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Abstract 

The adaptive immune system and associated inflammation are vital in surveillance and host protection against inter-
nal and external threats, but can secondarily damage host tissues. The central nervous system is immune-privileged 
and largely protected from the circulating inflammatory pathways. However, T cell involvement and the disruption of 
the blood–brain barriers have been linked to several neurodegenerative diseases including Parkinson’s disease, Alz-
heimer’s disease, and multiple sclerosis. Under normal physiological conditions, regulatory T cells (Treg cells) dampen 
the inflammatory response of effector T cells. In the pathological states of many neurodegenerative disorders, the 
ability of Treg cells to mitigate inflammation is reduced, and a pro-inflammatory environment persists. This perspec-
tive review provides current knowledge on the roles of T cell subsets (e.g., effector T cells, Treg cells) in neurodegen-
erative and ocular diseases, including uveitis, diabetic retinopathy, age-related macular degeneration, and glaucoma. 
Many neurodegenerative and ocular diseases have been linked to immune dysregulation, but the cellular events and 
molecular mechanisms involved in such processes remain largely unknown. Moreover, the role of T cells in ocular 
pathologies remains poorly defined and limited literature is available in this area of research. Adoptive transfer of Treg 
cells appears to be a vital immunological approach to control ocular pathologies. Similarities in T cell dysfunction seen 
among non-ocular neurodegenerative diseases suggest that this area of research has a great potential to develop 
better therapeutic agents for ocular diseases and warrants further studies. Overall, this perspective review article pro-
vides significant information on the roles of T cells in numerous ocular and non-ocular neurodegenerative diseases.
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Adaptive immune responses and pathological 
conditions
The immune system can be divided into innate and 
adaptive immune responses and is designed to pro-
tect the body from disease-causing pathogens. The 
innate immune system is the body’s first line of defense 
and requires no lag time to mount a response to infec-
tion. Innate immunity is largely nonspecific. Adaptive 

immunity is much more specific and provides long-last-
ing protection against pathogens [5, 176]. The cells that 
carry out adaptive immune responses are called lympho-
cytes and are classified into B lymphocytes and T lym-
phocytes, which accomplish humoral and cell-mediated 
immune responses, respectively [279]. In the humoral 
immune response, a B cell receptor reacts with a spe-
cific antigen stimulating the cell to synthesize and secrete 
antibodies, also known as immunoglobulins. These anti-
bodies play crucial roles in neutralizing pathogens [5, 
289]. Antibodies recognize epitopes on a single specific 
molecule (e.g., protein or carbohydrate) called an anti-
gen. When an antigen, such as a virus or microbial toxin 
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(e.g., tetanus or diphtheria toxin), binds an antibody, it 
can no longer bind to receptors on host cells and is there-
fore neutralized [81]. T lymphocytes (T cells) arise in the 
bone marrow and mature in the thymus. They are clas-
sified into two major categories CD8 + and CD4 + cells 
based on their effector functions and recognition of dif-
ferent classes of MHC molecules. CD8 + cells defend the 
host against intracellular pathogens such as viruses and 
cancer, as they can detect surface antigens displayed by 
infected cells [152–154]. Cytotoxic CD8 + cells do not 
recognize free antigens but bind short peptide antigens 
expressed on the major histocompatibility complex 
(MHC) class I protein on the surface of most cells [131, 
152–154]. MHC class I molecules are found on all nucle-
ated cells and are important in T cell activity against 
viruses, but MHC class II molecules are only found on 
APCs, which help with the proliferation of B cells [152–
154]. An antigen-presenting cell (APC; e.g., dendritic 
cells, macrophages, Langerhans cells, and B cells) must 
stimulate a cytotoxic T cell to activate it. A pathogen-
activated APC will subsequently travel to secondary 
lymphoid tissues, such as lymph nodes [178]. After acti-
vation by an APC, the T cell will expand its population to 
eliminate the specific pathogen [152–154]. Once a popu-
lation of T cells has been created to combat pathogens, 
memory T cells will provide lifelong immunity against 
the pathogen [91]. Mechanistically, CD8 + T cells bind to 
MHC class I, whereas CD4 + T cells bind to MHC class II 
[110]. Once a CD8 + T cell has been primed by an APC 
cell, it is activated and ready to kill infected or invading 
cells. When the CD8 + T cell binds to its target anti-
gen on the surface of an infected cell, it will release lytic 
granules containing perforins and granzymes that create 
pores in the target cell membrane or it induces apoptosis 
via Fas ligand and caspase activation [362]. In addition, 
CD8 + T cells release cytokines including IFN-γ, TNF-
α, and TNF-β. These cytokines will further inhibit viral 
replication, activate macrophages, and upregulate MHC 
class I expression. MHC class I expression increases the 
detection of an infected cell, as T cells cannot recognize 
cells without MHC molecules [121, 152–154].

CD4 + T cells were originally subdivided into two 
groups based on their effector functions: Th1 and Th2 
cells. These Th1 and Th2 cells are antagonistic and main-
tain a balance under physiological conditions. Th1 cells, 
generally, secrete pro-inflammatory molecules such as 
IFN-γ, TNF-α, TNF-β, and IL-1β; while Th2 cells coun-
teract inflammation with IL-4, IL-5, IL-6, IL-10, and 
IL-13 [25, 233, 361]. Until the mid-1990s, scientists were 
not aware of other subsets of CD4 + cells [63], but now 
CD4 + T cells have been expanded further into Th9, 
Th17, Th22, Treg cells, and T follicular cells [9, 110]. 
Th9, Th17, and Th22 T cell subsets secrete different 

