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Abstract 

Background:  Considerable evidence indicates that a signaling crosstalk between the brain and periphery plays 
important roles in neurological disorders, and that both acute and chronic peripheral inflammation can produce brain 
changes leading to cognitive impairments. Recent clinical and epidemiological studies have revealed an increased 
risk of cognitive impairment and dementia in individuals with impaired pulmonary function. However, the mechanis-
tic underpinnings of this association remain unknown. Exposure to SiO2 (silica) particles triggers lung inflammation, 
including infiltration by peripheral immune cells and upregulation of pro-inflammatory cytokines. We here utilized a 
mouse model of lung silicosis to investigate the crosstalk between lung inflammation and memory.

Methods:  Silicosis was induced by intratracheal administration of a single dose of 2.5 mg SiO2/kg in mice. Molecular 
and behavioral measurements were conducted 24 h and 15 days after silica administration. Lung and hippocampal 
inflammation were investigated by histological analysis and by determination of pro-inflammatory cytokines. Hip-
pocampal synapse damage, amyloid-β (Aβ) peptide content and phosphorylation of Akt, a proxy of hippocampal 
insulin signaling, were investigated by Western blotting and ELISA. Memory was assessed using the open field and 
novel object recognition tests.

Results:  Administration of silica induced alveolar collapse, lung infiltration by polymorphonuclear (PMN) cells, and 
increased lung pro-inflammatory cytokines. Lung inflammation was followed by upregulation of hippocampal pro-
inflammatory cytokines, synapse damage, accumulation of the Aβ peptide, and memory impairment in mice.

Conclusion:  The current study identified a crosstalk between lung and brain inflammatory responses leading to hip-
pocampal synapse damage and memory impairment after exposure to a single low dose of silica in mice.
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Introduction
Mounting evidence indicates that a crosstalk between 
peripheral and central inflammation can lead to brain 
dysfunction and neurodegeneration [1–3]. For example, 
chronic kidney disease has been associated with cogni-
tive impairment, delirium, encephalopathy, and demen-
tia [4, 5]. Type 2 diabetes and obesity, characterized by 
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peripheral inflammation and insulin resistance, are risk 
factors for dementia [6–8] and for major depressive 
disorder [9]. Gut microbiota has also been implicated 
in brain–periphery crosstalk [10]. Exposure to micro-
bial amyloids in the gastrointestinal tract can accelerate 
alpha-synuclein aggregation in the gut and brain, and 
lead to enhanced microgliosis and astrogliosis, suggest-
ing that bacterial amyloid may function as a trigger to ini-
tiate brain inflammation and alpha-synuclein aggregation 
in synucleinopathies [11, 12].

Robust evidence further indicates that acute peripheral 
inflammatory conditions, including viral and bacterial 
infections, can trigger brain inflammation and dysfunc-
tion, resulting in cognitive decline or neuropsychiatric 
conditions [13, 14]. For example, recent studies dem-
onstrate that systemic inflammation induced by SARS-
CoV-2, the etiologic agent of COVID-19, activates brain 
toll-like receptors (TLRs) and upregulates brain tumor 
necrosis factor-α (TNF-α) and interleukin-6 (IL-6) sign-
aling, triggering synapse damage and leading to depres-
sive and cognitive symptoms in COVID-19 patients [15]. 
Collectively, multiple lines of evidence indicate that both 
acute and chronic, low grade peripheral inflammation 
can trigger brain inflammation and progressively lead 
to brain dysfunction underlying cognitive decline and 
dementia [13–17].

Silicosis is a major occupational lung disease, with a 
significant impact on health systems and on the quality 
of life of workers in many industries [18, 19]. Exposure to 
silica (SiO2) particles induces chronic lung inflammation, 
including immune cell infiltration, macrophage activation 
and release of pro-inflammatory cytokines, e.g., TNF-α, 
interleukin-1β (IL-1β) and IL-6, resulting in tissue fibro-
sis, alveolar collapse and lung dysfunction [19–21].

Clinical and epidemiological evidence points to an 
association between pulmonary function and cogni-
tive impairment. A recent meta-analysis of longitudinal 
studies of individuals with impaired pulmonary function 
found an increased risk of dementia in such individuals 
[22], and this appears more pronounced for restrictive 
pulmonary impairment than for obstructive lung disease 
[23]. Recent studies indicate that both neurodegeneration 
and vascular brain lesions may underlie the association 
between pulmonary dysfunction, memory impairments 
and dementia [24, 25]. However, the mechanistic under-
pinnings of the connection between lung and brain dys-
function remain unclear.

Here, we investigated the crosstalk between lung 
inflammation, brain inflammation and memory in a 
mouse model of silicosis. We report that lung inflamma-
tion in mice exposed to silica particles is accompanied by 
hippocampal inflammation, synapse damage and mem-
ory impairment.

