
Ellwardt et al. Journal of Neuroinflammation          (2022) 19:119  
https://doi.org/10.1186/s12974-022-02476-0

RESEARCH

Network alterations underlying anxiety 
symptoms in early multiple sclerosis
Erik Ellwardt1†, Muthuraman Muthuraman2*†   , Gabriel Gonzalez‑Escamilla3, Venkata Chaitanya Chirumamilla3, 
Felix Luessi1, Stefan Bittner1, Frauke Zipp1, Sergiu Groppa3 and Vinzenz Fleischer1 

Abstract 

Background:  Anxiety, often seen as comorbidity in multiple sclerosis (MS), is a frequent neuropsychiatric symptom 
and essentially affects the overall disease burden. Here, we aimed to decipher anxiety-related networks functionally 
connected to atrophied areas in patients suffering from MS.

Methods:  Using 3-T MRI, anxiety-related atrophy maps were generated by correlating longitudinal cortical thinning 
with the severity of anxiety symptoms in MS patients. To determine brain regions functionally connected to these 
maps, we applied a technique termed “atrophy network mapping”. Thereby, the anxiety-related atrophy maps were 
projected onto a large normative connectome (n = 1000) performing seed‐based functional connectivity. Finally, an 
instructed threat paradigm was conducted with regard to neural excitability and effective connectivity, using tran‑
scranial magnetic stimulation combined with high-density electroencephalography.

Results:  Thinning of the left dorsal prefrontal cortex was the only region that was associated with higher anxiety 
levels. Atrophy network mapping identified functional involvement of bilateral prefrontal cortex as well as amygdala 
and hippocampus. Structural equation modeling confirmed that the volumes of these brain regions were significant 
determinants that influence anxiety symptoms in MS. We additionally identified reduced information flow between 
the prefrontal cortex and the amygdala at rest, and pathologically increased excitability in the prefrontal cortex in MS 
patients as compared to controls.

Conclusion:  Anxiety-related prefrontal cortical atrophy in MS leads to a specific network alteration involving struc‑
tures that resemble known neurobiological anxiety circuits. These findings elucidate the emergence of anxiety as part 
of the disease pathology and might ultimately enable targeted treatment approaches modulating brain networks in 
MS.
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Introduction
Multiple sclerosis is a demyelinating autoimmune disease 
of the CNS leading to disability in young adults. Sensory 
and motor deficits are characteristic symptoms, but also 
cognitive and neuropsychiatric symptoms can occur, 
even in early disease stages [1–4]. With regard to affec-
tive symptoms, anxiety is considered a major debilitating 
symptom in multiple sclerosis, impairing quality of life 
[5–7]. Moreover, a large number of patients develop anx-
iety symptoms years before clinical disease manifestation 
or motor symptoms [8]. Interestingly, anxiety, although 
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often still seen as co-morbidity, is however associated 
with the long-term development of cognitive impairment 
and memory deficits [6, 9]. Cognitive deficits, in turn, are 
clearly related to neurodegeneration [10]. Therefore, early 
neurodegenerative processes in multiple sclerosis might 
also cause anxiety symptoms. However, MRI-derived 
total brain volume as well as white matter lesion load was 
not associated with anxiety levels in multiple sclerosis in 
early association studies [11, 12]. More recent evidence 
from smaller scope studies suggests that some regional 
volumetric associations may exist. In particular, multi-
ple sclerosis patients with fatigue and increased anxiety 
had larger caudate volumes and a thinner left parietal 
cortex compared to those without fatigue [13]; another 
study revealed that anxiety in multiple sclerosis may have 
a neuropathological substrate in the septo-fornical area 
[14]. However, the lack of a robust association between 
anxiety symptoms and structural MRI abnormalities may 
have led to the opinion that anxiety is rather a reactive 
response of patients facing a chronic disease.

Both functional MRI (fMRI) and EEG are valu-
able techniques to depict brain functional connectivity 
between distant brain regions. Apart from animal data 
[15], experimental human data derived from fMRI and 
EEG point towards the involvement of impaired excit-
ability and network desynchronization in multiple scle-
rosis [16–18]. In particular, cognitive impairment has 
been linked to functional network disturbances in multi-
ple sclerosis patients [19]. Applying EEG, it was reported 
that multiple sclerosis patients show an increased excit-
ability of frontotemporal regions and decreased coher-
ence of short and long distance connections at rest in 
relation to cognitive impairment [16]. Using fMRI, one 
study displayed enhanced regional activation within 
the ventrolateral prefrontal cortex (PFC) and a lack of 
functional connectivity between the PFC and the left 
amygdala in multiple sclerosis patients when exposed to 
emotional stimuli [20]. In addition, resting state brain 
networks, particularly the default mode network, have 
been found to be altered in several psychopathological 
conditions such as anxiety [21–25]. Studies combining 
structural and functional neuroimaging data in multiple 
sclerosis patients have demonstrated that thalamic atro-
phy is associated with disruption of cortical functional 
networks and is related to worse cognitive function [26–
28]. However, studies investigating the neural correlates 
of anxiety symptoms in multiple sclerosis patients inte-
grating structural and functional imaging approaches are 
surprisingly missing.

“Atrophy network mapping” is a new technique that 
performs seed-based functional connectivity using a 
normative functional connectome to determine brain 
regions functionally connected to atrophy patterns. This 

approach has recently lent insight into the localization of 
neuropsychiatric symptoms in neurodegenerative disor-
ders [29–31].