pro-inflammatory cytokines and have been implicated in 
autoimmune and inflammatory diseases [193, 311, 328]. 
For example, in allergic asthma Th2, Th9, and Th17 cells 
play a role in the pathogenesis of the disease through 
cytokine secretion and the activation of mast cells and 
eosinophils, which leads to airway hyperactivity [174]. 
While the ability of T cells to cause inflammation may 
be necessary for proper immune function, a mechanism 
to regulate this response is also required. T regulatory 
(Treg) cells have been shown to play key roles in their 
regulation [14, 180, 244, 267, 342]. As evident from the 
name, Treg cells regulate and suppress the potentially 
dangerous effects of T cells and ultimately promote toler-
ance. Numerous functions of Treg cells have been docu-
mented including suppression of asthma and allergy [45, 
51, 287], induction of tolerance to dietary antigens [12, 
106], protection of commensal bacteria from elimina-
tion by the immune system [40], promotion of mater-
nal–fetal tolerance [135], and prevention of autoimmune 
disease [63, 117,  333, 334]. The role of Treg cells is not 
fully understood, and it remains a key area of research, 
specifically in ocular pathology. However, it has become 
increasingly clear that Treg cells are required to maintain 
homeostasis. As referenced above, a hyperactive inflam-
matory immune response can harm host cells. Con-
versely, a lack of a properly functioning immune system 
can lead to life-threatening infections, so a balance must 
be struck between the two states. Treg cells maintain 
this balance by playing a suppressive role and preventing 
a pro-inflammatory response [189]. Numerous disease 
conditions such as systemic sclerosis [215], gestational 
diabetes [286], atherosclerosis [138], COPD [149], among 
many others have reported T cell subsets imbalance as a 
causative factor in disease pathogenesis.

Tolerance and autoimmunity
The immune system is designed to target foreign patho-
gens and leave host cells unharmed via a process known 
as tolerance. Autoimmunity occurs when a host loses 
self-tolerance. In other words, autoimmunity is a pro-
cess of an immune response against the host leading to 
self-cell damage. Different autoimmune conditions can 
target specific areas of the body like pemphigus vulgaris 
and pemphigoid, which targets the skin [122], or sys-
temic lupus erythematosus which is disseminated and 
targets the entire body [182]. An important aspect of 
autoimmunity is the presence of autoreactive lympho-
cytes. Auto-reactivity can be triggered through molecu-
lar mimicry, which is immunological cross-reactivity 
between host and foreign antigens. In this condition, for-
eign antigens closely resemble host antigens resulting 
in an erroneous self-directed attack on host tissue [67]. 
Autoreactive lymphocytes can also develop during the 
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initial lymphocyte creation. When lymphocytes undergo 
genetic rearrangement, some are reactive against self-
antigens, but under homeostatic conditions these 
lymphocytes undergo thymic deletion and undergo apop-
tosis [331]. Although up to 98% of T cells do not make 
it through the selection process [24], some autoreactive 
lymphocytes will escape the process of elimination even 
in healthy individuals [266]. One of the functions of Treg 
cells is to prevent the activation of these autoreactive 
lymphocytes and therefore protect the body from self-
attack [297]. FoxP3 knockdown, a marker for Treg cells, 
leads to a loss of functional Treg cells in Scurfy mice 
[231]. The lack of Treg cells leads to a fatal autoimmune 
response by 3–4 weeks of age, demonstrating their criti-
cal role in immune tolerance. T cell activation suppres-
sion via the induction of anergy, a long-term state of T 
cell hypo-responsiveness, is the second mechanism of 
its modulation [43]. Inducing anergy will prevent T cells 
from undergoing clonal proliferation, providing another 
potential fail-safe against autoimmunity. Recent stud-
ies have shown a strong connection between Treg cells 
and anergy, anergic T cells can convert into Treg cells, 
suggesting that persistent anergic T cells may serve as a 
reservoir for Treg cells, though the mechanism remains 
largely unknown [246, 292].

Autoimmune diseases affect millions of people with 
increasing frequency in developing countries, making 
them an important area of study [265]. Some autoim-
mune conditions are hereditary, and many primarily 
affect women, but they typically require a trigger or 
underlying susceptibility [62]. Autoimmunity is multi-
factorial and involves genetic, environmental, hormonal, 
immunological, and unknown triggers [302]. Modifiable 
risk factors for autoimmune diseases include infection 
[185], vaccination [329], drugs [72], smoking [268], UV 
light exposure [166] and obesity [302]. Studies have also 
shown that people with autoimmune diseases are less 
active than the rest of the population, suggesting physical 
activity may play a regulatory role in autoimmunity [284].

Adaptive immunity and Alzheimer’s disease
Alzheimer’s disease (AD) is a neurodegenerative disorder 
and one of the most common causes of senile dementia 
worldwide. The loss of memory and cognitive decline 
was seen in AD is progressive, irreversible, and is usu-
ally seen in the elderly population. Characteristic features 
of the disease are the accumulation of β-amyloid plaque 
deposits as well as neurofibrillary tangles of hyper-phos-
phorylated tau in the brain [30, 78, 82, 339]. However, 
the familial AD (FAD) mouse models combined with 
frontotemporal dementia-linked human microtubule 
associated tau fail to show the extensive and progressive 
neurodegeneration reported in human patients [230]. 

Therefore, there is a major gap in our understanding of 
the steps leading to neurodegeneration and irreversible 
dementia. The evidence for immune system involvement 
in AD is compelling. Several studies have implicated both 
microglia and the innate immune system in the neurode-
generation seen in AD [29, 280]. Studies have also shown 
the involvement of the adaptive immune system in the 
pathology of AD. T cells have been identified in the brain 
parenchyma of postmortem Alzheimer’s patients [321] 
and T cell abnormalities have also been identified in the 
blood and cerebral spinal fluid of Alzheimer’s patients 
[104, 212]. Studies in a mouse model have also shown 
that β-amyloid promotes T cell infiltration, and it inter-
feres with proper T cell functioning, including activa-
tion and antigen presentation, suggesting that failure to 
mount a protective immune response may contribute to 
AD pathology [95]. A breakdown in antigen presentation 
may contribute to an immune inability to clear β-amyloid. 
Alterations in the peripheral lymphocyte profiles have 
also been demonstrated in Alzheimer’s disease [49, 50, 
184, 262]. Recently, studies have also shown an associa-
tion between higher levels of CD 4 + cell counts and an 
increased risk of AD [90]. Most research has focused on 
T cells in AD, but a few recent findings have also high-
lighted the roles of B cells in the disease. One study 
suggests that B cell depletion may prevent disease pro-
gression, which is an interesting theory in light of recent 
identification of resident B cells in the dura matter [171, 
275]. This data suggests that alterations in B lymphocyte 
number, subsets, and production of autoantibodies may 
all be involved in AD pathology and progression of the 
disease [33, 270, 271, 298].

