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Abstract

Perioperative neurocognitive disorders (PND) is a common postoperative complication associated with regional or
general anesthesia and surgery. Growing evidence in both patient and animal models of PND suggested that neu-
roinflammation plays a critical role in the development and progression of this problem, therefore, mounting efforts
have been made to develop novel therapeutic approaches for PND by targeting specific factors or steps alongside the
neuroinflammation. Multiple studies have shown that perioperative anti-neuroinflammatory strategies via administer-
ing pharmacologic agents or performing nonpharmacologic approaches exert benefits in the prevention and man-
agement of PND, although more clinical evidence is urgently needed to testify or confirm these results. Furthermore,
long-term effects and outcomes with respect to cognitive functions and side effects are needed to be observed. In
this review, we discuss recent preclinical and clinical studies published within a decade as potential preventive and
therapeutic approaches targeting neuroinflammation for PND.
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Introduction

Perioperative neurocognitive disorders (PND) refers
to a general term for cognitive impairment, which is
identified during the perioperative period and often
negatively affects multiple domains including memory,
attention and concentration. PND is an umbrella term
for the following conditions [1]: (i) neurocognitive dis-
orders (NCD), a term of preoperatively diagnosed cog-
nitive impairments; (ii) postoperative delirium, an acute
event occurring in hours and days after surgery; (iii)
delayed neurocognitive recovery and (iv) postoperative
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neurocognitive disorders, which are cognitive impair-
ments diagnosed up to 30 days and 12 months after sur-
gical procedures, respectively. The incidence of PND
after noncardiac surgery reach to 41.4% at discharge and
12% at 3 months post-surgery in patients over 60 [2, 3],
while it is higher after cardiac surgery especially with
cardiopulmonary bypass (CPB), which is more than 50%
and 24% at discharge and 6 months post-surgery, respec-
tively [4, 5]. There is currently no standard preventive or
therapeutic strategies for PND in clinical practice. How-
ever, growing evidence from both patients and animal
models has indicated that neuroinflammation is a criti-
cal contributor to the pathogenesis and development of
this problem, suggesting that neuroinflammation may
be a target for developing novel therapies for PND. This
review aims to comprehensively summarize and discuss
the studies of anti-inflammatory approaches for PND or
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postoperative cognitive dysfunction (POCD) published
within a period of 10 years, with a focus on potential
mechanisms linking neuroinflammation and the prob-
lem, as well as the drug candidates aligning with these
mechanisms.

Search strategy and selection criteria

The literature search included terms “Perioperative neu-
rocognitive disorder’, “Postoperative cognitive dysfunc-
tion” and “Anti-inflammatory”. Specifically for PubMed,
the search strategy is ((Perioperative neurocognitive dis-
order) OR (Postoperative cognitive dysfunction)) AND
(Anti-inflammatory). A total of 154 articles published
in “English” between 2012 and 2022 were collected for
subsequent screening. Additional articles were selected
based on articles in these searches.

The search results were reviewed by two authors inde-
pendently, and any discrepancies were evaluated by a
third author. Duplicate studies from the same cohort
were removed manually using endnote 20. Exclusion cri-
teria were irrelevant topics, reviews, systematic review or
meta-analysis, letters, case reports, commentaries and
protocols.

Neuroinflammation in the development of PND

Trauma of surgery and administration of anesthesia
were well-documented to induce systemic inflammatory
response [6], which subsequently influences the brain
[7]. As two commonly used inhaled anesthetics, sevo-
flurane and isoflurane have been revealed to trigger and
aggravate cognitive impairment with ample evidence
from patients and animal models of PND. Sevoflurane-
induced [8] and isoflurane-induced [9] neurotoxicity and
neuroinflammation, which may be due to drug-induced
proinflammatory cytokine release and microglial activa-
tion in the brain, have been previously revealed to par-
ticipate in the development of PND, as demonstrated in
aged rats. More specifically, sevoflurane-induced cogni-
tive dysfunction was associated with downregulation of
peroxisome proliferator-activated receptor y (PPARYy)
[10], which could be retrieved by silencing of interferon
regulatory factor 6 (Irf6) in hippocampal microglia [11].
Comparing to anesthetics, surgery may act as a more
critical player to cognitive impairments, since it has been
shown in a mouse model that laparotomy but not sevo-
flurane alone triggered peripheral and central inflam-
mation as well as tau phosphorylation [12]. Extensive
literature supports an important role of surgery-related
inflammatory responses in the pathophysiology of POCD
[13-15]. Meanwhile, surgical trauma causes dysfunc-
tion of endothelial cells and disruption of tight junctions
(TJs), resulting in elevated permeability of the blood-
brain barrier (BBB), which is also a critical player in the
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development of PND. The BBB is a multicellular vascu-
lar structure that protects the brain from the intrusion of
toxins and pathogens, and its integrity is maintained by
endothelial cell-formed continuous intracellular network
of TJs. The disrupted BBB allows peripheral proinflam-
matory cytokines to be transmitted to the brain paren-
chyma to amplify the injury [16, 17]. Several mediators
have been reported to contribute to the disruption of
BBB integrity. Firstly, the activation of matrix metallo-
peptidases (MMPs) increases BBB permeability by down-
regulating the expression of claudin-5 and occludin,
which are two key components of TJs and critical deter-
minants of BBB permeability [18]. Mice lacking MMP9
did not show surgical-induced negative effects that
was observed in wild type mice [19]. Secondly, levels of
hypoxia-inducible factor 1a (HIF-1a) and its target gene
astrocyte-derived vascular endothelial growth factor
(VEGF) were associated with BBB disruption and conse-
quent cognitive impairment [20]. Of note, the amplifica-
tion of neuroinflammation following surgically-triggered
immune response is partially through the permeable
BBB, while vagal afferent nerves and some other factors
are also involved.

