma 
circularity was calculated using the formula: circular-
ity = 4π(area/perimeter2). For each cell soma, the near-
est neighbour distance was determined as the distance 
between the geometric center of a cell, and the nearest 
neighbouring geometric cell center, as determined via the 
Euclidean distance.

Segmenting microglia cell bodies
To count microglia and astrocytes, we developed a cus-
tom macro to segment and count microglia and astro-
cyte cell bodies. IBA1 images were first background 
subtracted by 50 pixels, and despeckled. Subsequently, 
using the MorphoLibJ library [23], we applied erosion 
(element: octagon, radius: 1), directional filtering (type: 
Max, operation: Mean, line: 6, direction: 32), morpho-
logical filter opening (element: Octagon, radius: 2), 
and top hat gray scale attribute filtering (attribute: Box 
Diagonal, minimum: 150, connectivity: 4). The image 
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was subsequently binarized using an “IJ_IsoData” global 
intensity threshold. Cell body ROIs were identified using 
the ImageJ particle analyzer command with a size filter of 
25 pixels (scale: 1.5 pixels/µm).

Segmenting astrocyte cell bodies
S100β images were first background subtracted with a 
rolling ball radius of 50 pixels, and despeckled. Subse-
quently, using the MorphoLibJ library, we applied mor-
phological filter opening (element: Octagon, radius: 2), 
gray scale attribute filter opening (attribute: Area, mini-
mum:100, connectivity: 8), directional filtering (type: 
Max, operation: Mean, line: 10, direction: 32), and top 
hat gray scale attribute filtering (attribute: Box Diago-
nal, minimum: 100, connectivity: 4). A local threshold 
was applied to the resulting image (method: Phansalkar, 
radius: 60, parameter 1: -1, parameter 2: 0) which was 
subsequently binarized. Cell body ROIs were identified 
using the particle analyzer with a size filter of 30 pixels.

Input features
Features used for identifying proximal microglia included 
area, mean intensity, the fractal dimension (D), number 
of cells, average NND, average soma size, average soma 
circularity, number of branches, branch length, num-
ber of branch junctions, number of triple branch points, 
number of branch ends, and the cellular perimeter. Fea-
tures used for identifying proximal astrocytes included 
area, mean intensity, number of branch junctions, num-
ber of branch ends, number of slab branch pixels, num-
ber of triple points, and the cellular perimeter. Each 
feature was z-score normalized: z = (xi  -  µ)/s, where xi 
is individual sample value, µ is the feature mean, and s 
is the feature standard deviation. Both training and test-
set samples were normalized based on the mean and 
standard deviation of the training data set. Subsequently, 
features were transformed using principal component 
analysis, and enough principal components (PCs) were 
selected to retain 99% of variance. This corresponded 
to 9 PCs for the microglia feature set and 5 PCs for the 
astrocyte feature set. Z-score normalization and princi-
pal component analysis were conducted using the scikit-
learn module in python [24].

Identifying proximal clusters of microglia and astrocytes
To identify outliers in hippocampal sections of FUS-
treated and TgCRND8 mice, separate one-class support 
vector machines were trained using features from con-
tralateral sections and control animals appropriate for 
each experimental group. Since outliers can represent 
regions with either hyperintense features, or hypointense 
features, the initial set of putative outliers were filtered 
to ensure all identified outliers had a mean intensity that 

was larger than a z-score of -1. These candidate outli-
ers were subsequently spatially clustered using the den-
sity-based spatial clustering of applications with noise 
(DBSCAN) algorithm [25]. Spatially clustered outliers 
were deemed proximal clusters. Implementations for the 
one-class support vector machine and DBSCAN were 
accessed from scikit-learn [24].

MORPHIOUS requires user input for four param-
eters: nu, gamma, minimum cluster size, and minimum 
neighbour distance. The nu and gamma parameters are 
hyperparameters for a one-class support vector machine, 
and the radial-basis-function kernel, respectively. Nu 
reflects the percentage of normal observations which 
lie outside the classification decision boundary and is a 
regularization parameter. Gamma is a parameter for the 
radial basis kernel function. The minimum cluster size 
and distance are hyperparameters for DBSCAN which 
collectively defines the cluster size as the area, where the 
number of points greater than the minimum cluster size 
are within the minimum neighbour distance. By default, 
MORPHIOUS sets the radius to be equal to the diago-
nal length of the window size rounded up (142 µm). Val-
ues for nu, gamma, and minimum cluster size for each 
stain were optimized via a grid search (Additional file 1: 
Figures S2–S4).

Using the contralateral data sets, tenfold cross-vali-
dation was performed to identify the set of nu, gamma, 
and minimum cluster size parameters which resulted in 
no clustering across any control hippocampal sections. 
A second grid search was performed that trained on the 
control data set, and tested on test data set, to identify 
the set of hyperparameters which maximized cluster size 
within the test tissue (i.e., ipsilateral FUS, TgCRND8). 
The optimal parameters were evaluated as the set of val-
ues which maximized the clusters in the test tissue (i.e., 
FUS-treated, TgCRND8) while yielding no clustering in 
the respective control data set. Optimal parameters were 
identified via a separate grid search for each IBA1 (Addi-
tional file  1: Figure S2) and GFAP antibody (Additional 
file  1: Figure S3) in the FUS and TgCRND8 (Additional 
file 1: Figure S4) mice experiments.