Recent studies focusing on cerebrospinal fluid (CSF) 
biomarkers have consistently disregarded the cellular 
infiltrates, treating them as artifacts of collection. How-
ever, a careful examination of CSF by cutting-edge meth-
ods of mass cytometry, revealed a consistent increase 
in CD8+ T effector memory CD45RA+ (TEMRA) cells, 
and their association with cognitive impairment [104]. 
Additionally, single-cell RNA sequencing and artifi-
cial intelligence revealed an increase in T cell receptor 
(TCR) signaling, and further analysis identified clon-
ally expanded CD8+ TEMRA cells targeting Epstein–Barr 
viral antigens. These studies show that T cells in the CSF 
play the same role as peripheral T cells in surveillance 
and maintenance of the intrathecal space. The existence 
of immune plasticity can be both beneficial and detri-
mental, depending on the target, extent of activity, and 
resolution of the inflammatory cascade [172, 278]. This 
complex pathway is consistent with findings showing 
that depletion of T cells prevented hippocampal infil-
tration and spatial memory deficits in AD models [186]. 
Acute inflammatory responses may be neuroprotective 
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and promote plaque clearance, but chronic inflammatory 
responses may be detrimental due to excessive collateral 
tissue damage [4, 273]. Therefore, lymphocyte physiol-
ogy is altered during AD pathogenesis and these changes 
likely play a role in the progression of the disease.

Immunotherapy is an area of high interest in AD. The 
recent approval of a monoclonal antibody called adu-
canumab that selectively targets aggregated forms of 
amyloid β in AD patients may help in preventing early 
disease progression [94, 277, 282]. This antibody is pro-
duced using selectively reactive B cells, and shows that 
the adaptive immune system may hold the key for better 
AD treatments and prognoses. However, the approval of 
aducanumab has been met with controversy and many 
questions arose about the efficacy of this drug [173, 
282]. While the clinical success of aducanumab remains 
in question, immunotherapy using other antibodies 
will continue to be the focus of research for future drug 
development in this field. Overall, research involving 
monoclonal antibodies that recruit T cells (e.g., effector 
T cells and Tregs) to target amyloid β may hold promise 
in restoring the disrupted immune balance in AD.

Adaptive immunity and Parkinson’s disease
Parkinson’s disease (PD) is another example of an 
inflammatory disease process causing progressive neu-
rodegeneration of the dopaminergic neurons in the sub-
stantia nigra of the brain [20]. Aggregates of misfolded 
α-synuclein (α-syn protein accumulate in the brain of PD 
patients, similar to the protein aggregates observed in 
Alzheimer’s disease. Patients suffering from PD experi-
ence motor symptoms such as tremors, muscle rigidity, 
and slowness of movement (bradykinesia but they can 
also experience cognitive impairment. The involvement 
of immune cells in PD has been suggested. For example, 
studies have shown activated microglia in the substantia 
nigra of postmortem Parkinson’s disease patients [207] 
and potential role of the adaptive immune system in PD 
has been shown [132, 163, 250].

Parkinson’s disease is considered to be a systemic 
inflammatory disorder because elevated pro-inflamma-
tory cytokines are found in the blood of PD patients [27, 
79, 103, 140, 257, 259, 304]. An increased level of inflam-
matory cytokines is believed to be due to T cell activa-
tion. Studies have shown that activation of T cells in 
response to Parkinsonian α-synuclein peptides and the 
inflammation observed in PD could be, partly, due to 
the involvement of autoreactive T cells [23, 307]. Auto-
reactive T cells are central to autoimmune pathology, so 
their presence may suggest the disease is autoimmune in 
nature. Autoimmune conditions are also characterized 
by the creation of autoantibodies by B cells against self-
antigens which has been demonstrated in the peripheral 

blood of PD patients [83, 235, 347]. Recently, a study has 
shown an alteration in B cells population, which may play 
a role in PD [332]. Additionally, studies have also shown 
abnormal profiles of B cells and T follicular cells, indicat-
ing a polarization towards an inflammatory phenotype 
[195].

Regardless of the autoimmune nature of Parkinson’s 
disease, T cells, and the adaptive immune system are 
believed to contribute to the disease development [132, 
163, 250]. Several studies reported a Th1 bias in PD 
patients and experimental animal models [15, 53, 181]. 
As Th1 cells are pro-inflammatory, a shift favoring their 
expansion is congruent with the theory that neuroin-
flammation plays a role in PD. Another study has shown 
that CD4 + cells were the primary mediator of dopa-
minergic damage [31], while other studies have shown a 
decrease in the circulating CD4 + cell population in PD 
[18, 301]. If CD4 + T cells are the main mediators of dis-
ease, decreased circulating levels seem contradictory. 
However, the overall decrease in CD4 + T cells may be 
attributed to a decrease in Th17, Th2, and Treg cells and 
not the Th1 lineage [181]. Maintenance of the Th1 lineage 
despite a decrease in the other subsets would still fit with 
the studies citing a Th1 bias, though not all studies are in 
agreement [229]. One study marked an observed increase 
in the proportional CD4 + and CD3 + T cells as well as 
the CD4 + /CD8 + ratio in PD patients [52]; whereas, 
another study showed a decrease in the CD3 + , CD8 + T 
cells and B lymphocyte subsets in addition to a decrease 
in CD4 + T cells [114, 229]. Reasons for a decrease in 
the CD4 + T cell population may be explained by a study 
done by Calopa et  al. which found increased suscepti-
bility to apoptosis in the CD4 + T cells in the peripheral 
blood of PD patients [34]. Other conflicting data exist 
on the Th17 subset. While Kustrimovic et al. found that 
Th17 cells were decreased in the blood of PD patients, 
other studies have found that peripheral Th17 cells were 
increased in PD patients [49, 50, 53, 349]. There is con-
flicting evidence on the relative prevalence of each subset 
level, but overall, many abnormalities in T cells subsets 
populations have been reported in PD in favor of an 
inflammatory phenotype. More research is needed to 
clarify how effector T cell populations are affected in PD.