Our goal in this study was to identify anxiety-underly-
ing network changes and their structure–function asso-
ciation in multiple sclerosis. Cortical atrophy maps were 
related to the severity of anxiety symptoms in multiple 
sclerosis patients and projected onto a large (n = 1000) 
normative resting-state functional MRI connectome. 
Structural equation modeling (SEM) was then applied to 
determine the causal relation between anxiety symptoms 
and the MRI volumes of the brain regions belonging to 
the detected functional network. To confirm our main 
findings, we furthermore investigated functional con-
nectivity and cortical excitability in an additional cohort, 
applying transcranial magnetic stimulation and high-
density electroencephalography (TMS–HD-EEG), both 
at rest and during an instructed threat paradigm in multi-
ple sclerosis patients and controls [32–34].

Methods
Subjects
Out of a cohort of 656 multiple sclerosis patients with 
standardized MRIs from 2011 to 2017, 92 early clinically 
isolated syndrome/relapsing–remitting multiple sclero-
sis patients with additional anxiety measures were eligi-
ble and included in this study (Fig. 1 and Table 1). These 
multiple sclerosis patients [63 female, mean age ± SD: 
34.4 ± 9.5  years, mean disease duration: 1.9 ± 3.4  years, 
mean Expanded Disability Status Scale (EDSS) ± SD: 
1.2 ± 1.1] underwent MRI twice over a study period of 

Fig. 1  Study design and work flow. After fulfilling the inclusion 
criteria (red dashed line box), 92 early multiple sclerosis patients were 
included for the cortical thickness correlation analysis with HADS-A 
scores (anxiety symptoms) to generate an anxiety-related atrophy 
map. Next, atrophy network mapping was applied to project this 
atrophy map onto a normative functional brain network (n = 1000). 
As a result, we were able to determine brain regions functionally 
connected to the atrophied location
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2  years (mean follow-up time ± SD: 2.4 ± 1.4  years). In 
addition, patients were clinically assessed in our outpa-
tient clinic by an experienced neurologist to determine 
the EDSS score. The EDSS is a clinician-administered 
assessment scale evaluating the functional systems of the 
central nervous system [35]. EDSS scores were assessed 
30 days after a relapse onset. For inclusion in our study, 
the EDSS had to be below 3.0 and the disease duration 
less than 5 years. These thresholds were chosen to guar-
antee a mildly affected multiple sclerosis cohort with-
out considerable motor impairment. Moreover, clinical 
relapses and radiological disease activity [to establish “no 
evidence of disease activity” (NEDA-3)] were assessed. 
The self-administered anxiety score Hospital Anxiety and 
Depression Scale-Anxiety subscale (HADS-A), which 
is a tool used to screen for the presence of anxiety [36, 
37], was determined after 2 years. The questionnaire was 
filled out by the patient and returned to the clinician.

Moreover, 18 additional patients with relapsing–
remitting multiple sclerosis (10 female, mean age ± SD: 
36.8 ± 9.4  years, mean disease duration 3.9 ± 5.0  years, 
mean EDSS ± SD: 2.2 ± 1.4) and 18 healthy controls (9 
female, mean age: 36.0 ± 9.0 years) were selected to par-
ticipate in a TMS–HD-EEG study at rest and under task 
in addition to the HADS-A assessment and structural 
MRI acquisition (Additional file 1: Table S1).

Resting-state fMRI data from 1000 healthy individu-
als (58% female, age range between 19 and 35  years; 

mean age 21.5  years) freely available from the norma-
tive database of the Brain Genomics Superstruct Pro-
ject (GSP) [38] were used to link atrophy to a common 
brain network (see below).

The local ethics committee of the medical faculty of 
the Johannes Gutenberg University Mainz (Mainz, Ger-
many) approved the study protocol, which is according 
to the Declaration of Helsinki; all participants provided 
written informed consent.

MRI data acquisition
Structural MRI was performed on a 3-T MRI scan-
ner (Magnetom Tim Trio, Siemens, Germany) with a 
32-channel receive-only head coil. In all patients, imag-
ing was performed using a sagittal 3D T1-weighted 
magnetization-prepared rapid gradient echo (MP-
RAGE) sequence (TE/TI/TR = 2.52/900/1900  ms, 
flip angle = 9°, field of view = 256 × 256  mm2, matrix 
size = 256 × 256, slab thickness = 192  mm, voxel 
size = 1 × 1 × 1  mm3) and a sagittal 3D T2-weighted 
fluid-attenuated inversion recovery (FLAIR) 
sequence (TE/TI/TR = 388/1800/5000  ms, echo-train 
length = 848, field of view = 256 × 256  mm2, matrix 
size = 256 × 256, slab thickness = 192  mm, voxel 
size = 1 × 1 × 1  mm3). Major anatomical abnormalities 
were excluded by a clinician scientist blinded to the 
patient data based on the subject’s T1-weighted and 
FLAIR images of the whole brain.

Table 1  Clinical data of the multiple sclerosis patient cohort

Demographic and clinical data as well as brain volumetric measurements of early-stage multiple sclerosis patients at baseline MR scan and after follow-up

CIS clinically isolated syndrome, RRMS relapsing–remitting multiple sclerosis, SD standard deviation, EDSS Expanded Disability Status Scale, GM grey matter, TB total 
brain, DMD disease-modifying drugs, HADS-A Hospital Anxiety and Depression Scale-Anxiety subscale
a p values derived from paired t test
b p values derived from Wilcoxon signed-rank test
c First line: glatiramer acetate, interferon-beta, teriflunomide, dimethyl fumarate; second line: natalizumab, fingolimod, alemtuzumab

Demographic and clinical data Multiple sclerosis patients (n = 92)