Identifying proximal clusters of microglia and astrocytes
We further classified a second subset of microglia, 
termed focal microglia, which represent the most acti-
vated microglia. To identify focal microglia, first, a 
threshold-value was determined to identify windows of 
highly activated cells. Thus, for each test-set section, the 
IBA1 integrated density were sorted in ascending order 
(Fig.  1H). The elbow point of this curve corresponds to 
the threshold value. Proximal grid points with a mean 
IBA1 intensity greater than this threshold value were 
subsequently spatially clustered using DBSCAN, with a 
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min cluster size of 5, and distance of 142 µm. To evalu-
ate this elbow point, a vector was drawn to connect the 
first and last points (A1) of the integrated density curve. 

Subsequently, a perpendicular vector Bx from every 
datapoint in the curve was connected to A1. The data-
point corresponding to the largest perpendicular vector 

Fig. 1  MORPHIOUS workflow trains a one-class support vector machine to identify activated glial cells. A sliding window is applied to control (i.e., 
contralateral FUS, nonTG) hippocampal sections to extract morphological features (A). Extracted features are used to generate a spatial feature map 
(B). Selected morphological features from control hippocampal sections are used to train a one-class support vector machine which generates 
a decision boundary for defining non-activated microglia and astrocytes (C). A sliding window is further used to extract morphological features 
from test-sample (i.e., ipsilateral FUS, TgCRND8) hippocampal sections (D, E). The trained model is applied to test-sample hippocampal sections to 
identify outlier windows (F). Outliers are spatially clustered using the density-based spatial clustering of applications with noise algorithm (DBSCAN) 
to identify proximal clusters (G). To identify focal clusters, the integrated density of proximal cluster windows are sorted in ascending order, and 
the elbow point of this curve (red line) is used as a defined threshold value (H). DBSCAN is applied to windows with an integrated density above 
the defined threshold value to establish focal clusters (I).Contra., contralateral; FUS, focused ultrasound; Ipsi., ipsilateral; Hipp., hippocampus; Tg, 
TgCRND8 mice
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(i.e., max(|A1Bx|)) was labelled as the elbow point. To 
ensure stability of elbow point, this procedure was iter-
ated, and on each iteration, the first point in the curve 
was removed. From this procedure, the modal elbow 
point was used as the focal threshold value. Finally, to 
ensure that the integrated density IBA1 curve was suf-
ficiently steep and reflected an exponential relation-
ship, focal clusters were only evaluated if the magnitude 
of the elbow point vector (i.e., max(|A1Bx|)) was greater 
than a threshold of 0.5, a value which worked well in our 
experience.

Colocalization analysis
Pearson correlation analysis was used to assess the colo-
calization between IBA1 and TGFβ1, IBA1 and CD68, 
and GFAP and Nestin. Colocalization analysis was con-
ducted using the coloc2 plugin in ImageJ and expressed 
as the Pearson correlation coefficient (R).

Statistical analysis
In the FUS data set, differences in cellular features were 
analyzed using a mixed-linear model. Pairwise between-
group differences in cellular features were assessed with 
a Sidak post-hoc test. In the TgCRND8 data set, cellu-
lar differences were analyzed using a One-Way ANOVA 
with a Tukey’s post-hoc test. An independent student’s 
t test was used evaluate the differences between two 
groups. A value of P < 0.05 was considered statistically 
significant. A linear regression was used to evaluate cor-
relations between microglia and astrocyte cluster sizes, 
and between manual and automatic cell counts. All sta-
tistical analyses were conducted using SPSS (version 22, 
IBM).

Source code
The MORPHIOUS source code, as well as imageJ mac-
ros, tutorials, and additional documentation are available 
for use at https://​github.​com/​jsilb​urt/​Morph​ious.

Results
Feature collection
The activation of microglia and astrocytes was induced in 
mice using a unilateral treatment of focused ultrasound 
(FUS) in the presence of microbubbles, to the left hip-
pocampus in 14-week-old C57BL/6  J mice. Mice were 
sacrificed at 7D post-FUS, a timepoint when the activa-
tion of both microglia and astrocytes has been previously 
detected [26], and processed for immunohistochemical 
analysis. Microglia were stained with ionized calcium-
binding adapter molecule (IBA1), which labels microglial 
processes and is upregulated with activation [27]. Astro-
cytes were double-stained with S100 calcium-binding 
protein beta (S100β) and glial fibrillary acidic protein 

(GFAP). GFAP, which is upregulated with astrocytic acti-
vation [2], was used to evaluate branching and intensity 
metrics, while S100β was used to count cells and quantify 
soma characteristics. Using custom ImageJ scripts, fea-
tures were extracted from hippocampal slices by apply-
ing a sliding window (Fig. 1A, B). We collected features 
related to the fluorescence intensity, cellular surface 
area, branching complexity, cell location, and cell soma 
shape. Averaged features for each sliding window were 
extracted, normalized, and principal component analysis 
(PCA) transformed.

Automated counting of microglia and astrocytes
To aid in feature collection, we developed two proto-
cols using the FIJI morpholibJ package [23] to automati-
cally count IBA1+ and S100β+ cell bodies—representing 
microglia and astrocytes, respectively, and measure cell 
soma related features. These protocols strongly cor-
related with manual counts (R2: 0.964 for microglia, R2: 
0.959 for astrocytes) (Additional file 1: Figure S1).