Treg cells likely play an opposing role in PD to the 
inflammatory T cell subsets by suppressing their effector 
functions and preventing rampant inflammation [139]. 
This hypothesis is supported by studies that showed that 
the transfer of Treg cells could provide neuroprotection 
in mouse models of PD [260, 261]. The beneficial nature 
of Treg cells in PD may explain why global T cell defi-
ciency worsened the motor deficits seen in a Parkinson 
mouse model by decreasing effector T cells and inadvert-
ently reducing the protective effects of Treg cells [340]. 
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However, as PD is plagued by neuroinflammation, it is 
evident that Treg cells cannot properly execute their job 
for unknown reasons, and this dysfunction may con-
tribute to disease progression [165]. The idea that Treg 
cells are unable to adequately function is supported by 
a study that has shown an impaired ability of Treg cells 
to suppress effector T cells in PD [274]. This breakdown 
of functioning furthers the theory that an inflamma-
tory imbalance is observed in PD. In spite of discrepan-
cies relating to T cell subset numbers, a change in the 
ability of Treg cells to function properly would result in 
homeostatic deviations regardless of cell numbers. More 
research is needed to clarify the uncertainties in the 
field, but most of the literature available suggests that the 
inflammation observed during PD is partly due to a T cell 
subset imbalance, which favors inflammation [52, 196]. 
Better understanding of the mechanisms behind PD and 
how the immune system is involved will hopefully lend to 
the development of effective therapies for PD.

Adaptive immunity and multiple sclerosis
Multiple sclerosis (MS) is another neurodegenerative dis-
ease of the central nervous system that causes motor and 
sensory deficits [245]. The main hallmark of the disease 
is the presence of disseminated focal lesions or plaques 
in the CNS where demyelination and gliosis occur with 
relative axonal sparing [247]. Multiple sclerosis is an 
inflammatory disease similar to other neurodegenerative 
conditions, with macrophages and microglia contribut-
ing to the pathology. Other peripheral immune cells are 
also likely to be involved in the demyelination, including 
T cells (CD4 + and CD8 +), B lymphocytes, plasma cells, 
and dendritic cells [75, 129], and interactions between 
macrophages and lymphocytes may be part of the under-
lying pathogenesis [58].

Autoreactive T cells are an important part of autoim-
mune pathology in MS. Due to the extensive involve-
ment of lymphocytes in MS plaques, the question has 
been raised as to whether the cause of the inflamma-
tion observed in MS may be autoimmune-dependent. 
A widely used animal model of MS, known as experi-
mental autoimmune encephalomyelitis (EAE), is largely 
CD4 + T cell-driven [60]. Moreover, data have shown 
a link between CD4 + cytotoxic lymphocytes, disease 
severity, and plaque activity in MS patients [102, 241]. 
Despite haziness surrounding the underlying cause of the 
inflammation seen in MS, the evidence of T cell involve-
ment is strong. It has been shown that activated T cells 
can induce experimental autoimmune encephalomyeli-
tis in healthy mice [97, 177, 209] and that global reduc-
tion of most lymphocytes via alemtuzumab can improve 
MS pathology [161, 249]. Th1 cells have been implicated 
as important detrimental players in MS due to their 

ability to stimulate M1 macrophages through the secre-
tion of TNF‐α and IFN‐γ, which are important media-
tors of inflammation and cellular damage [192]. Most of 
the earlier research in MS focused on the role of T cells, 
however, recently researchers have also acknowledged 
a cooperation between B cells and T cells in MS patho-
genesis [155]. For example, B cells have been shown to 
work in tandem with T cells in human MS pathology 
[155]. Though more research is needed on the interplay 
between T cells and B cells in multiple sclerosis, a simi-
lar shift towards a pro-inflammatory B cell state has been 
suggested [85, 86, 193, 194]. The mechanisms involved 
in B cell-induced pathology in MS remains largely 
unknown. As of 2019, all approved MS disease-modifying 
therapies impact B cells in some way, such as depletion 
of CD20 + B cells [270]. However, not all B cell targeted 
therapies in MS have created positive results. One clini-
cal trial using an experimental B cell depleting therapy 
for MS was terminated early due to worsening of disease 
progression [164]. This suggests that the role of B cells 
in MS is complex, and more research is needed to better 
understand the exact roles of B cells in MS pathology.

Unlike the harmful effects of the inflammatory T cell 
subsets discussed, Treg cells are likely protective in MS. 
For example, the transfer of myelin oligodendrocyte gly-
coprotein specific Treg cells displayed dose-dependent 
protection against experimental autoimmune encephalo-
myelitis [175, 258]. Inflammation in MS pathology may 
be in part due to a decrease in Treg cells, [136, 248] or 
functionality [92, 120, 179, 211, 326]. A reduced capac-
ity of naïve CD4 + T cells to differentiate into Treg cells 
under pathological conditions has also been demon-
strated [281]. A reduction in number or function of Treg 
cells would mean a decreased capacity for inflamma-
tory suppression. On the other hand, some studies have 
shown relative increases in the levels of Treg cells in MS 
[92, 179], but reduced functionality [179]. This may sug-
gest Treg cells functionality may be more consequential 
in MS pathology than the number itself. Although more 
research is needed to clarify how each subset of T cells 
is involved in MS, current data suggest that a failure in 
Treg cell number and or functioning combined with an 
upregulation of effector T cells contribute to the inflam-
mation and CNS damage seen in MS [211]. A deeper 
understanding of T cells interaction within MS will hope-
fully lead to new therapy. Interventions that downregu-
late effector T cells or upregulate Treg cells may decrease 
the disease progression in MS patients.

Adaptive immunity and the eye
The eye is an “immune privileged” organ, which lim-
its its inflammatory immune response so that vision 
is not harmed by swelling, infection, and other tissue 
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changes. The eye is similar to the brain, testes, placenta, 
and fetus in regard to immune responses. Typically, even 
foreign antigens do not trigger immune responses in 
these organs. In addition, the blood–retinal barriers in 
the eye stop infiltration of blood-borne pathogens and 
immune cells under physiological conditions. However, 
under pathological conditions such as uveitis, glaucoma, 
diabetic retinopathy, and retinal ischemia, numerous 
immune cells can infiltrate the eye and may induce or 
facilitate autoimmunity that can lead to the development 
of autoimmunity [38].