Neuroinflammation including microgliosis, astroglio-
sis and inflammatory cell ingress, particularly in hip-
pocampus, has been proved to be main causes of PND
[21-23], however, the evidence that neuroinflammation
plays a role in human PND is much less clear than dem-
onstrated in animal studies. First, under pathological
conditions, microglia may be activated and play critical
roles in neuroinflammation. Following anesthesia- and
surgery-induced peripheral inflammation and BBB
breakdown, microglia transform into hypertrophied cells
to become “activated” microglia [24, 25], which can be
classified into two phenotypes namely pro-inflammatory
microglia (classically activated microphages) and anti-
inflammatory microglia (alternatively activated mac-
rophages) [26, 27]. The detrimental pro-inflammatory
microglia have pro-inflammatory and phagocytic proper-
ties, secreting IL-6, IL-1p, inducible nitric oxide synthase
(iNOS) and other mediators, while the protective anti-
inflammatory phenotype have anti-inflammatory and tis-
sue remodeling and repair properties, expressing IL-10,
arginase 1 (Arg-1), Yml, CD206, etc. [28-30]. Hence,
activated microglia are a double-edged sword, and the
pro-inflammatory/anti-inflammatory shifting is cru-
cial for the modulation of neuroinflammation and adult
neurogenesis in hippocampus. Treatment with commer-
cially available recombinant human EPO (rhEPO) before
and after abdominal surgery prevented POCD in mice
by suppressing pro-inflammatory-related gene expres-
sion and promoting macrophage phenotype switching
towards anti-inflammatory phenotype [31]. Furthermore,
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the activated microglia may promote the production of
free radicals such as reactive oxygen species (ROS) and
reactive nitrogen species (RNS), which contribute to oxi-
dative stress in neurons and subsequent neurocognitive
dysfunction [32, 33]. Second, astrocytes are also main
contributors in neuroinflammatory response. Upon stim-
ulation, astrocytes undergo morphological, transcrip-
tional and functional changes to become reactive cells,
which exhibit neurotoxic (Al) or neuroprotective (A2)
properties. Al-astrocytes can be activated upon micro-
glial activation and promotes neuronal death in neuro-
degenerative disorders [34] and pathogenesis at early
stage of PND [35]. Therefore, when pro-inflammatory/
anti-inflammatory microglia and A1/A2 astrocytes lose
balance and the detrimental form becomes dominant,
neuroinflammation is amplified and ultimately causes
PND. Third, inflammatory cell ingress also promotes
neuroinflammation. Monocyte chemoattractant protein
1 (MCP-1/CCL2) and its cognate receptor (CCR?2) facili-
tate monocyte recruitment into tissues under infectious
and sterile inflammatory conditions [36]. On one hand,
CCR2-expressing macrophages were accumulated in hip-
pocampi of mice undergoing experimental surgeries [37],
and upregulation of CCL2 in activated astrocytes and
elevated CCR2 expression in activated microglia induced
cognitive deficits in a tibial-fracture-surgical model [38].
On the other hand, POCD manifestations are relieved in
mice with attenuated CCL2 expression [39]. Therefore,
targeting CCL2/CCR2 interaction may be a potential
strategy to prevent PND.

Multiple signaling pathways, including high molecular
group box 1 (HMGBI1)/toll-like receptor (TLR) pathway,
canonical nod-like receptor pyrin domain-containing 3
(NLRP3) inflammasome/caspase-1 pathway and non-
canonical caspase 4/5/11 pathway, are involved in the
pathogenesis of PND. The up-regulated protein level of
HMGB1 was detected in hippocampus of rat brain fol-
lowing surgery and anesthesia [17]. HMGB1 acts as a
damage-associated molecular pattern (DAMP) to bind
to TLR and the receptor for advance glycosylation end
product (RAGE) on circulating bone-marrow-derived
monocytes (BM-DM) and endothelial cells, trigger-
ing the production of pro-inflammatory cytokines and
facilitating leukocyte migration and immune cell recruit-
ment, resulting in neuroinflammation and PND [40, 41].
Therefore, neutralizing antibodies to HMGB1 may be a
potential treatment for PND. The NLRP3 inflammasome/
caspase-1 and non-canonical caspase 4/5/11 pathways
have been reported to be involved in the pathogenesis of
PND by triggering pyroptosis, a recently characterized
inflammatory form of programmed cell death. Further-
more, NLRP3 inflammasome activity was negatively reg-
ulated by autophagy [42, 43]. Therefore, targeting NLRP3
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inflammasome could be a new preventive and therapeu-
tic strategy for PND.

Drug candidates targeting systemic inflammation/
inflammation amplification

Systemic inflammation may exert relatively long-term
effects on the brain, and multiple animal studies indi-
cated that anti-inflammatory treatment could attenuate
POCD development [44, 45]. However, these studies have
not yielded any clinically effective treatment. This may be
explained by the results obtained in a bile duct ligation
model of POCD [14], which suggested that inhibition of
peripheral inflammation would be insufficient to recover
cognitive impairment [46]. Once microglial activation
achieved, they may play a dominant part in sustaining
neuroimmune responses and resulting in neurocognitive
impairments (Fig. 1).

Candidates on signaling pathways regulating immune
response

NLRP3

Injection of Ac-YVAD-cmk (an NLRP3/caspase 1 inhibi-
tor) prior to anesthesia did improve cognitive impair-
ments and prevent hippocampal inflammation in aged
mice, but not in young mice, which was possibly due to
the attenuation of isoflurane-triggered NLRP3 inflam-
masome [9]. Moreover, Elamipretide (SS-31) (a mito-
chondrial-targeted peptide) has shown protective effects
against post-surgery cognitive deficits in aged mice sub-
jected to laparotomy, which involves multiple mecha-
nisms including rescuing surgery-induced mitochondrial
dysfunction, NLRP3/caspase 1-dependent pyroptosis,
neuronal damage and downregulation of synaptic integ-
rity in hippocampus [47].

Toll-like receptors and HMGB1

A recent study showed that rats undergoing cardiac
surgery with CPB could be protected against neuro-
logical damage in spatial learning and memory abili-
ties and brain damage in hippocampus by antler MSCs
(AMSCs)-derived exosomes via inhibiting TLR2/
TLR4 signaling pathway and preventing inflammatory
response, oxidative stress and neuronal apoptosis [48].
When mice subjected to right carotid artery exposure
under isoflurane anesthesia were treated with a cell
permeable TLR1/TLR2 dual antagonist CU-CPT22,
or with a natural triterpene glycoside and a HMGB1
antagonist glycyrrhizin, both drugs attenuated TLR2-
contributed neuroinflammation and subsequent
dysfunction of hippocampus-dependent spatial learn-
ing and memory following surgery [49]. In addition,
selected TLR4 inhibitor TAK-242 has been shown to
reverse decline in freezing behavior as well as elevation
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Fig. 1 From systemic inflammation towards neuroinflammation. Trauma of surgery and administration of anesthesia induced systematic response,
resulting in an increased production and release of proinflammatory mediators (dots in blue). Surgeries induced accumulation of CCR2-expressing
macrophages in hippocampi, then upregulated CCL2 in activated astrocytes and CCR2 in activated microglia, which could be abolished by CCR2
antagonist. The vagus nerve was conducted to release ACh, which binds to aZnAChR and reduce the production of proinflammatory cytokines.
The vagal anti-inflammatory reflex could be activated by enteral administration of boluses of lipid and protein enriched nutrition, which could
stimulate CCK-1R in the gut to activate the vagal afferent nerves to inhibit proinflammatory cytokine release. Meanwhile, silencing specific protein
1 or a7nAChR agonists exert beneficial effects via reactivating cholinergic anti-inflammatory pathway. The brain mast cell stabilizers are capable

of attenuating POCD via inhibiting astrocyte activation and microglia-astrocyte communication. Enteral administration of lipid and protein
enriched nutrition has been reported to prevent PND via vagal anti-inflammatory reflex, besides, microbiome-based treatments including nutrition
supplementation, prebiotics and SCFAs exert modulatory effects through the Gut-Brain Axis
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of TNF-a and IL-1p protein expression post-operatively
in db/db mice that underwent tibial fracture surgery
[50].