Sex (female/male) 62/30

Disease course at baseline (CIS/RRMS) 21/71

Mean age at baseline MRI (SD) [years] 34.4 ± 9.5

Mean age at disease onset (SD) [years] 32.5 ± 9.5

Mean disease duration (SD) [years] 1.9 ± 3.4

DMD (no/first line/second line)c 24/54/14

Mean follow-up (SD) [years] 2.4 ± 1.4

Mean EDSS score (SD) 1.2 ± 1.1

Mean HADS-A score (SD) after 2 years 5.5 ± 4.1

Volumetric analysis Baseline Follow-up p value

Mean GM volume (SD) [ml] 632 ± 629 614 ± 607 0.001a

Mean TB volume (SD) [ml] 1441 ± 1411 1436 ± 1411 0.008a

Median T2 WM lesion volume (range) [ml] 1.5 (0.1–83.2) 2.0 (0.1–124.3) 0.001b
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MRI preprocessing
MRI T1 images from all multiple sclerosis patients were 
preprocessed using FreeSurfer (v6.0; http://​surfer.​nmr.​
mgh.​harva​rd.​edu). In brief, the pipeline includes the 
removal of non-brain tissue and intensity normalization, 
followed by subcortical segmentation and cortical surface 
reconstruction via tessellation of the grey matter (GM)/
white matter (WM) and GM/CSF boundaries, accom-
panied by automated topology correction with accurate 
surface deformation to identify tissue borders (Fig. 2A). 

Cortical thickness was then calculated as the distance 
between the WM and GM surfaces at each point (ver-
tex) of the reconstructed cortical mantle [39]. Individual 
results were visually inspected to ensure accuracy of the 
surface creation. Errors in the surface reconstruction 
were manually corrected to improve the cortical thick-
ness estimation. Given the longitudinal nature of the 
study, the resulting cross-sectional preprocessed data 
was then used to create a mean single-subject template, 
to which each time-point image was rigidly transformed. 

Fig. 2  A Longitudinal cortical thickness analysis. Workflow for longitudinal MRI morphometric analysis. B Anxiety-related atrophy maps across 
multiple sclerosis patients. Atrophy of the left PFC (peak region: rostral middle frontal lobe) was associated with anxiety scores measured by the 
HADS-A scale. C Atrophy network mapping. Generated atrophy maps are used in a seed-based functional connectivity analysis in a large dataset of 
healthy controls to find functionally connected regions. The atrophy network mapping approach identified the PFC, amygdala and hippocampus as 
brain regions functionally connected to the previously detected atrophied location

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu


Page 5 of 13Ellwardt et al. Journal of Neuroinflammation          (2022) 19:119 	

This final space transformation further reduces inter-
individual variability and permits an implicit vertex 
correspondence across all time points [40]. After pre-
processing, mean cortical thickness based on the Desi-
kan−Killiany atlas [41] and mean subcortical volumes 
[42] were obtained for each region. From cortical thick-
ness values, individual maps of cortical atrophy (annual 
atrophy, expressed in mm3 per year) were defined as: 
atrophy = (CTFollow-up − CTBaseline)/(MRI time Δ). The 
CTBaseline and CTFollow-up are the estimated cortical thick-
ness maps at each time point, and “MRI time Δ” is the 
individual delay between the two MRI scans in years. The 
same procedure was used to calculate atrophy of subcor-
tical volumes.

Functional MRI data and preprocessing
Normative resting-state fMRI data from the 1000 healthy 
subjects were acquired at Harvard Medical School and 
Massachusetts General Hospital and are part of the pub-
licly available GSP dataset [38]. These fMRI data were 
obtained with a 3-T Tim Trio scanner (Siemens Health-
care, Erlangen, Germany) MRI using a 12-channel receive 
coil array scanner.

Resting-state fMRI data was acquired at 3 mm isotropic 
resolution with TR = 3000  ms and 124 frames. fMRI 
data preprocessing included (1) removal of the first five 
frames, (2) motion correction using rigid body translation 
and rotation, (3) slice timing correction, (4) alignment 
with structural image, (5) normalization to Montreal 
Neurological Institute (MNI) space using the deforma-
tion matrices obtained during MRI preprocessing with 
the CAT12 toolbox (Structural Brain Mapping group, 
Jena University Hospital, Jena, Germany), (6) smoothing 
by a 6 mm full-width half-maximum (FWHM) kernel, (7) 
nuisance covariate regression (including six motion cor-
rection parameters, and averaged WM and CSF signals), 
and (8) bandpass filtering (between 0.01 and 0.08  Hz). 
WM and CSF masks were obtained from segmentation 
of the anatomical T1 image, followed by binarizing the 
probabilistic tissue maps at a threshold of 0.9 and 0.7, 
respectively. All preprocessing steps were carried out fol-
lowing recommended guidelines using SPM12 [43].

Atrophy network mapping
For the multiple sclerosis cohort, we derived a “functional 
network map”—defined as brain regions functionally 
connected to the previously generated anxiety-related 
atrophy map [30, 31]. To this end, we used FreeSurfer 
(v6.0; http://​surfer.​nmr.​mgh.​harva​rd.​edu) to determine, 
in a vertex-wise fashion, in which specific cortical regions 
multiple sclerosis patients present a correlation between 
cortical thinning (atrophy) over 2 years and anxiety sever-
ity (p < 0.05, controlling for multiple comparisons with 

Monte Carlo simulations). The resulting cluster, local-
ized in the dorsal PFC, was then binarized and entered as 
seed to compute resting-state functional connectivity on 
a normative dataset [38]. Using the GSP normative data-
set, we measured average blood–oxygen-level-dependent 
(BOLD) time courses within the seed corresponding to 
the anxiety-related atrophy map and correlated these val-
ues with the BOLD time course at every other brain voxel 
[30, 31]. This seed-based functional connectivity method 
is similar to lesion network mapping; the only difference 
is that instead of a brain lesion, the resulting atrophy 
map is used as a seed [44, 45]. Functional connectivity 
was determined by calculating the correlation between 
the mean time courses of the atrophied region of inter-
est (ROI) and all other brain voxels in each of the 1000 
images [45, 46]. The correlation values were then trans-
formed to z values using the Fisher’s transform and used 
to compute a voxel-wise t-distribution that was finally 
thresholded at a voxel-wise family-wise error (FWE)-
corrected value (p = 0.05). The connectivity maps were 
created in MNI space with 1.5 × 1.5 × 1.5 mm voxel size.