In general, if an immune-privileged organ is dam-
aged, previously insulated proteins will be exposed to 
peripheral immune cells that have not encountered these 
“novel” antigens. Having never come across these anti-
gens before, peripheral immune cells have not learn to 
recognize them as self, allowing the generation of auto-
reactive lymphocytes [99]. The immune-privileged status 
of the eye is maintained by the blood–retinal barrier’s 
passive physical sequestration via tight junctions and the 
retinal pigment epithelium. The protective microenviron-
ment of the eye is immunosuppressive and it expresses 
substances such as Qa-1, Fas ligand, and indolamine 
dioxidase (IDO) which function to prevent a damag-
ing inflammatory reaction to ocular tissues [61]. The 
immunosuppressive environment is also influenced by 
the aqueous humor which dampens the activity of many 
immune responses including nitric oxide production by 
macrophages [310], complement activation [111], neu-
trophil activation [303], lymphocyte proliferation [162], 
and NK cell activity [10]. Treg cells are also involved in 
the immune privilege of the eye through anterior cham-
ber-associated immune deviation [13], in which injec-
tion of a foreign antigen into the anterior chamber of 
the eye causes an antigen-dependent down regulation 
of delayed-type hypersensitivity [324]. Overall, these 
mechanisms create an environment that is sheltered from 
potential immune cell-induced injury [227].

Adaptive immunity and uveitis
Typically, uveitis is classified by the affected anatomical 
part of the eye (e.g., anterior uveitis, intermediate uvei-
tis, posterior uveitis and panuveitis) [17, 191]. Often the 
cause of uveitis is idiopathic, but sometimes an infec-
tious cause (e.g., toxoplasmosis, tuberculosis, oncho-
cerciasis, cysticercosis, leprosy and leptospirosis) can 
be responsible for this disease [70, 71]. Non-infectious 
uveitis is immune mediated and can be limited to the 
eye (e.g., sympathetic ophthalmia and birdshot retino-
choroidopathy) or part of a broader systemic disease 
(e.g., sero-negative HLA-B27-positive spondyloarthropa-
thies, juvenile idiopathic arthritis, sarcoidosis, multiple 

sclerosis, inflammatory bowel disease, tubulointerstitial 
nephritis, Behçet disease, and Vogt–Koyanagi–Harada 
syndrome) [39, 71]. Ongoing research proposes that 
noninfectious uveitis may be an autoimmune condition 
through breakdown of self-tolerance and mobilization 
of autoreactive effector cells. However, there are some 
theories in the field suggesting some cases of idiopathic 
immune-mediated uveitis might be the result of reacti-
vatable infectious agents concealed in ocular tissue rather 
than true autoimmunity [98]. Nevertheless, autoimmune 
pathogenesis is generally accepted as a contributing fac-
tor in uveitis [17]. Support for the autoimmune theory 
of uveitis is provided by the increased genetic suscepti-
bility of people with certain HLA phenotypes, as HLA 
genes have long been linked to autoimmunity [205]. In 
addition, autoimmune conditions are characterized by 
autoreactive T cells targeting self-antigens, evidence of 
which has been demonstrated in patients with nonin-
fectious uveitis with uveal melanin, retinal arrestin, and 
inter-photoreceptor retinoid binding protein (IRBP) [39]. 
The experimental autoimmune uveitis (EAU) mouse 
model of posterior uveitis has demonstrated reduced 
inflammation through anti-CD3-mediated T cell sup-
pression [306]. Interestingly, another study that used an 
anti-CD3 antibody saw a decrease activation of effector 
T cells but enhanced activation of Treg cells [168]. The 
autoreactive T cells responsible for autoimmune pathol-
ogy were thought to be Th1 CD4 + T cells [80, 100], but 
more recent studies have indicated both Th1 and Th17 
cells can contribute [133, 337]. Most research impli-
cates both Th1 and Th17 in uveitis pathology, but other 
subsets may also be involved as well, such as a small 
subset of T cells known as γδ  T cells [66, 283]. Some 
studies have also reported the possibility of autoreactive 
CD8 + T cells involvement in uveitis [210, 283, 300]. It is 
also possible that the etiology may vary between the dif-
ferent conditions and the stages of uveitis. For example, 
in Behçet’s uveitis there is a greater number of CD8 + T 
cell in the aqueous humor [356], but in sarcoid uveitis the 
CD4 + /CD8 + ratio was increased [69]. These discrep-
ancies suggest a possible difference in the pathogenesis 
between uveitis etiologies which could also affect their 
treatment approaches. There is still a lot to be done to 
fully clarify the role of CD8 + T cells in uveitis pathol-
ogy, but there is mounting evidence that CD8 + T cells 
participate in autoimmune disease, making it plausible 
that they contribute significantly in uveitis pathology [76, 
350]. Despite some remaining ambiguity, there is sub-
stantial support that Th1 cells and Th17 cells are impli-
cated in autoimmune pathology [7, 115, 200, 308]. The 
specific role of each T cell subset in uveitis requires addi-
tional research that will fill in the gaps in our knowledge.
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Most of the studies have focused on the roles of T 
cells, but B lymphocytes also likely play roles in uvei-
tis. B lymphocytes may promote an inflammatory 
environment as well as promote T cell survival [296]. 
For example, depletion of B lymphocytes by rituximab 
and other monoclonal antibodies treatment in uveitis 
provides positive outcomes [68, 128, 214]. In contrast, 
some studies also have shown protective effects of B 
lymphocytes. For example, B lymphocytes suppressed 
intraocular inflammation and helped expand protec-
tive Treg cells in a mouse model [55]. Additionally, 
loss of a transcription factor in B cells caused suppres-
sion of both B regulatory and T regulatory cells, which 
resulted in worsening of the disease [232]. This sug-
gests that certain B cell subsets may be contributing to 
uveitis pathology, while others may be protective.