Microbial-based treatments

Nutrition-based therapies

After enteral supplementation of fat/protein-enriched
nutrition to surgery-induced POCD rat models, inhibi-
tion of systematic inflammation and improved long-term
spatial learning and memory was only observed in young
rats, but not in old rats, while a reduction of neuroin-
flammation was absent in both age groups [51]. In addi-
tion, treatment with polydeoxyribonucleotide (PDRN)
extracted from salmon sperm on human neuronal SH-
SY5Y cells in POCD conditions activated adenosine A2A
receptors and promoted the phosphorylation of cAMP
response element-binding protein (CREB) through the
cAMP-dependent protein kinase A (PKA) pathway, then
significantly reduced proinflammatory cytokines (TNF-q,
IL-1B, IL-6) and increased the expression of VEGF and
brain-derived neurotrophic factor (BDNF), which was
reduced by lipopolysaccharide (LPS) and sevoflurane
exposure [52].

Prebiotics

Prebiotics, which are defined as a collection of substrates
that can be selectively utilized by host microorganisms to
manipulate gastrointestinal microbiota to regulate host
immunity as well as cognition via gut-brain axis [53].
The prebiotic Bimuno (galactooligosaccharide (B-GOS)
mixture) is a widely investigated specific nondigestible
mixture particularly designed for selective promotion of
the proliferation of Bifidobacterium [54]. In adult rats
undergoing abdominal surgery under isoflurane anes-
thesia, Bimuno significantly alleviated cognitive decline
and downregulated microglial activation, which is associ-
ated with a dramatic change of -diversity of gut micro-
biome and proliferation of Bifidobacterium and other
potentially anti-inflammatory microbes [55]. In addition
to this mixture, prebiotics with specific microbes have
also been tested. For instance, Mycobacterium vaccae
(M. vaccae), a fast-growing and widely distributed spe-
cies of saprophytic bacteria found in soil, can modify
immune response in both humans and rodents. Immu-
nizing adult rats with a heat-killed preparation of M. vac-
cae protected against stress-elicited, primed, hyperactive
immune responses and accompanying stress-induced
behavioral impairments [56, 57]. Heat-killed M. vaccae
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(NCTC11659) immunization prior to surgery shifted
the pro-inflammatory hippocampal microenvironment
towards an anti-inflammatory phenotype, consequently
prevented post-operative learning/memory deficits in a
fear conditioning paradigm in aged (but not young) rats,
possibly through upregulating IL-4 signaling [58].

Short-chain fatty acids

Acetate, one of the short-chain fatty acids (SCFAs), has
been reported to exert antioxidant activity by reduc-
ing LPS-induced nitric oxide production in rat primary
astrocytes [59], and inhibit inflammatory responses in
different models [60, 61]. In both in vivo and in vitro
PND models, acetate treatment successfully exhibited
beneficial effects against PND by suppressing microglial
activity through binding to GPR43, and simultaneously
reducing expression of inflammatory proteins, oxidative
stress factors and signaling molecules in hippocampus
[62].

Targeting vagal anti-inflammatory reflex

Surface receptor a7 nicotinic acetylcholine recep-
tor (a7nAChR) is widely distributed in the central and
peripheral nervous systems, especially in prefrontal lobe,
ventral tegmental area and hippocampus, to regulate
cognition, learning, memory, emotional behavior, etc.
The vagus nerve was conducted to release acetylcholine
(ACh), which binds to a7nAChR and reduces the pro-
duction of pro-inflammatory cytokines by inhibiting
NF-«B activity [63, 64]. A previous study demonstrated
that activation of a7nAChR could improve POCD via
vagal anti-inflammatory reflex [65]. It was also reported
that the vagal anti-inflammatory reflex could be acti-
vated by enteral administration of boluses of lipid and
protein enriched nutrition [66, 67]. These nutrients were
capable of stimulating cholecystokinin (CCK)-mediated
CCK-1 receptor in the gut to activate the vagal affer-
ent nerves and subsequently inhibit proinflammatory
cytokine release via nicotinergic acetylcholine receptors
[67, 68]. Such an inhibition of proinflammatory cytokines
and promotion of anti-inflammatory cytokines has also
been observed in humans after postpyloric administra-
tion of nutrition enriched with lipid and specific proteins
[69]. Silencing specificity protein 1 (SP1) is another way
to alleviate sevoflurane-induced POCD in both in vivo
and in vitro models via rescuing the deactivation of cho-
linergic anti-inflammatory pathway (CAP) [70]. The
use of a7nAChR agonist led to an increased release of
anti-inflammatory mediators and a reduced pathologi-
cal damage in peripheral and brain tissues [71], suggest-
ing that the neuroprotective mechanism of CAP may
be dependent on a7nAChR. Furthermore, as an AChE],
galantamine upregulates extracellular levels of ACh by
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inhibiting hydrolysis of ACh, thereafter counteracts
deficiency of cholinergic innervation. When perform-
ing stabilized tibial fracture operation in male mice,
daily intraperitoneally administration of galantamine did
alleviate microglial accumulation in hippocampus and
normalize excitatory synaptic transmission to exert ben-
eficial effects on reversing cognitive dysfunction in a fear
conditioning paradigm in these mice [72].

Drug candidates targeting neuroinflammation
Neuroinflammation triggers the development of PND,
which could be targeted to develop preventive and thera-
peutic strategies for PND (Fig. 1). However, research in
this area is still at pre-clinical stage (Table 1).