Instructed threat paradigm
Before starting this investigation, participants were 
informed that one visual cue (circle) is associated with 
a mild electric shock with a probability of 33%, while 
the other visual cue (square) is safe. The intensity of the 
electric shock was calibrated for each subject, such that 
stimulation was highly fearful [minimum of seven on 
a scale of 0 (not fearful) to 10 (highly fearful)] [47]. The 
instructed threat paradigm (Fig.  4A) encompassed pre-
senting on a computer screen the visual cue (circle or 
square) that denoted the anticipated condition (threat 
or safe). One second after every visual cue onset, a neu-
ronavigated single-pulse TMS was applied on the right 
dorsomedial PFC. The stimulation intensity was 110% 
of resting-state motor threshold (RMT), as previously 
described [33]. Each trial consisted of presenting the vis-
ual cue on the screen for 5 s followed by a fixation cross 
on the center of the screen that jittered between 5 and 
6  s. During the threat condition, electric shocks were 
applied to the dorsal part of the left hand with a probabil-
ity of 33% with an electric stimulator (DS7A, Digitimer, 
USA) at any moment while the visual threat cue was pre-
sent on the screen. In total, the paradigm consisted of 90 
trials and lasted for 15 min. Continuous EEG recordings 
were performed in all participants for the complete dura-
tion of the paradigm. Furthermore, continuous resting-
state EEG data was acquired in all participants for 5 min 
prior to the instructed threat paradigm, during which the 
participants were asked to sit still and think of nothing. 
The EEG data was acquired with a high-density (HD) 
256 channel EEG system (Net Station 5.0, EGI, USA) 

http://surfer.nmr.mgh.harvard.edu
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operating at a sampling frequency of 250  Hz and elec-
trode impedances below 50 kΩ [48].

HD‑EEG data processing
The processing steps for HD-EEG data (Fig.  3A) were 
conducted in MATLAB R2015B (Mathworks, USA) 
using in-house customized analysis scripts and the open-
source MATLAB toolbox Fieldtrip [49]. The continuous 
HD-EEG data acquired during the instructed threat para-
digm was divided into epochs from − 2 to + 5 s relative 
to visual cue onset. Afterwards, the HD-EEG data from 
0.005  s prior to and 0.02  s after the TMS pulse, which 
contained the TMS pulse itself and ringing artifacts, 
was removed. In addition, in all participants the trials in 
which electric shocks were administered were removed 
from further analysis. Then, HD-EEG data was re-refer-
enced to a grand average of all electrodes. HD-EEG data 
was visually inspected and noisy trials were discarded. 
Subsequently, independent component analysis (ICA) 
was implemented and the components related to the 
physiological (eye blinks and muscle) and TMS (decay) 
artifacts were removed [50]. Finally, the remaining ICA 
components were transformed back into electrode data 
representation. The full description of the processing 

steps performed for resting-state HD-EEG data are 
described elsewhere [51]. Briefly, the continuous HD-
EEG data was segmented into 2  s epochs after discard-
ing the artifactual signals identified by visual inspection 
and ICA analysis. Afterwards, the source and connectiv-
ity analyses based on the power were performed in theta 
(4–7 Hz) and gamma (30–70 Hz) frequency bands.

Heart rate estimation
The heart rate was extracted from the HD-EEG signals 
(Additional file 1: Fig. S1) using the extended version of 
the ICA algorithm, based on the information maximiza-
tion [52] as previously reported [33].

Source and connectivity analyses
The source analysis was conducted with the beamformer 
approach called dynamic imaging of coherent sources 
(DICS) for both resting state and instructed threat para-
digm data in the theta and gamma frequency bands. The 
complete description of the analysis has been given else-
where [53]. In brief, to determine the origin of HD-EEG 
activity in a specific frequency band observed over the 
scalp electrodes, both the forward problems and inverse 
problems need to be addressed. In this study, the lead-
field matrix was modeled with the finite element method 
[54]. The DICS analysis was applied to extract the 
pooled source signals from three brain regions, namely 
right dorsomedial PFC, right amygdala and right hip-
pocampus. These anatomical brain regions were defined 
according to our previous publication [33]. Finally, the 
connectivity fingerprints were extracted using the tem-
poral partial directed coherence method (TPDC). The 
detailed description of the TPDC method has been previ-
ously described [54]. After estimating the TPDC values, 
the significance level was calculated from the applied 
data using a bootstrapping method [55]. In short, we 
divide the original time series into smaller non-overlap-
ping windows and randomly shuffle the order of these 
windows to create a new time series. The MVAR (multi-
variate autoregressive) model is fitted to the shuffled time 
series and TPDC is estimated. The bootstrapping is per-
formed 1000 times and the average TPDC value is taken 
as the significance threshold for all connections. The 
TPDC values were averaged across time [54]. This pro-
cess is performed separately for each participant. In this 
study, the open-source MATLAB package autoregressive 
fit (ARFIT) [56, 57] was used for estimating the autore-
gressive coefficients from the spatially filtered source sig-
nals of the identified brain regions. We applied the time 
reversal technique [58] as a second significance test on 
the connections already identified by TPDC using a data-
driven bootstrapping surrogate significance test.