Studies have shown that regulatory T (Treg) cells in 
uveitis have the ability to modulate inflammation and 
downregulate effector immune functions. The unreg-
ulated inflammation seen in uveitis suggests aberrant 
activation or a breakdown in proper Treg cells func-
tionality or number. This idea was supported by a study 
done by Muhammad et al. that showed reduced ability 
to induce Treg cells in the experimental autoimmune 
uveoretinitis  model [220, 333, 334]. In addition, a 
reduction in Treg cells has been shown in patients with 
active uveitis [269, 354] and Behçet’s disease before an 
ocular attack [222] in peripheral blood samples. Dys-
regulation of Treg cells has also been shown as a con-
tributing factor for disease recurrence in recurrent 
experimental autoimmune uveitis [167]. Additionally, 
in a mouse model of experimental autoimmune uvei-
tis adoptive transfer of Treg cells has been shown to 
suppress disease progression [290]. This idea is further 
supported by a study that claims a shift away from an 
inflammatory T cell phenotype in favor of Treg cells 
help mediate disease resolution [108]. Silver et al. also 
implicate Treg cells in the resolution and remission of 
uveitis pathology, although they claim Treg cells func-
tionality is not impaired under pathologic condition 
[293]. This is a direct contradiction of what Ke et  al. 
state when they claim that dysregulation and improper 
function of Treg cells contribute to disease reoccur-
rence [167]. Nevertheless, despite this discrepancy 
in whether Treg cells are decreased in number only 
or also in functionality, promoting the proliferation 
of Treg cells results in the suppression of pathology. 
These studies implicate Treg cells dysfunction during 
the development of uveitis. Moreover, a deficiency of 
Treg cells (e.g., function, numbers) may play a central 
role in disease pathogenesis. More research is needed 
to clarify how the population of Treg cells changed 
during the progression of uveitis.

Adaptive immunity and diabetic retinopathy
Diabetic retinopathy is one of the leading causes of 
blindness in human between the ages 27 and 75, and its 
estimated prevalence is 90% for patients who have had 
diabetes for over 20 years [41]. Chronic poor glucose 
control along with diabetes can lead to vascular compli-
cations such as macular edema, neovascularization, and 
microaneurysms which result in the loss of central vision 
in diabetic retinopathy patients [188]. As the incidence of 
diabetes continues to rise, the number of people suffer-
ing from diabetic retinopathy is expected to rise as well 
[295]. Many factors contribute to the development of dia-
betic retinopathy, but this perspective review will provide 
limited information for the role of T cells in the diabetic 
retinopathy.

Inflammation has been linked to obesity and meta-
bolic disorders such as diabetes [134, 338]. Many pro-
inflammatory cytokines have been shown to be elevated 
in the vitreous humor of patients with diabetic retinopa-
thy including TNF-α [366], IL-8 and MCP-1 [130], IL-6 
[119], IL-26 [333, 334] and IL-1β [366]. Studies have 
also shown that more Th1-dependent pro-inflammatory 
cytokines are secreted in diabetic retinopathy, suggesting 
an imbalance of lymphocytes [36]. An important part of 
diabetic retinopathy pathology is blood vessel angiogene-
sis which is promoted by vascular endothelial growth fac-
tor (VEGF). However, studies have shown that the Th1/
Th2 ratio is an independent predictor of VEGF plasma 
levels in diabetic retinopathy [363]. Other studies sug-
gest that Th17 cell-dependent IL-17 may be associated 
with the inflammation observed in diabetic retinopathy 
[46, 48, 148]. IL-17A has been shown to be an impor-
tant detrimental cytokine in the progression of diabetic 
retinopathy [253, 254]. Studies have also shown that Th17 
cells can infiltrate the retina in a diabetic retinopathy 
mouse model [291]. Moreover, elevated levels of IL-17 
have been identified in the plasma [124], vitreous [151], 
and aqueous humor [93], of diabetic retinopathy patients. 
However, conflicting data exist on the level of IL-17 in 
the serum of diabetic retinopathy patients because stud-
ies have also shown a negative association with IL-17 and 
diabetic retinopathy [3, 221].

The overwhelming inflammation seen in diabetic retin-
opathy may be due to an imbalance of Treg cells. For 
example, studies have shown decreased numbers of Treg 
cells in type II diabetes and diabetic retinopathy patients 
[251, 351, 358]. Treg cells have also been shown to be 
beneficial in repairing abnormal angiogenesis in diabetic 
retinopathy [74]. In addition to the disturbance in the 
homeostasis of effector T cells and the population of Treg 
cells, Treg cells functions could also be altered by the 
surrounding environment. For instance, Treg cells may 
be unable to properly suppress inflammation in diabetic 
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retinopathy due to elevated insulin levels [123]. Treg cells 
have been shown to have reduced suppressive capacity in 
type II diabetes mellitus patients [285]. Additional stud-
ies are required to clearly understand the neuroprotec-
tive role of Treg cells in diabetic retinopathy.

Adaptive immunity and age‑related macular 
degeneration
Age-related macular degeneration (AMD) is a pro-
gressive disease-causing degeneration of the macula 
and is the leading cause of blindness among the elderly 
population in developed countries [344]. Two differ-
ent pathologic components contribute to vision loss in 
AMD: focal atrophy of the retinal pigment epithelium 
(RPE) and photoreceptor loss (“dry” AMD) or choroidal 
neovascularization (“wet” AMD) [322]. Typically, dry 
AMD is a precursor for wet AMD, but not all patients 
will experience both [8]. In dry AMD, there is a gradual 
expansion of the atrophic lesions and a slow progres-
sive vision loss. In wet AMD, the new blood vessels leak 
leading to edema, retinal damage, and can cause a rapid 
loss of visual acuity. Currently, there is no approved drug 
therapy to treat dry macular degeneration, though there 
are many ongoing clinical trials to address this problem 
[238]. Some clinical progress has been made to treat wet 
AMD, such as anti-VEGF therapy that targets VEGF, 
an important growth factor that facilitates angiogenesis 
[170]. However, anti-VEGF therapy only delays disease 
progression and upon treatment cessation relapse is a 
common problem [333, 334]. An important component 
of AMD is persistent inflammation [239]. Elevated levels 
of complement proteins have been detected in the blood 
samples of AMD patients, suggesting some sort of com-
plement dysfunction may be contributing to the disease 
[126, 202, 263]. The current understanding of AMD is 
that local complement dysregulation is involved in the 
disease pathogenesis. One component of complement 
called complement factor H (CFH) is an important inhib-
itor of the alternative pathway of complement, and CFH 
polymorphisms have been linked to an increased risk of 
AMD development [88, 183]. Despite the abundance of 
genetic evidence linking complement to AMD, the exact 
role of how complement may be involved is still not clear.