Depletion of microglia and microglia-neuron interactions
Microglia depletion

The depletion of microglia in the central nervous sys-
tem (CNS) was fulfilled by inhibitors of colony-stimu-
lating factor 1 receptor (CSF1R), including PLX3397 and
PLX5622. In PND mouse models, PLX3397 successfully
reduced Al-specific astrocytic response and rescued
cognitive impairment at early but not late pathological
stage [35], whereas PLX5622 remarkably protected mice
undergoing tibial fracture from POCD by reducing hip-
pocampal levels of inflammatory cytokines, and abrogat-
ing microglial activation and hippocampal recruitment of
CCR?2 leukocytes [73], which are often accumulated after
surgical challenge [37]. Therefore, targeting microglia
before surgery might be effective to prevent PND in vul-
nerable or elderly patients. However, the impact of CNS
microglia suppression on humans requires to be further
carefully investigated.

CCR2 antagonist

Apart from microglial depletion, disruption of CCL2/
CCR2 interaction might be another strategy of choice.
When performing site-directed pre-injection on rats with
RS504393, a CCR2 antagonist, the drug abrogated sur-
gery-induced cognitive deficits and abolished pro-inflam-
matory microglial polarization and subsequent neuronal
loss [38].

CD200-CD200R1

The interaction between CD200 (a neuronal surface pro-
tein) and CD200R1 (receptor of CD200 on microglia) is
important for the maintenance of the quiescent state of
microglia. CD200 deficiency may lead to pro-inflamma-
tory microglia activation [74], neuroinflammation and
synaptic dysfunction [75], whereas CD200R1 activation
either by its agonist or IL-4 may result in the promo-
tion of anti-inflammatory phenotype in innate immune
cells including macrophages and microglia to resolve
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an inflammatory response [76, 77]. Apart from ageing,
decreased CD200 mRNA level was also detected in a
PND model [78]. Therefore, researchers have attempted
to inject a CD200 fusion protein (CD200-Fc) into the
lateral ventricle of the model, which attenuated neuroin-
flammation and PND with improved synaptic plasticity
and long-term potentiation (LTP) [79].

NADPH oxidase inhibitor

Neurons are susceptible to ROS, which are mainly
derived from NADPH oxidase 2 (NOX2). Since oxida-
tive stress plays a critical part in neuronal dysfunction
in the development of PND, the NADPH oxidase inhibi-
tor apocynin (APO) has been tested in mice subjected to
exploratory laparotomy with isoflurane anesthesia, and
the drug alleviated surgery-induced impaired contextual
fear memory as well as associated brain pathology [80].

Brain mast cell stabilizer

Brain mast cells are located perivascularly in proxim-
ity to neurons and microglia in the CNS and are the first
responder to injury. Despite their small numbers, the
activation of mast cells following an cerebral ischemic
event had a dramatic effect on BBB breakdown [81],
whereas a tibial fracture surgery may induce brain mast
cell degranulation, microglial activation and neuroin-
flammation [82]. Based on these investigations, the brain
mast cell stabilizers cromolyn (also disodium cromogly-
cate) was injected into rats undergoing open tibial frac-
ture surgery, showing attenuation of surgery-induced
cognitive impairments as well as astrocyte activation and
microglia-astrocyte communication [83]. Additionally,
the inhibition of surgery-triggered increase of BBB per-
meability, the alleviation of surgery-induced reduction in
occludin and claudin-5 levels within hippocampus, and
the neutralization of hippocampal expression of MMP-2
and MMP-9 have also been observed after cromolyn
treatment on surgery-exposed rats [84].

Cell-penetrating fusion protein

Protein transduction domains (PTD), which can trans-
locate into cells and allow them to transport other large
molecules into the cells, are also used as a potential treat-
ment for POCD. For instance, cell-penetrating fusion
protein called nt-p65-TMD is a novel chemical-con-
jugated form of NF-«B subunit p65 that contains cell-
permeable peptides. A previous study has revealed that
NF-«B attached Hph-1-PTD (nt-p65-TMD) could easily
be delivered into cells and tissues, allowing it to directly
target endogenous p65 in an interatomic inhibitory man-
ner without inducing cytotoxicity [85]. The nt-p65-TMD
has also been tested on a POCD mouse model, result-
ing in a reduction of surgery-induced impairment of
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cerebrovascular integrity and amplification of systemic
inflammation [85].

Perioperative drugs for prevention and treatment of PND
Perioperative medications including analgesics, muscle
relaxant antagonists, antibiotics, as well as some non-
pharmacological techniques are also reported as poten-
tial preventive and therapeutic approaches for PND
(Table 2).

Analgesics

Acetaminophen

As a widely used analgesic and antipyretic, acetami-
nophen (N-acetyl-4-aminophenol, also known as APAP
or paracetamol) has been demonstrated in mice to exert
antioxidant, anti-inflammatory and neuroprotective
effects and to improve LPS-induced cognitive impair-
ment by inhibiting mitochondrial permeability transition
(MPT) pore and subsequent apoptotic pathway [86].

NSAIDS

Ibuprofen is one the of most commonly-used non-ster-
oid anti-inflammatory drugs (NSAIDs) and has been
tested for its indication to treat POCD in different ani-
mal models. Interestingly, ibuprofen has been shown to
ameliorate peripheral-surgical-wounding-induced cog-
nitive impairment in aged mice subjected to abdominal
surgery under local anesthesia without the influence of
general anesthesia, in which age-dependent neuroinflam-
mation and p-amyloid accumulation have been induced
[87]. Under general anesthesia with sevoflurane, preop-
eratively administered ibuprofen to mice has improved
postoperative cognitive performance in association with
a long-lasting inhibition of both systemic- and neuro-
inflammation, as well as suppression of abnormal tau
phosphorylation in frontal cortex and hippocampus [12].
However, in another study, a single injection of ibupro-
fen only improved short-term but not long-term spatial
memory after surgery, with neurogenesis increased but
without affecting neuroinflammation or gut microbiome,
and less pronounced in aged rats [88]. Ketoprofen has
also been tested on mice undergoing surgery performed
under isoflurane in comparison with morphine. The
postoperative analgesia of ketoprofen has been shown to
prevent the development of surgery-associated memory
deficits to a similar degree as that of morphine via its
pain-relieving effects [89].