Fig. 3  Impaired connectivity between anxiety-related regions in 
multiple sclerosis patients. A In a second patient cohort (n = 18) TMS–
HD-EEG was performed at rest and effective connectivity between 
the PFC, amygdala and hippocampus was measured and compared 
to healthy controls (n = 18). B Theta and gamma frequency bands 
revealed no connectivity between PFC and amygdala in patients 
versus controls
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Structural equation modeling
SEM is an analytical tool used to determine causal rela-
tionships between variables in a model-based approach 
[59]. Here, the SEM analysis was performed using the 
SEM toolbox for MATLAB (https://​www.​mathw​orks.​
com/​matla​bcent​ral/​filee​xchan​ge/​60013-​toolb​ox-​for-​
struc​tural-​equat​ion-​model​ling-​sem) to assess the rela-
tionship between brain volumes (PFC, amygdala and 
hippocampus) and HADS-A score after 2 years.

We employed the maximum-likelihood method of esti-
mation to fit the models. In order to adjust the models for 
a large sample size, we used the root mean square error 
of approximation (RMSEA) index, which improves preci-
sion without increasing bias [60]. The RMSEA index esti-
mates lack of fit in a model compared to a perfect model 
and therefore should be low. Here, the RMSEA index for 
all models was below 0.05, implying a very good fit. In 
all models, the invariant under a constant scaling (ICS) 
and ICS factor criteria were close to zero, indicating 
that models were appropriate for analysis. Finally, using 
the Akaike information criterion (AIC) the quality of 
each model relative to other models was estimated, with 
smaller values signifying a better fit of the model. The 
obtained AIC comparing the models varied between 0.01 
and 0.03 (good fit of the models). The strength of associa-
tions between the variables in the models was quantified 
by standardized coefficients (s), ranging from 0 (no asso-
ciation) to 1 (very strong association).

Statistical analysis
The statistical analyses were performed with MATLAB 
R2015B and SPSS 23.0 (IBM, Armonk, NY, USA).

Vertex-wise regression analyses testing the association 
between cortical atrophy over 2 years with anxiety were 
assessed under the general linear model while adjusting 
for age and sex. Control for multiple comparisons was 
performed using Monte Carlo simulations (n = 1000, 
p < 0.05). P values < 0.05 were considered statistically 
significant.

To examine the significant differences in TPDC, two-
tailed Student’s t-tests were performed. We performed 
a two-factorial ANOVA (groups, connections) for the 
TMS–HD-EEG connectivity analysis, separately for theta 
and gamma bands. Significant differences in oscillatory 
power were tested using nonparametric cluster-based 
statistics with the Monte-Carlo method in theta and 
gamma frequency bands [61].

Results
Cortical atrophy linked to anxiety symptoms
In order to identify anxiety-related regional changes in 
GM integrity, we investigated regional cortical and sub-
cortical atrophy in a cohort of early multiple sclerosis 

patients over 2 years (Additional file 1: Tables S2 and S3) 
and anxiety symptoms assessed by the HADS-A scale 
(Fig. 1). Longitudinal cortical thickness analysis revealed 
widespread cortical thinning over the observation period 
in both hemispheres [left: t (91) = 4.4, p < 0.001; right: t 
(91) = 3.6, p = 0.001]. In the age- and sex-adjusted corre-
lation analysis with the HADS-A score, we detected one 
prominent cluster: the left rostral middle frontal lobe, 
as part of the dorsal PFC was associated with HADS-A 
(r = 0.214; p = 0.040) (Fig. 2B, Additional file 1: Tables S4 
and S5).

HADS-A scores in patients who developed a clini-
cal relapse, EDSS-relevant progression or MRI activ-
ity (n = 57 patients, mean ± SD HADS-A score after 
2 years = 5.2 ± 4.1) did not differ (independent Student’s t 
test: p = 0.441) from those patients who remained relapse 
free (n = 35 patients with NEDA-3, HADS-A score after 
2 years = 5.9 ± 4.1).

Anxiety‑related atrophy network mapping
We hypothesized that anxiety-related cortical atrophy in 
multiple sclerosis patients would localize to a functional 
brain network. Hence, we applied a novel technique 
called atrophy network mapping to determine the brain 
regions functionally connected to the location of anxi-
ety-related atrophy. Thus, binarized atrophy maps from 
the prior correlation analysis were used as seed points 
in functional connectivity analysis in a large (n = 1000) 
normative dataset. The resulting atrophy network map 
unveiled a specific network connectivity pattern (Fig. 2C) 
(statistical threshold T >  ± 15, corresponding to whole 
brain FWE-corrected p < 10–12) consisting of the ipsilat-
eral PFC, but strikingly also the contralateral PFC and 
both amygdala and hippocampus. The functional net-
work of other cortical or subcortical regions (e.g., basal 
ganglia) was not connected to the previously generated 
atrophy map.