Building an unsupervised one‑class classifier
We trained a one-class support vector machine using 
control hippocampal sections (Fig. 1A–C). Once trained, 
the classifier was applied to the test-set (Fig. 1D, E). For 
FUS experiments, contralateral hippocampal sections 
were used as controls, and the FUS-treated ipsilateral 
sections were used in the test-set. For TgCRND8 experi-
ments, hippocampal sections from nonTg mice were used 
as controls, and sections from TgCRND8 mice were eval-
uated in the test-set. As such, the Density-Based Spatial 
Clustering of Applications with Noise (DBSCAN) algo-
rithm was used on spatial coordinates of identified outli-
ers to generate a region of interest (ROI) corresponding 
to clustered activated/outlier cells (Fig.  1G). Microglia 
and astrocytes within these ROIs are termed proximal 
microglia or astrocytes, to indicate that they are located 
proximally to the activating stimulus. Microglia and 
astrocytes within the test-set tissues outside the proxi-
mal cluster regions are referred to as distal microglia 
and astrocytes, indicating that they are “further” from 
the activating stimulus than the proximal cells. This is 
evident from the unremarkable changes in their cellular 
morphologies. Among other examples, this proximal–
distal terminology has been used previously to describe 
the spatial nature of microglial activation adjacent to 
an ischemic stroke [10], and to plaque pathology [17, 
29]. Within proximal microglial activation clusters, we 
observed subareas, where microglia exhibited prominent 
features of activation, which we termed focal microglia. 
To delineate the boundary of focal clusters, DBSCAN 
was applied to proximal cluster outliers with an IBA1 
integrated density above a threshold value (Fig.  1I). To 

https://github.com/jsilburt/Morphious
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calculate this threshold, the IBA1 integrated density for 
each proximal outlier window was sorted in ascending 
order and the elbow point of the ensuing curve was used 
as the threshold value (Fig.  1H, red line). A glossary of 
terms describing our spatial nomenclature can be found 
in Table  1. Moreover, representative visualizations of 
focal, proximal, and distal ROIregions of interest for FUS 
treated and TgCRND8 mice hippocampi is provided in 
Fig. 2.

Parameter tuning
To ensure that identified clusters represent morphologi-
cally activated cells, our learning objective was to predict 
no false-positive microglial or astrocytic activation clus-
ters. Thus, we applied tenfold cross-validation across all 
control hippocampal sections (i.e., contralateral FUS, or 
nonTg) to identify hyperparameters, where no activation 
clusters were observed within any control hippocampal 
sections (Additional file 1: Figure S2, S3). Within the set 
of parameters which ensured no clustering among con-
trol hippocampal sections, we chose parameters which 
maximized the amount of activated microglia and astro-
cytes in the test-set.

Classifying microglial activation following FUS
For mice treated with unilateral FUS, we trained MOR-
PHIOUS on contralateral hippocampal sections of 
microglia (Fig. 3A, C) and tested it on the ipsilateral hip-
pocampal sections (Fig.  3B, D–F). Activated microglia 
are known to exhibit a range of activation-associated 
morphologies which are characterized by progressive 
soma enlargement, and deramification [8, 10]. Using 
MORPHIOUS, we identified regions of non-activated 
microglia in the FUS-treated hippocampus (i.e., dis-
tal, Fig. 3D), as well as regions of proximal (Fig. 3E) and 
focal (Fig.  3F) microglial activation. Quantification of 
IBA1 immunofluorescence, soma, and branching fea-
tures (Fig. 4) indicate that focal and proximal microglial 
activation clusters reflect distinct morphologies [8, 10]. 
When compared to control microglia of the contralat-
eral hippocampus, focal microglia exhibited a 1.8-fold 
increased IBA1 intensity (P < 0.0001, Fig.  4A), a twofold 
increase in area (P < 0.0001, Fig.  4B), a 1.4-fold increase 
in soma size (P < 0.0001, Fig.  4C), a 1.4-fold reduction 
in branch length (P < 0.001, Fig.  4D), a 1.8-fold reduc-
tion in the number of branches per cell (P < 0.0001, 
Fig.  4E), and a 1.5-fold reduction in nearest neighbour 
distance (NND) (P < 0.0001, Fig.  4F). Moreover, when 

Table 1  Terminology

Terms Descriptions

Ipsilateral hippocampus Unilateral hippocampus treated with focused ultrasound, which is subdivided by MORPHIOUS into distal, proximal, and 
focal regions

Contralateral hippocampus Unilateral hippocampus not treated by focused ultrasound, which serves as control tissue for training MORPHIOUS for 
FUS-related experiments

TgCRND8 hippocampus Hippocampus from TgCRND8 mice, a mouse model of amyloidosis, which is subdivided by MORPHIOUS into distal, 
proximal, and focal regions

NonTg
hippocampus

Hippocampus from non-transgenic littermates of TgCRND8 mice, which serves as control tissue for training MORPHIOUS 
in TgCRND8-related experiments

Distal Subregion within the ipsilateral FUS-treated or TgCRND8 hippocampi, where microglia and astrocytes exhibit a typical 
non-activated morphology

Proximal Subregion within the ipsilateral FUS-treated or TgCRND8 hippocampi, where microglia and astrocytes exhibit an altered, 
activation-associated morphology

Focal Subregion, within proximal activation clusters of microglia, corresponding to the microglia which exhibit the strongest 
activation-associated features