Alpha-2 agonists

Dexmedetomidine (DEX) is a highly selective alpha-2
adrenergic receptor agonist with dose-dependent hyp-
notic, sedative, antiemetic and analgesic effects [90].
DEX facilitates acetylcholine secretion by binding to
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a7nAChR, thereby inhibiting inflammatory cytokine
release [91, 92] and mitigating excessive neuronal inflam-
matory responses to prevent the development of POCD
[93]. Apart from its anti-inflammatory property, mount-
ing evidence (see Table 2) from animal studies have
also demonstrated the neuroprotective effects of DEX
against surgery-induced cognitive impairment through
mechanisms involving antioxidant, anti-apoptotic and
inhibitory effects on MPT pore [94—97]. Meanwhile, this
drug also promoted autophagic process of microglia and
reduced NLRP3-mediated inflammation by accelerat-
ing its ubiquitination and degradation [95]. In addition,
DEX also plays a proneurogenesis role in the prevention
of POCD by upregulating the expression of BDNF, PKA,
p-CREB/CREB and following p-P38-MAPK [97]. The
whole transcriptome sequencing reveals that DEX-reg-
ulated long non-coding RNA (IncRNA) LOC102546895
may contribute to the development of POCD by targeting
Npas4 and promoting apoptosis of microglial cells [96].
The effects of DEX against PND have been studied in
randomized controlled trials (RCT), which have yielded
inconsistent results. For instance, measured on the first
and second day after internal fixation surgery on patients
with stable femoral neck fractures, DEX as an adjunct
to anesthesia significantly lowered incidence of POCD
as well as pain-related anxiety and agitation, and obvi-
ously improved overall satisfaction with pain manage-
ment and quality of recovery (QoR), suggesting that DEX
may change the post-surgery pain management strategy
towards improved cognitive dysfunction [98]. Similarly,
in another trial of elderly patients undergoing elective
noncardiac surgery, prophylactic lower dose of DEX
(0.1 pg/kg/h) significantly reduced incidence of delirium
within the first week after surgery [99]. In addition, intra-
operatively maintaining DEX also significantly lowered
POCD incidence among elderly patients undergoing rad-
ical resection of colorectal cancer [100]. However, nega-
tive results have been obtained as well. In another trial
with elderly patients undergoing major elective noncar-
diac or cardiac surgery, the intraoperative DEX infusion
at higher dose (0.4-0.5 pug/kg/h) did not significantly alter
the incidence of delirium within 5 days post-surgery or
cognitive performance at 3- and 6-month-follow-up [101,
102].

COX-2 inhibitors

Parecoxib, a highly selective cyclooxygenase (COX-2)
inhibitor, has been demonstrated to improve cognitive
function in POCD rats via inhibiting COX-2 overexpres-
sion [103]. A significantly lowered POCD incidence was
obtained when treating elderly patients undergoing total
knee arthroplasty with the drug shortly after induction
of general anesthesia and 12 h after the surgery [104].
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Apart from a decrease of early POCD incidence, addi-
tional benefits including reduced postoperative pain and
improved postoperative sedation have been observed
when administered with DEX on patients after laparo-
scopic cholecystectomy [105] or scheduled shoulder
arthroscopy [106]. Celecoxib is another highly selective
COX-2 inhibitor that provides anti-inflammatory and
analgesic effects both in a COX-2-dependent and -inde-
pendent manner. For geriatric patients undergoing total
knee arthroplasty, celecoxib treatment decreased an early
POCD incidence (on postoperative day (POD)7) and an
acute postoperative pain, in association with reduced
plasma levels of COX-2 and proinflammatory markers,
but no such benefit was detected at 3-month follow-up
any further [107]. Another selective COX-2 inhibitor,
meloxicam, was found to be effective in the treatment
of surgery-mediated neuroinflammation and cognitive
decline (such as object recognition memory) in animal
studies, which may depend on the modulation of glial cell
activation [108].

NMDA antagonists

Ketamine has shown potential to reduce the incidence of
surgery-induced delirium in human and animal studies,
based on its strong anti-inflammatory properties [109—
111], neuroprotective actions [112], and rapid and last-
ing anti-depressant actions [113]. When added to routine
anesthetics in patients undergoing cardiac surgery, keta-
mine significantly lowered incidence of delirium in com-
parison with placebo [111] or propofol [114]. However, a
large-scaled study in both cardiac and non-cardiac sur-
gery using only single dose of ketamine after induction of
anesthesia did not affect the outcome in the first 3 days
after surgery [113].

Glucocorticoids

Dexamethasone is a potent synthetic glucocorticoid
with a long duration of action and a biological half-life of
36—54 h. Dexamethasone is commonly used in periop-
erative settings, owning to its antiemetic properties and
its ability to reduce airway swelling and fatigue. Its ben-
eficial effects on POCD prevention have been shown in
clinical studies. When prophylactically administering a
single intravenous bolus of 0.1 mg/kg dexamethasone to
patients before elective cardiac surgery, a lower incidence
of POCD both in the short-term (on POD6) [115] and in
the long-term (4 years after surgery) [116] was observed
by reducing inflammatory responses. When administered
with bispectral index (BIS) 46-55, but not 35-45, a single
intravenous bolus of 8 mg prophylactic dexamethasone
could help to preserve most cognitive functions (espe-
cially memory and executive function) and reduce POCD
incidence after noncardiac non-neurologic surgery
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[117]. Administration of repeated intravenous doses
(8 mg before induction and 8 mg every 8 h for 2 days) to
patients undergoing cardiac surgery significantly reduced
the risk of delirium [118]. However, contradictory results
have been observed for higher doses. Preoperative
administration of 0.2 mg/kg dexamethasone on patients
with facial spasm undergoing microvascular decom-
pression (MVD) showed a higher incidence of POCD
on POD5 [119], while intraoperative administration of
1 mg/kg dexamethasone on patients undergoing cardiac
surgery with CPB demonstrated no beneficial effects on
POCD incidence at either 1 month or 12 months after
surgery [120]. Methylprednisolone is another glucocor-
ticoid tested in the conditions of POCD. A high-dose
(250 mg) intraoperative administration during induction
and before CPB respectively neither reduced delirium
nor improved QoR in high-risk cardiac surgical patients
[121].

Gabapentinoids

Pregabalin was initially developed as an anticonvulsant
for epilepsy, and later for neuropathic pain [122]. Prega-
balin treatment during the early postoperative period on
aged rats undergoing abdominal surgery could prevent
neuroinflammation and post-surgery memory deficits,
possibly through an interaction between peripheral and
central neuroimmune systems, but not via direct anti-
inflammatory effects [123].