PFC, amygdala and hippocampus volumes predict anxiety 
symptoms
We next applied SEM to assess whether baseline volumes 
of the regions within the identified functional network, 
namely the PFC, amygdala and hippocampus, predict the 
severity of anxiety symptoms. The obtained fit indices in 
the SEM analysis implied a good fit of the constructed 
models to the observed data, providing robust relations 
between the variables. SEM revealed that the volumes 
of all three structures predict anxiety symptoms after 
2  years in the 92 multiple sclerosis patients (Table  2). 
SEM with resultant standardized coefficients (s) identi-
fied the left amygdala (s = 0.852, p = 0.001) and the left 
hippocampus (s = 0.836, p = 0.002) as the strongest prog-
nostic factors for anxiety severity 2 years after the initial 

https://www.mathworks.com/matlabcentral/fileexchange/60013-toolbox-for-structural-equation-modelling-sem
https://www.mathworks.com/matlabcentral/fileexchange/60013-toolbox-for-structural-equation-modelling-sem
https://www.mathworks.com/matlabcentral/fileexchange/60013-toolbox-for-structural-equation-modelling-sem


Page 8 of 13Ellwardt et al. Journal of Neuroinflammation          (2022) 19:119 

MRI. The volumes of the PFC, amygdala and hippocam-
pus derived from the cohort of multiple sclerosis patients 
who later underwent TMS–HD-EEG showed similar pre-
dictive powers for predicting anxiety symptoms (Table 2).

Reduced connectivity between PFC and amygdala 
in multiple sclerosis
To explore if the identified functional network from the 
atrophy network mapping approach is disturbed in mul-
tiple sclerosis patients, we investigated a cohort of 18 
multiple sclerosis patients and 18 age-matched healthy 
controls in a TMS–HD-EEG experiment (Additional 
file  1: Table  S1). Here, we first examined the effective 
connectivity between PFC, amygdala and hippocampus 
(Figs. 3 and 4) due to the results of the prior functional 
connectivity analysis findings in the main cohort. Strik-
ingly, HD-EEG revealed differences in the theta and 
gamma frequency bands between the two groups for 
hippocampus-PFC, hippocampus-amygdala and PFC−
amygdala connections at rest (Table 3, Additional file 1: 
Fig. S2A) and during task/threat paradigm (Table  3, 
Additional file 1: Fig. S2B, p < 0.01, two-sided t test).

Effective connectivity at rest between these three 
regions was different in multiple sclerosis patients as 
compared to healthy controls (Fig. 3). For the theta band, 
both the factor “group” [F (1, 244) = 268.82; p < 0.0001] 
and the factor “connection” [F (5, 244) = 14.42; p < 0.0001] 
significantly contributed to these alterations. The same 
was also true for the gamma band [factor “group”: F (1, 

245) = 1029.9; p < 0.0001 and factor “connection”: F (4, 
245) = 10.28; p < 0.0001]. All post hoc analyses were sig-
nificant (p < 0.0001). Whereas the connectivity from hip-
pocampus to PFC and amygdala was intact, we found a 
reduced connectivity between PFC and amygdala for the 
theta and gamma bands (p < 0.0001) (Fig.  3B) in multi-
ple sclerosis patients. On the other hand, we found an 
increased information flow in the theta band in multiple 
sclerosis patients from hippocampus to PFC (p < 0.0001) 
possibly accounting for a compensatory mechanism. For 
the theta band, effective connectivity positively corre-
lated with the PFC, amygdala and hippocampus volumes 
indicating in reverse that worse connectivity was associ-
ated with reduced volumes of these regions (Additional 
file 1: Table S6).

Increased excitability in the PFC at rest
In order to investigate the potential pathophysi-
ological cause underlying this disrupted information 
flow between the structures of the anxiety-related 

Table 2  Brain volumes and their capability in predicting anxiety 
through SEM

Association between brain volumes of the regions within the identified 
functional network and HADS-A score in the main cohort and the TMS–HD-EEG 
cohort. The predictive power is expressed as SEM-derived standardized 
coefficient (s)

HADS-A Hospital Anxiety and Depression Scale-Anxiety subscale, TMS–HD-EEG 
transcranial magnetic stimulation and high-density EEG, SEM structural equation 
modeling

Anxiety-related brain structures Anxiety 
(HADS-A) after 
2 years (n = 92 
patients)

Anxiety 
(HADS-A) 
within the 
TMS–HD-EEG 
cohort (n = 18 
patients)

s p 
value

s p 
value

Amygdala (left) 0.852 0.001 0.886 0.001

Amygdala (right) 0.825 0.004 0.803 0.003

Hippocampus (left) 0.836 0.002 0.858 0.002

Hippocampus (right) 0.816 0.006 0.782 0.003

Prefrontal cortex (left) 0.675 0.007 0.604 0.010

Prefrontal cortex (right) 0.633 0.011 0.704 0.006

Fig. 4  Altered cortical excitability in multiple sclerosis in response 
to threat. TMS–HD-EEG was performed in a second patient cohort 
(n = 18) and compared to healthy controls (n = 18). A Threat 
paradigm with a 33% chance of receiving a shock after appearance 
of a circle displayed on a monitor. A TMS pulse was applied 1 s after 
cue onset. HD-EEG (256 electrodes) was performed simultaneously. B 
Multiple sclerosis versus control showed an increased theta power at 
rest in prefrontal regions following TMS stimulation of the dorsal PFC; 
under threat, multiple sclerosis patients displayed a reduced theta 
and gamma power
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network, we assessed the HD-EEG power (hereinafter 
termed excitability) following a TMS pulse during an 
instructed threat paradigm. At rest, multiple sclerosis 
patients showed increased excitability compared to 
controls, evidenced as higher theta power in prefron-
tal electrodes after the TMS pulse at the dorsal PFC 
(Fig. 4B, p < 0.05, two-sided t test, 32 electrodes). This 
increase in the excitability was seen in the ipsilateral 
and contralateral PFC and detected up to 400 ms after 
the TMS stimulation.