Fig. 2  Visual demonstration of distal, proximal, and focal cluster regions identified by MORPHIOUS. Following the unilateral treatment of FUS, 
MORPHIOUS was trained using contralateral hippocampi stained with either IBA1 (A) or GFAP (B). When applied to the ipsilateral hippocampi 
stained with IBA1(C) or GFAP (D), MORPHIOUS identified proximal (orange) and focal (red) regions. Microglia and astrocytes present within the 
FUS–ipsilateral sections but outside proximal and focal cluster regions are referred to as distal microglia and astrocytes. Similarly, in the TgCRND8 
cohort, MORPHIOUS was trained using IBA1 (E) or GFAP (F) hippocampal sections from non-transgenic (nonTg) control animals. When applied to 
IBA1 (G) or GFAP (H) hippocampal sections from TgCRND8 hippocampi, Focal (red) and Proximal (orange) regions of activation were identified. 
Microglia or astrocytes present within the TgCRND8 hippocampus but outside the identified regions of activation are referred to as distal microglia 
and astrocytes. (I) A schematic of focal, proximal, and distal cells. FUS, focused ultrasound; GFAP, glial fibrillary acidic protein; IBA1, Ionized calcium 
binding adaptor molecule 1; Prox., Proximal; nonTg, non-transgenic littermates of TgCRND8 mice; Tg, TgCRND8 mice

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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compared to proximal microglia, focal microglia also 
exhibited a 1.3-fold increase in IBA1 intensity (P < 0.01, 
Fig. 4A), a 1.4-fold increase in area (P < 0.001, Fig. 4B), a 

1.2-fold increase in soma size (P < 0.0001, Fig.  4C), and 
a 1.2-fold reduction in NND (P < 0.05, Fig.  4F). Simi-
larly, proximal microglia exhibited significant, but less 

Fig. 3  MORPHIOUS identified regions of microglial and astrocytic activation following FUS treatment. A representative staining of IBA1+ microglia 
in contralateral (A) and FUS-treated hippocampal sections (B) at 20X magnification. MORPHIOUS classified two regions of activation, proximal 
microglia (B, orange line) and focal microglia (B, red line). At high magnification (63X), contralateral microglia (C) as well as non-activated 
distal microglia (D), show a highly ramified morphology. Proximal microglia show some deramification (E). Focal microglia show substantial 
deramification and enlarged somas (F). A representative staining of GFAP+ astrocytes in contralateral (G) and FUS-treated hippocampal sections 
(H) is shown at 20X magnification. MORPHIOUS identified a single class of activated astrocytes, termed proximal astrocytes (H, orange line). At high 
magnification (63X), compared to contralateral (I) and distal (J) astrocytes, proximal astrocytes (K) show increased branching, and hypertrophy. Scale 
bar: 100 µm (A, B, G, H), 25 µm (C–F, I–K). GFAP, glial fibrillary acidic protein; IBA1, Ionized calcium binding adaptor molecule 1
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pronounced change in IBA1 intensity (P < 0.05, Fig. 4A), 
area (P < 0.0001, Fig.  4B), soma size (P < 0.05, Fig.  4C), 
branch length (P < 0.001, Fig.  4D), number of branches 
(P < 0.0001, Fig. 4E), and NND (P < 0.001, Fig. 4F), when 
compared to contralateral cells.

For all assessed features, distal microglia, were sta-
tistically indistinguishable from contralateral microglia 
(P > 0.05), rendering them representative of non-activated 
microglia in the FUS-treated hippocampus. These find-
ings are visualized via principal component analysis, 
where focal and proximal activation clusters occupy dis-
tinct regions in feature space, while distal microglia over-
lap with contralateral microglia (Additional file 1: Figure 
S5).

When conducting immunohistochemical analyses, it is 
important that a representative ROI is selected [30–32]. 
Typically this ROI should be a clearly definable area, such 
as a brain region (e.g., hippocampus), that is analyzed in 
its entirely, or through appropriate sampling [30–32]. In 
practice, both whole-region and sampling approaches are 
common [10, 26, 33–36]. To illustrate some of the advan-
tages of MORPHIOUS, we asked whether a typical quan-
titative approach could detect activated microglia in our 
sections. Thus, we defined the analytical ROI as the entire 

hippocampal area and compared microglial morpholo-
gies within FUS-treated hippocampal sections to their 
contralateral side. Notably, ipsilateral microglia showed 
only small reductions in the branch length (P < 0.01, 
Fig. 4D), number of branches (P < 0.05, Fig. 4E), and near-
est neighbour distance (P < 0.05, Fig. 4F), but showed no 
changes for other features (P > 0.05). These results of this 
whole-region analysis are in contrast with those obtained 
when MORPHIOUS was used to identify ROIs, where a 
rich set of distinct morphologies were detected (Fig. 4). 
Thus, by defining discrete clusters of activation, MOR-
PHIOUS improves the sensitivity for detecting pockets of 
activated microglia in heterogeneous tissues when com-
pared to a traditional analytical approach.

To further validate the activated state of focal and prox-
imal microglia, we assessed microglial activation inde-
pendently by co-staining IBA1 (Fig. 5A, D1) with TGFβ1 
(Fig.  5B, D2), and CD68 (Fig.  5C, D3). CD68 has tradi-
tionally been used as a marker of both pro-inflammation 
[37–39], and general microglial activation [40], and has 
been shown to be expressed by microglia following FUS 
[26, 41]. TGFβ1 is considered to be an anti-inflammatory 
microglial marker and can facilitate neuroprotection 
[42, 43]. Interestingly, in accordance with a gradient of 