Muscle relaxant antagonists

Acetylcholinesterase inhibitors (AChEIs) prevented
acetylcholinesterase (ACh) from breaking down acetyl-
choline, thus enhancing cholinergic transmission. As a
commonly used muscle relaxant antagonist, Neostig-
mine significantly reduced the risk of POCD without
affecting peripheral inflammatory factors [124]. Of note,
neostigmine was commonly administered in combina-
tion with anticholinergic agents, such as glycopyrrolate
and atropine, to reverse neuromuscular blockade. Con-
sidering that these agents are able to pass the BBB and
may lead to disturbances in the cholinergic transmission
and subsequent central cholinergic deficits [125], these
agents used in combination may contradict the poten-
tial beneficial effect of neostigmine. However, the long-
term side effects of neostigmine remain unknown, and
it is also not clear whether neostigmine directly reduced
neuroinflammation in the CNS, since it does not cross
the BBB. Sugammadex (SG) is a modified y-cyclodextrin
designed for optimal encapsulation of the neuromuscular
blockade agent blocking drug rocuronium [126], which
is associated with faster recovery of consciousness after
general anesthesia [127]. SG could not cross the BBB
either due to its high molecular weight. In one RCT, SG
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as a neuromuscular block reversal was shown to have a
similar POCD incidence to neostigmine/atropine treat-
ment [128]. When comparing to neostigmine in another
RCT, SG demonstrated a favorable recovery in cognition
domains particularly at POD30 in patients undergoing
cardiac surgery with enhanced recovery after cardiac
surgery approach, and the effect over glial cells was pro-
posed as the underlying mechanism [127]. Apart from
neostigmine and SG, which act only peripheral, another
AChEI physostigmine, which crosses the BBB, showed
significant alleviation of surgery- and LPS-induced pro-
inflammatory responses and neurodegeneration in cortex
and hippocampus in rats [129].

Antibiotics

Minocycline, a second-generation tetracycline deriva-
tive which can cross the BBB, has been reported to have
neuroprotective effects via inhibiting inflammation and
differentiation of pro-inflammatory but not anti-inflam-
matory microglia [130, 131]. When treating aged mice
with minocycline prior to surgery of the tibia, it was
capable of attenuating isoflurane- and surgery-induced
cognitive impairment in spatial learning memory by sup-
pressing microglial overactivation and release of hip-
pocampal pro-inflammatory cytokines, indicating that
minocycline may be an effective and practical interven-
tion for POCD prevention [132]. In a recent study, daily
administration of minocycline to rats for 30 days post
CPB resulted in a significantly better performance in
behavioral testing at 6 months after surgery, which was
in association with a reduced number of activated micro-
glia/macrophages in hippocampus and a prevention of
CPB-induced reduction in adult neurogenesis [133].
Cefazolin is often used for prevention of perioperative
infection. This antibiotic has been tested on mice sub-
jected to laparotomy, showing a direct anti-inflammatory
effect and attenuation of surgery-induced impairment in
memory and learning [134]. However, we should be cau-
tious about the use of cefazolin since it has been reported
to induce cognitive dysfunction possibly by transient gut
dysbiosis in mice without surgery [134].

Comparing anesthesia types

When comparing general and regional anesthesia on
patients undergoing total knee arthroplasty (TKA),
regional anesthesia yielded better performance in neu-
rocognitive tests compared to general anesthesia, which
may be associated with lower cortisol and glucose levels
and higher insulin levels [135]. In animal models, inha-
lational anesthetic drugs are reported to cause deficits in
learning and memory by promoting neuronal apoptosis
[136]. In elderly patients undergoing major surgery, as
compared to those maintained on intravenous propofol,
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POCD incidence was higher in those under inhala-
tional anesthesia with sevoflurane and lower in those
pro-treated with methylprednisolone before sevoflurane
anesthesia [137]. Moreover, the elevated POCD incidence
in those receiving sevoflurane anesthesia was indicated
by elevated plasma concentrations of S-100p protein,
TNF-a and IL-6 [137]. The superior effect of intrave-
nous propofol in post-exposure cognitive function is also
reported in patients undergoing minor surgeries [138].
Notably, the results from recent studies have suggested
that the choice of type of anesthesia dose not influence
clinical outcomes of cognition. For instance, none of the
regional anesthesia (spinal, epidural or both) was supe-
rior to general anesthesia with respect to the incidence of
postoperative delirium following hip surgery [139, 140].
However, some researchers have suggested clinicians
to consider combining epidural and general anesthesia
rather than general anesthesia alone in patients undergo-
ing major thoracic and abdominal surgeries to reduce the
risk of postoperative delirium [141].

Comparing analgesic techniques

Thoracic epidural block (TEB) and paravertebral block
(PVB) are commonly used in clinical practice. These two
regional blockade techniques showed equal effective-
ness in controlling postoperative acute pain in patients
undergoing thoracotomy surgery. However, PVB was
superior in reducing delirium, as demonstrated in a study
where spinal anesthesia with bupivacaine was performed
on patients who received knee arthroplasty and supple-
mented with propofol or dexmedetomidine for seda-
tion [142]. This was further verified in another study on
elderly patients undergoing elective surgery for video-
assisted thoracoscopic lobectomy (VATS), who received
general anesthesia maintained with inhaled sevoflurane
and intravenously infused remifentanil. In this study, tho-
racic paravertebral block (TPVB) with 0.2% ropivacaine
showed superior effects on pain control and inhibition
of perioperative stress and inflammatory response, and
a significantly lower incidence of delirium, and a higher
rate of QoR on POD?7, as compared to intravenous anal-
gesia with 2 pg/kg sufentanil [143]. Notably, TPVB has
also minimized opioid consumption, which is benefi-
cial because the use of opioids is highly pertinent to the
development of delirium in a dose-dependent manner
[144, 145].

Non-pharmacological strategy

Electroacupuncture (EA) is an alternative acupuncture
technique where applies an electric current to inserted
needles at different acupoints [146]. As an adjuvant ther-
apy to conventional anesthetics, EA treatment has its
application in postoperative pain control. Recently, it has
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been proposed as a therapeutic strategy for POCD due
to its capability of relieving cognitive dysfunction while
preserving hippocampal neurons via inhibiting activation
of NLRP3 inflammasome [147].

Traditional Chinese medicines (TCMs)

In recent years, increasing number of natural extracts
have been tested for their potential application as preven-
tive and therapeutic approaches for PND.

Baicalin is extracted from the dried rhizome of Astra-
galus membranaceus and is the primary pharmacological
component of astragalus, with anti-viral, anti-inflam-
matory, anti-apoptotic and anti-oxidative functions.
Administering Baicalin at various doses to aged rats dem-
onstrated alleviated cognitive dysfunction after splenec-
tomy via anti-inflammatory mechanisms and pathways
involving N-methyl-D-aspartate (NMDA) receptor 2B
regulatory subunit, which mediates LTP and synaptic
plasticity [148].

Gastrodin (GAS) is a natural compound with mul-
tiple functions of sedation, analgesia, anti-epilepsy,
anti-depression and memory improvement. When pre-
operatively and post-optatively administering GAS to
aged mice subjected to laparotomy, it improved learn-
ing and memory by suppressing microglial activation
and phosphorylation of GSK-3p and Tau, suggesting its
neuroprotective role in the prevention and treatment of
POCD [149].