Under threat condition, we found a decreased excit-
ability (i.e. decreased theta power) (Fig.  4B, p < 0.05, 
two-sided t test, 45 electrodes) in the dorsal PFC, both 
after cue onset (0.15 s until 0.45 s) and after the TMS 
pulse (1.15 s until 1.45 s) in multiple sclerosis patients. 
These effects were seen during threat processing on 
both sides. Moreover, we observed a decreased gamma 
power for parieto-temporal electrodes in multiple scle-
rosis patients under threat condition (Fig. 4B, p < 0.05, 
two-sided t test, 26 electrodes). During the threat par-
adigm (Fig. 4A), the heart rate measured by beats per 
minute (bpm) of both multiple sclerosis patients (no 
threat: 73 ± 1.8 bpm; threat: 82 ± 1.5 bpm) and healthy 
controls (no threat: 72 ± 1.3 bpm; threat: 84 ± 1.6 bpm) 
increased (Additional file 1: Fig. S1, p < 0.05, two-sided 

t test), which served as a positive physiological control 
for our paradigm.

Discussion
Our study provides evidence for functional network 
alterations underlying anxiety symptoms in multiple scle-
rosis. Using atrophy network mapping we identified a 
specific functional connectivity network consisting of the 
ipsi- and contralateral PFC as well as the amygdala and 
hippocampus. These brain areas are known to be essen-
tially involved in emotion regulation in humans [62]. 
Structural equation modeling confirmed that the vol-
umes of the PFC, amygdala and hippocampus were sig-
nificant determinants that influence anxiety symptoms in 
multiple sclerosis. In a subsequent TMS–HD-EEG study, 
we found an impaired effective connectivity between the 
PFC and amygdala at rest in multiple sclerosis patients 
compared to healthy subjects. The underlying cause of 
this network disruption might be explained by an altered 
cortical excitability since we observed an increased excit-
ability in prefrontal cortical regions in multiple sclerosis 
patients compared to controls at rest. Under threat, the 
PFC conversely showed a decreased excitability response 
in patients as compared to controls. Thus, altered neu-
ral excitability may underlie the observed disconnected 
network and may likewise underlie anxiety behavior as 
pathophysiological substrate [15].

Structural correlates of multiple sclerosis‑related anxiety
Structural and functional alterations of the PFC, amyg-
dala and hippocampus have been reported in patients 
with anxiety disorders [63–70]. In contrast, structural or 
functional MRI correlates of anxiety symptoms in mul-
tiple sclerosis patients are still inconclusive, reflecting 
the complexity of the disease and challenges of available 
imaging technology [71, 72]. Whereas some early studies 
investigating multiple sclerosis-related anxiety showed 
no correlation with total lesion load or total brain vol-
ume [11, 12], recent advances in the imaging field now 
revealed an association of distinct regional lesion load 
measurements with anxiety [14, 73].

This ambiguity still leads to the notion that anxiety 
might be a reactive response following chronic disease 
progression (e.g., ongoing motor impairment) [11]. As a 
result of this, anxiety in multiple sclerosis is often clas-
sified as a mere comorbid condition [71]. However, our 
study provides evidence that anxiety symptoms in mul-
tiple sclerosis patients might be directly linked to its 
pathology, as patients scoring high on the HADS-A 
specifically exhibited increased atrophy in the PFC—a 
crucial area for top-down control for threat and emo-
tional processing [32]. Although the official diagnosis of 

Table 3  Coherence

Coherence between prefrontal cortex, amygdala and hippocampus at rest and 
during threat processing in the TMS–HD-EEG study according to Additional 
file 1: Fig S2. The coherence is expressed as mean ± standard deviation

PFC prefrontal cortex, HIP hippocampus, AMG amygdala
a P values derived from two-tailed Student’s t test

Coherence MS patients Healthy controls p valuea

Theta (rest) HIP–PFC 0.33 ± 0.006 0.38 ± 0.05 0.0001

Gamma (rest) HIP–PFC 0.39 ± 0.04 0.22 ± 0.04 < 0.0001

Theta (after threat) HIP–
PFC

0.41 ± 0.04 0.48 ± 0.05 0.0057

Gamma (after threat) 
HIP–PFC

0.32 ± 0.06 0.47 ± 0.04 0.0032

Theta (rest) HIP–AMG 0.39 ± 0.02 0.40 ± 0.05 0.132

Gamma (rest) HIP–AMG 0.45 ± 0.03 0.37 ± 0.02 < 0.0001

Theta (after threat) HIP–
AMG

0.39 ± 0.05 0.50 ± 0.05 < 0.0001

Gamma (after threat) 
HIP–AMG

0.41 ± 0.03 0.29 ± 0.06 < 0.0001

Theta (at rest) PFC–AMG 0.40 ± 0.02 0.39 ± 0.03 0.234

Gamma (at rest) PFC–AMG 0.35 ± 0.03 0.44 ± 0.03 < 0.0001

Theta (after threat) PFC–
AMG

0.42 ± 0.04 0.31 ± 0.01 < 0.0001

Gamma (after threat) 
PFC–AMG

0.22 ± 0.05 0.37 ± 0.04 < 0.0001



Page 10 of 13Ellwardt et al. Journal of Neuroinflammation          (2022) 19:119 

a generalized anxiety disorder according to the Interna-
tional Classification of Diseases would require a detailed 
personal interview, the HADS-A accurately identifies 
the presence of anxiety symptoms in multiple sclerosis. 
Moreover, the HADS-A has the highest sensitivity (82%) 
for detecting anxiety symptoms as compared to other 
anxiety scales in people with multiple sclerosis [74]. 
Notably, anxiety scores in our multiple sclerosis cohort 
were independent of relapse activity indicating that acute 
inflammatory activity was no confounder in the present 
study.