Fig. 4  Focal and proximal microglia show morphological changes consistent with activation. The morphologies of control microglia from 
contralateral hippocampal sections (Contra.), ipsilateral FUS-treated hippocampal sections (Ipsi.), and MORPHIOUS classified distal, proximal (Prox.) 
and focal subregions within ipsilateral FUS-treated sections were compared. Cellular metrics included IBA1 mean intensity (A), IBA1% area coverage 
(B), mean soma size (C), mean branch length per cell (D), number of branches per cell (E), and the nearest neighbour distance (F). Groups were 
analyzed via a mixed linear model. Between-group differences were assessed via a Sidak’s post-hoc test. Significance: * P < 0.05; ** P < 0.01; *** 
P < 0.001; **** P < 0.0001. Data represent means ± SD; N = 4 per group (Contra., Ipsi., Distal, Prox.) and N = 3 per group (Focal). Contra., contralateral; 
Ipsi., ipsilateral; FUS, focused ultrasound; Prox., proximal
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activation, focal (vs. contralateral: P < 0.0001; vs. proxi-
mal: P < 0.01) and proximal microglia (vs. contralateral: 
P < 0.01) showed progressively greater colocalization 
with TGFβ1 (Fig.  5E). Moreover, focal, but not proxi-
mal microglia colocalized with CD68 (vs. contralateral: 
P < 0.001, Fig. 5F).

Classifying astrocytic activation following FUS
Next, we trained MORPHIOUS on contralateral hip-
pocampal sections of astrocytes (Fig.  3G, I) and tested 
it on FUS-treated hippocampal sections of astrocytes 
(Fig.  3H, J, K). In response to FUS, we used MORPHI-
OUS to classify a single class of activated astrocytes, 
which we termed proximal astrocytes (Fig. 3H, K). Com-
pared to contralateral astrocytes, proximal astrocytes 

Fig. 5  Focal and proximal microglia differentially upregulate common markers of activation. Focal (red line) microglia (A) colocalized with TGFβ1 
(B, D), and CD68 (C, D). Proximal (orange line) microglia colocalized with TGFβ1, but not CD68. Pearson correlation was used to colocalize IBA1 with 
TGFβ1 (E) and CD68 (F). Images (A–C) were taken at 20× magnification. Insets (D1–D4) were taken at 63× magnification. Groups were analyzed via 
a mixed linear model. Scale bar: 100 µm. CD68, cluster of differentiation 68; Contra., contralateral; IBA1, ionized calcium-binding adapter molecule 1, 
Prox., proximal; TGFβ1, transforming growth factor beta 1,
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exhibited a 1.3-fold increased GFAP intensity (P < 0.001, 
Fig.  6A), a 1.4-fold increased branch length (P < 0.0001, 
Fig.  6B), a 1.5-fold increased area coverage (P < 0.001, 
Fig.  6C), and a 1.3-fold increased number of branches 
(P < 0.05, Fig.  6C). As well, proximal astrocytes did not 
show changes to NND (P > 0.05, Additional file  1: Fig-
ure S6), which is consistent with in  vivo findings that 
astrocytes do not migrate [28]. Similar to our microglial 
analysis, we evaluated the performance of a conventional 
analysis in detecting the presence of astrocytic activa-
tion following FUS in our tissue. In defining the analyti-
cal ROI as the entire hippocampal region, none of the 
activation-associated features of astrocytes were found 
to be significantly different in the ipsilateral FUS-treated 
side compared to the contralateral side (Fig. 6, Additional 
file 1: Figure S6).

To validate MORPHIOUS predicted clusters of astro-
cytic activation, we observed that proximal astrocytes 
colocalized with Nestin (vs. contralateral, P < 0.05), an 

intermediate filament protein which becomes upregu-
lated during astrogliosis (Fig. 7). Moreover, there was a 
spatial overlap between activated astrocytes and micro-
glia (Fig.  8A, B). In total, 15.8% and 10.3% of treated 
hippocampal sections were covered by activated micro-
glia and astrocyte clusters, respectively (Fig.  8C). Of 
this area, 75% of activated astrocytes overlapped with 
activated microglia, while 49% of activated microglial 
clusters overlapped with activated astrocytic clusters. 
Moreover, proximal cluster sizes for activated astro-
cytes correlated with total (i.e., proximal + focal) clus-
ter sizes for activated microglia (R2 = 0.753, P < 0.0001, 
Fig.  8D). Collectively, this suggests that both cells are 
responding to the common FUS stimulus, and provides 
additional evidence that both cell types are indeed 
activated.

Fig. 6  Proximal astrocytes show morphological changes consistent with activation. The morphologies of control astrocytes from contralateral 
hippocampal sections (Contra.), ipsilateral FUS-treated hippocampal sections (Ipsi.), and MORPHIOUS classified distal, and proximal (Prox.) 
subregions within ipsilateral sections were compared. Between-group differences in GFAP mean intensity (A), mean branch length per cell (B), 
GFAP % area coverage (C), and mean number of branches per cell (D) were assessed. Groups were analyzed with a mixed linear model, and 
between-group were assessed via a Sidak’s Post-hoc analysis. Significance: * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001. Data represent 
mean ± SD; N = 4 per group (Contra., Ipsi., Distal, Prox.). Contra., contralateral; FUS, focused ultrasound; GFAP, glial fibrillary acidic protein; Ipsi., 
ipsilateral; Prox., proximal
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Classifying microglial and astrocytic activation in a mouse 
model of amyloidosis
To assess the generalizability of MORPHIOUS to appli-
cations related to stimuli other than FUS, we evaluated 
microglial and astrocytic activation in 7-month-old 
TgCRND8 mice, a mouse model of amyloidosis. After 
being trained on a set of hippocampi from nonTg  lit-
termate control mice, MORPHIOUS was applied to a 
test-set of hippocampi from TgCRND8 mice, therein sub-
dividing the hippocampal area into focal, proximal, and 
distal subregions (Fig. 9A). Focal and proximal microglia, 
predicted to be activated, were visually found to over-
lap with plaque pathology (Fig.  9B). Similar to what we 
observed following FUS-induced microglial activation, 
within TgCRND8 mice, focal microglia showed elevated 
IBA1 expression (Fig.  9C,  P < 0.0001) and percent area 
(Fig.  9D,  P < 0.0001 to 0.01) when compared with con-
tralateral, distal, and proximal microglia. IBA1 expres-
sion was also greater in proximal microglia compared to 
distal and nonTg microglia (Fig. 9C,  P < 0.0001 to 0.01).