Cistanche (Rou Cong Rong in Chinese) has been used
as a tonic in China for many years. It showed anti-apop-
tosis, anti-oxidation, anti-ageing, anti-fatigue, immu-
nomodulatory anti-inflammatory and neuroprotection in
the CNS [150]. Intraperitoneal injection of Cistanche to
aged rats attenuated sevoflurane-induced hippocampus-
dependent memory impairments by activating PPARy
signaling and suppressing microglial activation [10].

Curcumin is an active compound derived from Cur-
cuma Longa with antioxidant effects. It ameliorated the
cognitive dysfunction in aged mice undergoing abdomi-
nal surgery and neutralized cholinergic dysfunction
induced by surgery [151].

Berberine is an isoquinoline alkaloid purified from
Chinese herbs with anti-inflammatory effects and read-
ily crosses the BBB. Berberine rescued surgery-induced
cognitive impairment and inhibited hippocampal release
of proinflammatory cytokines in the in-vivo model, and
suppressed LPS-stimulated production of proinflamma-
tory cytokines in the in-vitro model [152].

The root extract of valeriana officinalis has anti-inflam-
matory properties [153], stimulatory effects on seroto-
nin (5-HT) and acetylcholine (ACh) receptors [154] and
therapeutic effects on sleep disturbance [155]. Patients
scheduled for elective on-pump CABG surgery exhibited
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a better cognitive performance at early post-surgery stage
after treated with CPB with the root extract, indicating
its potential therapeutic value for POCD [156].

Glycyrrhizin is the major component of Glycyrrhiza
glabra with a good bioavailability and BBB penetration,
making it possible to treat neurological diseases through
oral administration [157]. Additionally, it binds directly
to HMGBI to inhibit its chemoattractant and mitogenic
activities [158]. The intraperitoneal treatment of glycyr-
rhizin attenuated isoflurane-induced cognitive deficits
in neonatal rats [159], whereas oral pretreatment with
glycyrrhizin showed a prevention of POCD by inhibit-
ing HMGB1-induced neuroinflammation and AD-related
pathology in hippocampus of aged mice subjected to
splenectomy surgery [160].

Honokiol ([2-(4-hydroxy-3-prop-2-enyl-phenyl)-4-
prop-2-enyl-phenol]) is a bioactive compound extracted
from species of Magnolia, used as an activator of Sirtuin3
(SIRT3) with multiple properties including anti-tumor,
anti-arrhythmic, anti-thrombolytic, anti-inflammatory,
anti-angiogenesis, anxiolytic, anti-oxidative activities
in both in vivo and in vitro studies [161, 162]. Honokiol
attenuated surgery-induced memory loss via antioxidant
and anti-inflammatory pathways in hippocampus of a
POCD mouse model [163].

Other types of drugs

Immunomodulatory medications

Thalidomide can easily cross the BBB after acute systemic
administration, and dramatically reduces the expression
and synthesis of multiple proinflammatory cytokines in
the peripheral and central nervous systems [164]. Intra-
peritoneal administration of a single-dose of thalidomide
immediately after laparotomy has significantly acceler-
ated recovery from acute postoperative pain and reversed
deterioration in spatial memory function at POD 14 on
aged POCD rats through its long-term regulation of
NMDA receptors in hippocampus [165]. Some immu-
nosuppressive drugs have also been tested. For instance,
intracisternal administration of the IL-6 antagonist toci-
lizumab at the time of surgery attenuated the inflamma-
tory response and improved cognitive outcome in rats
[45].

Antioxidants

Chronic inflammation has been previously revealed
to develop oxidative stress that contributes to cogni-
tive dysfunction [166]. Previous studies have shown
that surgical trauma was able to induce oxidative stress
[15] and contribute to development of POCD [167]. In
addition, the BBB has been shown to be interrupted by
peripheral oxidative stress [168], and the BBB breakdown
has been associated with cognitive impairment [167].
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Furthermore, animal model of tibial fracture showed
increased protein oxidative damage in prefrontal cortex
and hippocampus, along with impaired memory [33]. All
these studies indicated a potential role of oxidative stress
in development of cognitive dysfunction in POCD and a
potential beneficial effect of antioxidants. The utilization
of antioxidants in management of POCD remains to be
largely unexplored, but studies have started to emerge.
Edaravone, a known antioxidant, has been demonstrated
to antagonize POCD both in patients [169] and in sur-
gery- or LPS-treated rats [170], possibly due to its antiox-
idant and anti-inflammatory effects, as well as its ability
to maintain activation of the Akt/mTOR signaling path-
way. Further studies are warranted on the effects of anti-
oxidants on progression of POCD.

Anti-psychotic medication

Quetiapine is an atypical antipsychotic medication with
activity at dopaminergic (D2), histaminergic (H1), sero-
toninergic (5-HT1A, 5-HT2A), and noradrenergic (alpha
1) receptor sites, and it has been utilized to manage the
symptoms of delirium. Quetiapine showed preserved
reversal learning on LPS-challenged rat model, which
may be associated with the preservation of downstream
effects related to noradrenergic-mediated cortisol sup-
pression in the treatment of acute delirium [171]. Topira-
mate (TPM) was a sulfamate-substituted monosaccharide
drug often used to treat epilepsy and migraine. This drug
showed neuroprotective effects in POCD rats and benefi-
cial reactions in primary hippocampal microglia of these
rats with apoptotic properties [172].

Iron-chelator

Iron homeostasis is critical in maintaining CNS function
including oxygen transport, neurotransmission, myeli-
nation and neuronal metabolism [173]. However, iron
accumulation occurs in ageing brain, leading to oxidative
stress and neurotoxicity, as shown in neurodegenerative
disorders [174]. Treatment with a potent iron chelator
Deferoxamine (DFO) significantly reduced microglia
activation and proinflammatory cytokine release and
alleviated subsequent hippocampal-dependent memory
deficit in mice after surgery, possibly through p38 MAPK
signaling pathway [175].

Stem-cell-based therapies

Mesenchymal stem cells (MSC) are often used in regen-
eration and tissue repair [176], and MSC-conditioned
medium (MSC-CM) has anti-inflammatory and antioxi-
dative properties [177]. Intravenous injection of MSC-
CM ameliorates PND in mice subjected to left liver
lobectomy, with reduced level of IL-1f, IL-6, TNF-a and
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malondialdehyde and increased level of BDNF in the
brain tissue [178].