In a large meta-analysis of patients with various anxiety 
disorders, only atrophy of the anterior cingulate and infe-
rior frontal cortex was associated with anxiety symptoms 
compared to healthy controls [69]. The anterior cingu-
late cortex is strongly connected with the PFC, a region 
that was identified in our study as being related to anxi-
ety severity in multiple sclerosis. In addition, atrophy of 
the ventromedial PFC, a region associated with emotion 
and reward in decision-making, has been demonstrated 
in patients with generalized anxiety disorders [75]. Physi-
ologically, activation of the medial PFC is associated with 
positive emotion, which can serve to regulate and dimin-
ish negative emotion [76]. In line with these results, our 
hypothesis is that the cortical thinning of the dorsal PFC 
in our study leads to impaired emotional processing, 
triggered by a network disruption that may increase the 
vulnerability for anxiety-related symptoms in multiple 
sclerosis.

Networks related to anxiety in patients with multiple 
sclerosis
We observed a correlation between 2-year cortical thin-
ning and anxiety severity solely in the left dorsal PFC. 
The peak region of anxiety-related cortical atrophy across 
multiple sclerosis patients was used as a seed location for 
functional connectivity analysis in normal healthy indi-
viduals [30]. This allowed us to identify a brain network 
functionally connected to atrophied locations [77]. The 
detected left-lateralized atrophy of the dorsal PFC was 
related to a network compromising the bilateral PFC, 
and—with the largest effects—the amygdala and hip-
pocampus. Notably, these brain regions all play a prevail-
ing role in processing threat and anxiety [63] and belong 
to the limbic system where subcortical structures meet 
the cerebral cortex [78].

The here identified anxiety-related network results in 
multiple sclerosis patients resemble previously observed 
patterns of network-level dysfunction described for gen-
eralized anxiety disorders [79]. The atrophy of the PFC, 
and hence the loss of structural cortical integrity, pre-
sumably alters the functional connectivity to specific 

brain areas (in this case, amygdala and hippocampus) dis-
tal from the primary spot of atrophy depicting the loss of 
information input from a damaged part of the brain [80].

Interestingly, in a recent meta-analysis including struc-
tural and functional MRI studies in generalized anxiety 
disorders, a reduced functional connectivity between 
PFC and amygdala was observed resulting from tasks 
investigating emotion dysregulation [67, 68]. Our fMRI 
and HD-EEG data acquired in multiple sclerosis patients 
supports this observation. The resulting impaired effec-
tive connectivity between the PFC and amygdala in our 
study is well in line with findings in anxiety development 
during adolescence [64] and is a replicated phenomenon 
in both the generation and regulation of emotions [65]. 
Furthermore, dysregulated prefrontal control over amyg-
dala is engaged in the pathogenesis of anxiety disorders 
[66]. Here, we demonstrate in multiple sclerosis patients 
that through focal PFC atrophy the prefrontal control 
seems to become defective, resulting in aberrant amyg-
dala activation and deficits in threat processing.

Additional evidence for the structure–function asso-
ciation between PFC, amygdala and hippocampus with 
anxiety development in multiple sclerosis was acquired 
by SEM. This predictive modeling is appropriate for 
employing complex models to evaluate hypothesized 
causal associations. The MRI volumes of all brain regions 
belonging to the detected functional network (PFC, 
amygdala and hippocampus) were associated with anxi-
ety symptoms in multiple sclerosis. Interestingly, amyg-
dala and hippocampus volumes of the left hemisphere 
showed a slightly higher predictive power than those of 
the right. This observation may prompt further investiga-
tions to address the issue of a possible lateralized involve-
ment of these volumes implicated in limbic emotional 
circuits associated with anxiety.

Network excitability at rest and during threat processing
Increased excitability of the PFC at rest as found here 
by TMS–HD-EEG, represents a compensatory mecha-
nism for preservation of function (i.e. motor control) 
and is possibly due to locally reinforcing circuits [81]. 
Decreased excitability in the PFC upon threat in mul-
tiple sclerosis, however, indicates an impaired cortical 
processing under a stimulus, knowing that the PFC is 
normally activated during threat in healthy people [82]. 
In addition, we demonstrated that the effective con-
nectivity from the PFC to the amygdala was specifically 
impaired in multiple sclerosis as compared to controls. 
These results provide evidence for a disturbed inhibitory 
role of the PFC on amygdala threat response in multiple 
sclerosis patients.

Therapeutically, repetitive TMS or transcranial direct 
current stimulation could be used to modulate brain 
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networks through periodic treatments of preselected 
target areas. In fact, there are studies for multiple scle-
rosis using transcranial direct current stimulation to 
improve non-motor functions, such as fatigue [83–85] 
or cognition [86] with mild to moderate effects. These 
findings all support the involvement of impaired net-
work synchronization in the disease pathology. In a 
recent study, impaired memory performance in multi-
ple sclerosis patients was instantly restored via rebal-
ancing impaired connectivity and excitability through 
targeted neuromodulation of the affected networks 
achieved by direct current or repetitive TMS of the 
dorsal PFC [18]. The latter strengthens our hypothesis 
that specific symptoms like anxiety can be referred to 
specific pathologic areas giving rise to functional net-
work changes and thus be treated by normalizing the 
synchronization of brain oscillatory networks in multi-
ple sclerosis.

Conclusions
Our findings suggest that local anxiety-related struc-
tural changes in multiple sclerosis functionally spread 
beyond the sites of initial injury into widely intercon-
nected areas and target a specific large-scale functional 
network that resembles known neurobiological anxiety 
circuits involving the PFC, amygdala and hippocampus. 
The here identified potential biological basis of anxiety in 
multiple sclerosis patients represents an opportunity for 
novel treatment approaches aiming to modulate brain 
networks in multiple sclerosis.
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