Next, to further validate our classification predictions we 
asked whether microglial activation was related to plaque 
pathology. Both proximal (Fig.  9E, R2: 0.50, P < 0.01) and 
focal microglial (Fig. 9F, R2: 0.51, P < 0.01) cluster sizes cor-
related with amyloid plaque load. Moreover, plaque cov-
erage was greater in both focal (Fig.  9G, P < 0.0001) and 

proximal microglial regions (Fig.  9G, P < 0.01) compared 
to distal regions. Focal microglial regions also exhibited 
greater plaque coverage compared to proximal microglial 
regions (Fig. 9G,  P < 0.01). Finally, compared to both dis-
tal, and proximal regions, the mean plaque size was signifi-
cantly larger in focal microglial cluster regions (Fig. 9H , P 
< 0.001 to 0.0001), indicating that focal microglial clusters 
are associated with larger plaques.

We subsequently used MORPHIOUS on hippocampal 
sections stained with GFAP to detect distal and proxi-
mal regions (Fig. 10A). Notably, proximal astrocytes were 
associated with plaque pathology (Fig.  10B). Compared 
with distal and nonTg astrocytes, proximal astrocyte 
clusters showed elevated levels of GFAP immunofluo-
rescence (Fig. 10C  P < 0.0001 to 0.001) and percent area 
coverage (Fig. 10D  P < 0.001  to 0.01). As with activated 
microglia, the level of astrocytic activation correlated 
with plaque load (Fig.  10E, R2: 0.66, P < 0.0001). Com-
pared to the distal region, the proximal astrocytic region 
showed greater levels of plaque coverage (P < 0.05), and a 
larger mean plaque size (P < 0.05). This data suggests that 
the detected levels of microglial and astrocytic activation 
by MORPHIOUS are sensitive to plaque pathology.

Collectively, the validation of classification predic-
tions by MORPHIOUS in two animal models using dif-
ferent activation stimuli suggests that MORPHIOUS 

Fig. 7  Proximal astrocytes co-express Nestin, a marker of activation. Within FUS-treated ipsilateral hippocampal sections, MORPHIOUS identified 
proximally activated (orange line) astrocytes (A) co-labelled with Nestin (B, C). Pearson correlation was used to colocalize GFAP with Nestin (D). 
Images (A, B) were taken at 20X magnification. Insets (C1–C3) were taken at 63X magnification. Groups were analyzed via a mixed linear model, 
and between-group differences were assessed via a Sidak’s Post-hoc analysis. Significance: * P < 0.05; ** P < 0.01; *** P < 0.001; **** P < 0.0001. Data 
represent means ± SD; N = 4 per group. Scale bar: 100 µm (A, B), 25 µm (C1–C3). Contra., contralateral; GFAP, glial fibrillary acidic protein; Prox., 
proximal
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can be used to track pathology-associated changes in 
microglial and astrocytic activation.

Discussion
In this work, we developed MORPHIOUS, an unsu-
pervised workflow that learns a signature of "normal" 
microglia or astrocyte morphologies, and uses this 
information to generate ROIs corresponding to "abnor-
mal" microglia or astrocytes, here referring to activated 
cells. The capacity to consistently identify and seg-
ment ROIs corresponding to activated microglia and 
astrocytes, without the need for labelled examples of 

activation, can improve the study of activated microglia 
and astrocytes in response to disease progression and 
following treatment. Here we demonstrated that MOR-
PHIOUS was able to detect clusters of microglial and 
astrocytic activation in response to FUS-BBB modula-
tion, and in the TgCRND8 mouse model of amyloidosis.

Activated microglia exhibit a range of morphological 
changes [8, 10]. Using MORPHIOUS we segmented two 
distinct populations: focal and proximal microglia. Con-
sistent with activation associated morphological changes, 