GABAergic system

Anesthesia- and surgery-induced hippocampal neu-
roinflammation can disrupt the GABAergic system,
which increased the expression of surface a5-subunit-
containing subtype of GABAARs (a5GABAARs) via
the p38 MAPK signaling pathway, and eventually led to
hippocampus-dependent memory dysfunction. In a PND
rodent model, blocking a5GABAARs by L655708 or
blocking p38 MAPK by SB203580 alleviated laparotomy-
induced cognitive deficits with a reduction of p-P38 and
surface a5GABAARs [179].

Statins

Atorvastatin-treated PND mice showed improved cogni-
tive function (particularly fear response and spatial mem-
ory) with attenuated neuroinflammation associated with
increased PPARy expression [180] and phosphorylation
and inactivation of neuronal GSK3f [181] in hippocam-
pus. Ulinastatin (UTI) is a multivalent Kunitz-type serine
protease inhibitor, which is also called the urinary trypsin
inhibitor. When given to rats before or after isoflurane
exposure, UTI attenuated isoflurane-impaired learning
capacity and neuronal apoptosis, whereas pre-treatment
seemed to be more effective [182]. Perioperative multiple
UTI infusions have been tested in elderly patients under-
going elective spinal surgery, showing a significant reduc-
tion of POCD incidence with lower serum levels of LPS,
IL-6, CRP and MMP-9, as well as shortened peak value
duration [183].

Gas compound

Methane, the most abundant organic gas compound on
earth and the most common bacterial metabolic prod-
uct with redox regulation and attenuation of mitochon-
drial dysfunction, could penetrate the BBB [184] or the
blood-spinal cord barrier [185], making it a promising
therapy for CNS disorders. Methane has been found as a
novel agent for POCD via its anti-inflammatory proper-
ties [186]. Hydrogen sulfide (H,S), which is traditionally a
toxic gas, protects neurons against oxidative stress [187]
and attenuates LPS-induced cognitive impairment by
reducing the overproduction of proinflammatory media-
tors [188]. Recently, S-propargyl-cysteine, a novel hydro-
gen sulfide-modulated agent, have been demonstrated
to attenuate LPS- or AP-induced spatial learning and
memory impairment [189]. When administering sodium
hydrosulfide (NaHS) as hydrogen sulfide (H,S) donor to a
rodent model prior to surgery, it significantly attenuated
surgery-induced memory impairment and expression of
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proinflammatory cytokines both in serum and in hip-
pocampus [190].

CB2R agonist

Expression of cannabinoid receptor type 2 (CB2R)
under neuroinflammatory conditions has been observed
downregulated in the brain, particularly in microglia
[191], thus, activation of CB2R is believed to dampen
the production of inflammatory mediators and to facili-
tate the production of prosurvival factors [192]. In adult
mice subjected to intramedullary fixation surgery for
tibial fracture under isoflurane anesthesia, postopera-
tive treatment with CB2R agonist (JWH133) attenuated
surgery-induced memory loss, whereas CB2R antago-
nist (AM630) aggravated surgery-induced memory loss,
paralleled with a decreased or increased expression of
proinflammatory factors in hippocampus and prefrontal
cortex [193].

Future directions

Since there is currently no standard preventive and thera-
peutic strategies for PND, more preclinical and clinical
data are required. Targeting neuroinflammation seems to
be a promising direction. Based on the reported studies,
we should bear in mind some key points when designing
future studies. Firstly, drug selection. From surgical and
anesthesic challenge to postoperative neurocognitive dis-
orders, a series of complicated pathophysiological events
are involved. Neuroinflammation is a well-documented
key player for the pathogenesis of PND, however, specific
targets should be properly and carefully selected to reach
a long-term clinical value. This is the main aim of this
review. Secondly, brain regions. To date, many studies
have focused on surgery- and anesthesia-induced neu-
roinflammation and neurotoxicity in hippocampus, an
important brain region for learning and memory. How-
ever, the effects of anesthesia, surgery and ageing on the
brain did show regional differences in previous studies
[194, 195]. Specifically, it has been previously suggested
that prefrontal, frontal, parietal, temporal, occipital cor-
tex, hippocampus, insula, cingulate, thalamus and cer-
ebellum were all involved in POCD [194]. In addition,
the hippocampus may be related to cognitive processes
such as declarative memory, while the dorsolateral pre-
frontal cortex may be related to processes such as work-
ing memory [195]. Together, these studies indicate that
multiple brain regions may be involved in post-surgery
neurocognitive dysfunctions, which required further
investigations. Thirdly, study models. The characteris-
tics of models (e.g., age, timepoint of neurocognitive
changes) are needed to be considered when selecting
PND models for the study. For instance, in an abdominal
surgery model, microgliosis and cognitive deficits were
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visible on POD7 and disappeared in 2 or 3 weeks after
operation in young rats, but continued to POD14 [196]
or even 6 weeks after surgery [197] in aged rats. More
constant alterations are often seen in cardiac surgery
models compared to non-cardiac surgery models. In a
CPB model, cognitive impairments can persist for at least
6 months after surgery in association with constant neu-
roinflammation and reduced adult neurogenesis during
the same period [198]. The genetic studies with inbred
rodents have provided insights into mechanisms worth
investigating as playing potential roles in human PND,
however, these studies are just models. Moreover, older
adults are much, much more complex than genetically
inbred young mice, and these mouse models (unless they
are performed in outbred older animals with comorbid
health conditions) overemphasized the role of procedural
factors and underemphasized the role of patient factors
and comorbidities in human PNDs. Fourthly, marker
selection. To monitor neuroinflammation, pro-inflamma-
tory markers, including IL-1f, IL-6 and TNF-q, are often
monitored. It is noteworthy that the time points of the
individual cytokine activation may vary significantly. For
instance, circulating IL-6 levels remained elevated up to
72 h after surgery, whereas IL-1p level only appeared ele-
vated on POD14 [12]. Finally, concomitant medications.
The use of opioids is highly pertinent to the development
of POD in a dose-dependent manner, so total consump-
tion of opioids such as fentanyl should be compared
when designing clinical trials.

Conclusions

Neuroinflammation has profound pathophysiological
mechanisms and effects on the development and pro-
gression of PND. A variety of drug candidates have been
tested in both preclinical experiments and clinical tri-
als, aiming to find out novel preventive and therapeutic
strategies for PND or to add new indications to approved
drugs. Both safety issues and drug efficacy should be fur-
ther investigated in large-scaled clinical trials, particu-
larly for their long-term effects. Therefore, more efforts
should be made to provide a clearer picture for the cor-
relation between neuroinflammation and pathogenesis of
PND, and how specific drug candidates work.
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