Studies in an AMD mouse model have shown that T 
cells can contribute to AMD pathogenesis [65]. Patients 
with neovascularization AMD were also shown to have 
higher systemic lymphocyte counts, suggesting that 
lymphocytes may play an active role in initiating the 
neovascularization seen in AMD. [305]. Several studies 
found that the neutrophil-to-lymphocyte ratio (NLR), 
which are thought to be a marker of both inflamma-
tion and angiogenesis, were elevated in wet AMD [147, 
225, 309]. These studies suggest that immune cells may 

be dysfunctional in neovascular AMD, however, the 
clinical relevance remains unclear [225]. In addition, 
increased recruitment of T cells in AMD has also been 
shown [216, 224]. Studies have also shown dysfunction or 
senescence of the immune system in the context of aging 
and neurodegenerative disease through the creation of 
a chronic state of low-grade inflammation referred to as 
“inflammaging” [73, 101]. This state of immune senes-
cence has been implicated in AMD in which T cells are 
likely involved [190]. Additionally, several studies have 
shown an increased proportion of aged T cells in AMD 
patients, suggesting that immune dysfunction may play 
a role in disease pathogenesis [89, 305]. Dysregulation of 
follicular T cells has also been reported in AMD [345]. 
The idea of T cells dysregulation is further supported by 
a study showing alterations in systemic Th1 lymphocyte 
profiles in AMD patients [294]. More specifically, stud-
ies have shown that IL-17 may be an important part of 
AMD disease development [11, 288] since reducing IL-17 
levels decreased the amount of choroidal neovasculari-
zation [125, 197]. However, unlike other diseases previ-
ously discussed in this review, the main source of IL-17 
in AMD may not be from Th17 cells, but instead from γδ 
T cells [365]. These IL-17 producing γδ T cells have been 
shown to infiltrate the eye in a mouse model of choroi-
dal neovascularization (CNV) [64]. Notably, IL-17 + cells 
have also been identified near areas of RPE atrophy [35]. 
Another mouse model study showed that Th2 cytokines, 
mainly IL-4, helped to decrease neovascularization in the 
disease process [346]. This supports the overall theory 
that an imbalance in the pro/anti-inflammatory pheno-
types helps to drive AMD. Limited data have shown an 
increase in Th17 and Th1 cells in AMD patients [49, 50], 
whereas another study has shown a decrease in Th1 cells 
and no significant changes in Th17 cells [294]. Interest-
ingly, one study found that decreased levels of CD4 + T 
cells correlated with the absence of subretinal fibrosis in 
AMD [187]. Overall, more studies are needed to better 
understand the role of adaptive immune cells in AMD.

Limited literature exists for the involvement of B lym-
phocytes in AMD, but anti-retinal antibodies have been 
identified in AMD patients [2,  118, 146,  217, 243]. It 
remains in question whether they are a consequence of 
disease-related damage or a contributory factor for the 
disease development [157, 158, 160]. In contrast, studies 
have also shown no difference in the number of circulat-
ing B lymphocytes in AMD patients when compared with 
healthy subjects, which does not rule out B lymphocytes 
involvement in AMD pathology because antibody pro-
duction by B lymphocytes could still have a contributory 
effect [46, 48]. Studies have also suggested that autoan-
tibodies could be used as biomarkers for future disease 
progression and prognostication [157, 158, 160, 218]. 
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Another study found elevated levels of IL-17 correlated 
with response to anti-VEGF therapy [223]. Identification 
of a biomarker could have great clinical significance in 
AMD treatment, however more work is needed in this 
area.

Retina repair and reduced angiogenesis were observed 
through adoptive transfer of Treg cells and Treg cells 
expansion [74]. Currently, not many studies have looked 
at the role of Treg cells in AMD. One study did not find 
changes in the number of systemic Treg cells in AMD 
[203]. Like effector T cells and B cells, it is again possi-
ble that Treg cells dysfunction may play larger roles than 
Treg cells number [19]. Treg cells are a promising candi-
date to study in inflammatory diseases, and they may be 
implicated in AMD, though more research is needed.

Adaptive immunity and glaucoma
Glaucoma is the second leading cause of blindness world-
wide in which retinal ganglion cells (RGCs) die slowly 
and progressively over a prolonged period of time. Glau-
coma is now considered to be a multifactorial disease 
and molecular mechanisms involved in RGC death are 
complex and poorly understood [28, 109, 226, 325]. The 
primary risk factor for developing glaucoma is elevated 
intraocular pressure (IOP), but the pathophysiology of 
the disease is more complicated [22, 59, 84, 127, 299]. 
There is currently no known cure for glaucoma and treat-
ment focuses on reducing IOP [47]. Unfortunately, some 
patients under IOP-lowering therapy still see progression 
of the disease, which clearly indicates that better thera-
peutic options are needed to fully cure the disease. Stud-
ies have shown that multiple factors play key roles in RGC 
degeneration including activation of caspases [44, 141, 
142, 169, 208, 320], apoptosis [6, 116, 226, 255, 327], oxi-
dative stress [56, 143, 150, 198, 219, 228, 272], ischemia 
and hypoxia [32, 57, 141, 141, 142, 142, 144, 234], epi-
genetic changes [105, 206, 242, 276, 353, 359, 359, 360, 
360], Crosson 2010 #975, [145], alteration in the levels of 
pro-inflammatory cytokines [1, 312, 316, 341, 352, 357], 
and deprivation of neurotrophic factors [240, 256]. There 
is another opinion with limited evidence, which suggests 
the neurodegeneration observed in glaucoma could be 
vascular. This theory suggests that hemodynamic altera-
tions and changes in local blood flow may cause unstable 
ocular perfusion to the optic nerve [42, 54, 96, 237, 355]. 
Recently, studies have also shown participation of T cells 
in glaucoma pathology. A study has shown that elevated 
IOP allowed for T cell infiltration of the retina and led to 
continued degeneration of RGCs after IOP was returned 
to a normal level [45, 51].