Fig. 8  Activated microglia overlap with activated astrocytes. Proximal and focal clusters of IBA1+ microglia (A) overlap spatially with proximal 
clusters of GFAP+ astrocytes (B). Cluster sizes are reported as the percentage of the total hippocampal area covered by activated microglia (red) or 
astrocytes (green) (C). In total, 74.5% of astrocytic clusters overlapped with microglia clusters, while 48.7% of microglial clusters overlapped with 
astrocytes (brown). (D) Within the same section, cluster sizes for activated microglia and activated astrocytes strongly correlated. The correlation 
coefficient (R2) was analyzed via linear regression analysis (N = 16). Significance: **** P < 0.0001. Scale bar: 100 µm (A, B). GFAP, glial fibrillary acidic 
proteins; IBA1, ionized calcium-binding adaptor protein 1
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Fig. 9  MORPHIOUS identified focal and proximal microglia in the hippocampus of TgCRND8 mice. MORPHIOUS identified focal (red line) and 
proximal microglia (orange line) (A) in association with amyloid-beta plaques (B). Compared with nonTg and distal microglia, proximal and focal 
microglia exhibited progressively higher IBA1 immunofluorescence (C). Focal microglia showed increased percent area coverage when compared 
with all other groups (D). Pearson correlation analysis demonstrates that proximal (E) and focal (F) microglial cluster sizes correlated with amyloid 
plaque load. Activated microglial clusters were associated with greater overall plaque coverage (G) and mean plaque size (H). Images (A, B) were 
taken at 20X magnification. Between-group differences were assessed via a one-way ANOVA with Tukey’s post-hoc analysis. Correlations were 
assessed via linear regression analysis and the Pearson correlation coefficient (R2) is reported. Significance: ** P < 0.01; *** P < 0.001; **** P < 0.0001. 
Data represent means ± SD; N = 4 per group. Scale bar: 100 µm (A, B). IBA1, ionized calcium-binding adapter molecule 1; nonTg, non-transgenic 
littermates of TgCRND8 mice; Prox., proximal; Tg, TgCRND8 mice
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Fig. 10  MORPHIOUS identifies proximal astrocytes in a mouse model amyloidosis. Proximal astrocytic activation clusters (orange line) (A) were 
observed in association with amyloid-beta plaques (B). Compared with nonTg and distal astrocytes, proximal astrocytes exhibited greater levels 
of GFAP immunofluorescence (C) and percent area coverage (D). Pearson correlation analysis demonstrates that proximal astrocyte cluster sizes 
correlated with amyloid plaque load (E). Proximal astrocytes exhibited increased levels of amyloid-beta plaque coverage (F) and plaque size (G). 
Images (A–B) were taken at 20X magnification. Between-group differences were assessed via a one-way ANOVA with Tukey’s post-hoc analysis. 
Correlations were assessed via linear regression analysis and the Pearson correlation coefficient (R2) is reported. Significance: * P < 0.05; ** P < 0.01; 
*** P < 0.001; **** P < 0.0001. Data represent means ± SD; N = 4 per group. Scale bar: 100 µm (A, B). GFAP, glial fibrillary acidic protein; nonTg, 
non-transgenic littermates of TgCRND8 mice; Prox., proximal; Tg, TgCRND8 mice
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focal microglia, and to a lesser degree proximal micro-
glia, exhibited elevated IBA1 expression, increased soma 
size, decreased nearest neighbour distance and decreased 
branching [10]. Following FUS, focal microglia colocal-
ized with the activation markers CD68 and TGFβ1 [42, 
44], whereas proximal microglia only co-localized with 
TGFβ1, which itself was lower than that of focal micro-
glia. These data support the claim that focal and proximal 
microglia represent two spatial subsets of microglial acti-
vation with distinct morphological and molecular identi-
ties [10, 45, 46]. Following FUS, in the same regions as 
activated microglia, MORPHIOUS independently iden-
tified clusters of astrocytes which were characterized by 
increased GFAP intensity, area coverage and branching, 
hallmark features of astrogliosis [2]. Moreover, proxi-
mal astrocytes colocalized with Nestin, an intermediate 
filament which is co-expressed with GFAP when astro-
cytes are activated [47]. Thus, in addition to microglia, 
MORPHIOUS identified regions of morphologically dis-
tinct astrocytes which exhibit features consistent with 
activation.

MORPHIOUS works by learning a definition of "nor-
mal" cellular morphologies from control tissues, which 
is subsequently used to identify spatial clusters of cells 
deemed to be sufficiently distinct from “normal” cells. 
As such, MORPHIOUS does not rigidly define the mor-
phology of an activated microglia or astrocyte; instead, 
it infers a broad definition of “abnormal” activation-
associated morphologies. As a result, we suggest that 
MORPHIOUS may be conducive towards identifying 
activated microglia and astrocytes in a broad range of 
pathologies. To support this claim, we show that MOR-
PHIOUS could also detect focal and proximal activation 
clusters of microglia, and proximal activation clusters of 
astrocytes, in a mouse model of amyloidosis. Both micro-
glial and astrocytic activation are known to correlate with 
plaque pathology [48, 49]. Similarly, we found that proxi-
mal and focal microglial and proximal astrocytic cluster 
sizes were responsive to amyloid burden. Collectively this 
suggests that MORPHIOUS can be used to detect patho-
logical changes that are associated with microglial and 
astrocytic activation.

Importantly, genomic studies have clarified that  the 
activation of  microglia and astrocytes  is complex and 
context specific [46, 50–52]. This suggests that traditional 
markers of activation may not be suitable for characteriz-
ing the full magnitude of microglial and astrocytic activa-
tion. MORPHIOUS provides the advantage of identifying 
microglial and astrocytic  activation-associated morpho-
logical changes, which reduces the need for secondary 
activation markers. Indeed, MORPHIOUS was able to 
identify activated microglia in a mouse model of amy-
loidosis, where the molecular landscape  is complex and 

different between microglia adjacent to  plaques, phago-
cytosing, and those that are further away [29, 53, 54].