The innate immune system has long been tied to glau-
coma through the action of glial cells and oxidative stress 
[201, 314, 319], but recent evidence provides additional 

support for the involvement of the adaptive immune 
system in glaucoma pathology [156]. Earlier studies 
have shown that glaucoma could be critically tied to the 
immune system because resistance of RGC death was 
shown to be correlated with immune potency [16]. This 
study suggested that immune dysfunction may be a pre-
requisite for developing glaucoma and would explain 
the disparities in degree of disease progression among 
patients treated with ocular hypertensive agents. After-
wards, numerous studies have shown the presence of 
autoantibodies to retinal and optic nerve proteins in the 
serum [21, 77, 159, 204, 264, 313, 317, 348], retina [112], 
and aqueous humor [157, 158, 160] of glaucoma patients. 
Studies have also shown the presence of autoantibodies 
to heat shock proteins [26, 107, 318, 323, 336] in glau-
coma. Heat shock proteins are a large family of molecu-
lar chaperones that can be upregulated in times of stress 
[213], but also have significant potential to induce molec-
ular mimicry resulting in the creation of autoantibodies 
to host proteins [335]. In glaucoma, elevated levels of 
heat shock proteins such as HSP72 [318], HSP60, and 
HSP27 [315], have been reported, some of which may 
help facilitate RGC death [318, 330]. Introduction of heat 
shock proteins to rats through immunization can induce 
glaucomatous injury [45, 51, 336], but other studies have 
shown that induction of heat shock proteins can provide 
neuroprotection for RGCs [37, 236, 252]. Overall, the 
role of autoantibodies and heat shock proteins in glau-
coma remains unclear. It is not clear if they are involved 
in glaucoma pathology directly, indirectly, or play a role 
in protective autoimmunity [364].

The involvement of T cells in glaucoma pathology 
remains in question, but we believe that T cell subsets, 
specifically the T effector/Treg cells homoeostasis, play 
a critical role in determining the fate of RGCs during 
glaucoma progression. Additionally, studies have shown 
an adoptive transfer of lymphocytes from glaucomatous 
mice into healthy mice stimulated RGC loss [113]. This 
causative effect suggests that adaptive immune dysfunc-
tion plays a direct role in the pathophysiology of glau-
coma. Studies have shown that CD4 + T cells facilitate 
RGC death in an acute ischemia/reperfusion injury model 
[137]. An imbalance in Treg cells/Th17 cells in experimen-
tal autoimmune optic neuritis (EAON) has been shown, 
which shares key characteristics of glaucoma pathology 
[199]. Recent studies have also shown that transient ele-
vation of IOP can cause T cells infiltration to the retina, 
leading to RGC degeneration [45, 51]. However, the role 
of Treg cells in glaucoma remains fully unexplored. The 
authors’ perspective in this regard is “enhanced neu-
roinflammation during glaucoma could be due to low 
number and/or function of Treg cells”. In other systems, 
unchecked inflammation has been attributed due to 
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improper functioning of Treg cells [343]. Adoptive trans-
fer of Treg cells has shown promise in treating inflamma-
tory conditions such as enteritis and multiple sclerosis 
suggesting it may prove an effective therapeutic option in 
glaucoma [87]. If under glaucomatous condition Treg cells 
are unable to differentiate, adoptive transfer of Treg cells 
may ameliorate the T cell imbalance and decrease inflam-
mation. More work is needed in this field to better under-
stand the involvement of T cells in glaucoma progression.

Conclusions
We provided a brief overview of adaptive immunity, auto-
immunity, and tolerance and related them to neurodegen-
erative and ocular diseases. This perspective review article 
aims to emphasize the significance of adaptive immunity 
concerning neurodegenerative conditions and highlight 
the gaps in the field. It also highlights the pathological and 
neuroprotective roles of different subsets of lymphocytes 
in numerous neurodegenerative diseases, including Alz-
heimer’s disease, Parkinson’s disease, multiple sclerosis, 
and several ocular diseases. Figure 1 provides a framework 
of potential contributing factors to neurodegenerative 
diseases. Although the etiology of each neurodegenera-
tive disease is different and complex, a few common play-
ers that may have crucial roles in the pathology have been 
shown. These factors include neuroinflammation, epige-
netic changes, ischemia/hypoxia, oxidative stress, hemo-
dynamic alterations, and changes in the immune cells. The 
focus of this perspective review is to provide information 

for the role of immune cells (e.g., effector T and Treg cells) 
in neurodegenerative diseases. Based on the literature in 
non-ocular and ocular neurodegenerative diseases, we 
provided our perspective that: (1) the number of effector 
T cells may be increased under ocular pathologies such 
as uveitis, diabetic retinopathy, AMD, and glaucoma. Ele-
vated T cells can subsequently enhance the secretion of 
pro-inflammatory cytokines and expedite retinal degen-
eration similar to other neurodegenerative diseases, and 
(2) Treg cells are deficient in function and/or number ren-
dering them unable to sufficiently regulate the function of 
effector T cells in ocular pathologies as seen in other neu-
rodegenerative diseases. Evidence of lymphocyte involve-
ment in ocular pathologies is promising and there is a vital 
need for more research in this field. We conclude that T 
cell subsets homeostasis is critical for the maintenance 
and regulation of neuroinflammation. If the homeostasis 
is lost and the balance of specialized subsets of immune 
cells breaks down, damage to the host’s tissues can lead 
to pathological conditions. The inability to yet discover a 
neuroprotective therapy for ocular pathologies (e.g., uvei-
tis, diabetic retinopathy, AMD, and glaucoma) it is highly 
desirable to target immune cells for future research.

Based on the literature provided in this perspective review 
article, we believe that in ocular neurodegenerative diseases, 
there may be an imbalance in the number of effector T cells 
as well as the number and or function of Treg cells, which 
might contribute to a pro-inflammatory state and facilitate 
neuronal death in such ocular diseases (e.g., uveitis, diabetic 

Fig. 1  Schematic showing the roles of numerous factors and immune cells in the induction or protection in neurodegenerative diseases
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retinopathy, AMD, and glaucoma). This area of research is 
underdeveloped, hence more studies are needed to clearly 
understand how T cell subsets and dysfunction may play a 
role in developing ocular neurodegenerative diseases.
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