When quantifying cellular morphologies in immu-
nohistochemical analyses, it is critical to choose an 
appropriate ROI (i.e., the denominator) by which immu-
nological features can be normalized [30–32]. To avoid 
bias, it is conventional to define a ROI as brain region, 
or tissue type, which is either analyzed in its entirety, or, 
through sampling multiple fields of view [30–32]. How-
ever, quantification in this manner can be difficult in tis-
sues with significant heterogeneity, as the presence of 
relatively few activated cells can be masked by the abun-
dance of surrounding non-activated cells. This quantifi-
cation problem is exemplified in the detection of small 
tissue perturbations as previously reported following the 
application of FUS. Specifically, after applying FUS to 
the cortex, Sinharay et  al. found that despite the visual 
appearance of activated microglial clusters, the levels of 
IBA1 detected between FUS-treated and contralateral 
cortices were not statistically different [35]. Similarly, 
in our study, most features of microglial and astrocytic 
activation were statistically indistinguishable when com-
paring the entire ipsilateral FUS-treated and contralat-
eral hippocampi (Figs.  4, 6). To increase the sensitivity 
of detecting morphological changes in relatively small 
groups of cells within a heterogenous tissue, the defini-
tion of reasonable regions of interest to focus the analysis 
is required (i.e., such as by a trained histologist) [30–32].

Using a  data-driven approach, MORPHIOUS aims 
to automate this approach, and can generate discrete 
regions of interest of activated microglia and astrocytes. 
This in turn facilitates the detection and quantification of 
microglial and astrocytic activation not apparent through 
conventional analytical means. It is recognized that the 
identification of pathology-associated regions of interest 
by a trained histologist represents a gold-standard. As 
such, we do not claim that MORPHIOUS outperforms 
expert manual labelling. However, manual labelling can 
be labor intensive and time consuming [32]. In automati-
cally defining ROIs, MORPHIOUS may directly aid the 
work of histologists in their workflows, and generate ini-
tial ROIs that can be fine-tuned as needed.

MORPHIOUS offers advantages over previous unsu-
pervised approaches that identify activated micro-
glia through clustering in feature space alone, such as 
through K-means or hierarchical clustering [3–7]. While 
previous methods can evaluate the putative activation of 
individual cells, the heterogeneity in microglia morphol-
ogy poses a risk for false positives that are difficult to 
interpret given the nature of unlabeled data. For exam-
ple, Davis et  al. (2017) reported that following orbital 
optic nerve crush, activated microglia were found dis-
tributed among resting microglia in both the treated and 
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untreated olfactory bulbs, a finding that merits further 
investigation [3]. By contrast, MORPHIOUS avoids the 
inclusion of individual false-positive cells by clustering 
through a spatial approach. While this approach prevents 
the identification of sparsely activated cells, or individual 
cells, it distinguishes MORPHIOUS from previous work 
by allowing it to segment whole regions of cell activation. 
This discrete ROI both provides an indication on the spa-
tial extent of pathology, as well as distinguishes a region 
for more fine-tuned analyses. In addition, MORPHIOUS 
may be adaptable to applications outside of identify-
ing microglial and astrocytic activation. Indeed, a simi-
lar one-class support vector machine approach has been 
used to segment the borders of tumors using MRI data 
[55, 56].

The lack of ground truth that could be obtained from a 
histologist and against which predictions could be com-
pared, precludes the ability to report the accuracy of 
microglial and astrocytic classification; a limitation which 
is common to unsupervised quantification approaches [3, 
4], including MORPHIOUS. Given that we do not have a 
ground truth for activated microglia and astrocytes, we 
cannot rule out that we are over- or under-classifying 
the activation of microglia and astrocytes. Tuning hyper-
parameters for one-class support vector machines is a 
critical, and often difficult task, for which a consensus on 
optimal methodology has yet to be reached [57]. A com-
mon technique is to maximize accuracy while minimiz-
ing the number of false-positives, based on labeled data 
(i.e., the class of the data is known) [55, 56]. However, 
examples of positive-class cases (i.e., outlier data) can  
be challenging to acquire. Advanced methods deploy a 
variety of strategies which focus on identifying patterns 
in the one-class itself to maximize the capacity to dis-
tinguish normal cases from outliers [57]. In our case, we 
leveraged two plausible biological assumptions for opti-
mizing hyperparameters: (1) that activated microglia and 
astrocytes will coalesce in spatial clusters that occur in 
response to a stimulus. This has been well documented 
to occur in cases of ruptured blood vessels [10, 28], and 
amyloid-beta plaques [17]; and (2) that healthy control 
hippocampal brain tissue will not exhibit large clusters of 
outlier cells. Thus, in tuning our one-class support vector 
machine, we deployed a simple learning objective: find 
the set of hyperparameters which maximizes cluster size 
in test-set hippocampi, while ensuring that no clusters of 
activation are observed in control hippocampal slices.

Importantly, searching for clusters of outliers may not 
be suitable for images which are highly heterogenous, 
or, for identifying single, or small numbers of mor-
phologically distinct cells. As with all machine learn-
ing approaches, the effectiveness of the learning model 

is limited by the range of features selected. To develop 
a simple and accessible approach, MORPHIOUS col-
lects features through the widely used software ImageJ. 
It is possible that greater levels of sophistication will be 
required for developing features to distinguish levels 
of activation in microglial or astrocytic cells of higher 
complexity in species, such as primates, and/or follow-
ing certain pathological and experimental conditions. In 
such case, users can input their own set of features into 
MORPHIOUS, such as has recently been described by 
other methods [4, 33], and therein expand its usability 
to other cases. Moreover, MORPHIOUS could be fur-
ther improved with state-of-the-art convolutional neural 
networks that can effectively interpret features from raw 
images. 

Conclusions
In conclusion, we demonstrate in two animal models that 
MORPHIOUS can, in an unsupervised manner,  identify 
clusters of activated microglia and astrocytes  based on 
morphology alone. These clusters were found to coincide 
with the expression of  common activation markers and 
indicators of pathology. Quantification methods such as 
MORPHIOUS show promises for improving the detec-
tion of microglial and astrocytic activation in diverse 
contexts.
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