Methods
Animals
Experiments were performed on 8- to 10-week-old 
male Swiss mice. Animals were housed in groups of 
five per cage with free access to food and water, under a 
12-h light/dark cycle with controlled room temperature 
(21 ± 2 °C). Mice were randomly divided into two groups. 
In the control group (Ctrl), mice received an intratra-
cheal (i.t.) administration of 0.05 mL sterile saline solu-
tion (0.9% NaCl). Silica-exposed animals (Si) received an 
intratracheal administration of 2.5 mg silica (SiO2; parti-
cle size: 500 nm–10 μm, 80% of the particles between 1 
and 5  μm; S5631, Sigma Chemical Co., St. Louis, USA) 
suspended in 0.05 mL saline, as previously described in 
murine models of acute silicosis [26, 27]. Animal behav-
ior was analyzed 24 h or 15 days after saline or silica 
administration. This study was approved by the Eth-
ics Committee on the Use of Animals, Health Sciences 
Center, Federal University of Rio de Janeiro.

Tissue collection and preparation
Mice were anesthetized with 1.5 ml/kg of a solution con-
taining 10% ketamine and 2% xylazine immediately after 
behavioral tests. Bilateral hippocampi and lungs of Ctrl 
and Si animals were collected, immediately frozen in liq-
uid nitrogen, and stored at − 80 °C until use in Western 
blotting or ELISA assays.

Lung histology
Histology was performed as previously described [20, 
26]. Morphometric analysis was performed in granu-
loma-free tissue areas using an integrating eyepiece with 
a coherent system of a 100-point and 50 lines (known 
length) grid coupled to a conventional light microscope 
(Axioplan; Zeiss). Analysis was performed in 10 random, 
non-overlapping fields with 200× magnification.

For cellularity analysis, total numbers of mononuclear 
(MN) and polymorphonuclear (PMN) cells in granu-
loma-free lung tissue areas were counted in each animal 
across 10 random non-overlapping microscopic fields at 
1000× magnification. Data are presented as cell count 
percentages and cell numbers/tissue area.

Hippocampal and lung cytokines
Hippocampi and lungs were homogenized in ice-cold 
PBS with protease and phosphatase inhibitors (Pierce–
Thermo Scientific, Rockford, IL), and were centrifuged 
for 10  min at 26,500×g at 4  °C. Supernatants were col-
lected and assayed in duplicate by ELISA for the follow-
ing cytokines: Interleukin-1β  (IL-1β, Thermo Scientific, 
Rockford, IL), TNF-α (Biolegend, San Diego, CA), inter-
leukin-6 (IL-6; R&D Systems, Minneapolis, MN). 
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Amyloid-β42 was quantified using a mouse Aβ ELISA kit 
(Invitrogen/Thermo, cat # KMB3441).

Western immunoblotting
Samples were thawed and homogenized in 25 mM Tris–
HCl, pH 7.5, 150 mM NaCl, 1% NP‐40 (Invitrogen), 1% 
sodium deoxycholate, 0.1% SDS, 5 mM EDTA, 1% Triton 
X‐100 and phosphatase and protease inhibitor cocktail. 
Protein concentrations were determined using the BCA 
kit (Pierce-Thermo Scientific, Rockford, IL). Samples 
containing 30  µg protein were resolved in 4–20% poly-
acrylamide Tris–glycine gels (Novex; Invitrogen, Grand 
Island, NY) and transferred to nitrocellulose membranes 
at 300 mA for 1 h. Blots were incubated with Odyssey® 
blocking buffer (Li-Cor; Lincoln, NE) at room tempera-
ture for 1  h and were incubated with primary antibody 
diluted in blocking buffer at 4 °C overnight. Primary anti-
bodies used were anti-PSD-95 (1:1000; Santa Cruz, Dal-
las, TX), anti-synaptophysin (1:1000; Sigma, St Louis, 
MO), anti-β-actin (1:15,000; Abcam, Cambridge, UK), 
anti-cyclophilin (1:10,000; Abcam, Cambridge, UK), anti-
amyloid precursor protein (APP) (1:1000 Zymed- Thermo 
Scientific, Rockford, IL), anti-Bace1 (1:2,000; Millipore-
sigma, Burlington, MA #5940), and anti-p-AKT-Ser473 
(1:1500; Cell Signaling, Danvers, MA). Membranes were 
incubated with IRDye-conjugated secondary antibod-
ies (1:10,000; LI-COR Biosciences, Lincoln, NE) at room 
temperature for 1 h, imaged on an Odyssey Imaging Sys-
tem (LI-COR Biosciences, Lincoln, NE), and analyzed 
using NIH Image J.

Behavioral tests
Open field
Mice were placed at the center of an open field arena 
(30  cm × 30  cm × 45  cm) for habituation, and their 
activity was recorded for five minutes. Total distance 
traveled and time spent in the central square were auto-
matically quantified using Any-maze® video-tracking 
system (Stoelting Inc., Kiel, WI). The arena was cleaned 
with 20% ethanol between trials to eliminate olfactory 
cues.

Novel object recognition test (NOR)
The novel object recognition test was performed in the 
open field arena with objects fixed to the box using tape. 
The test was video recorded for behavior readout [28]. 
During training and test sessions, animals were placed 
at the center of the arena, and exploratory behavior 
toward both objects was recorded for 5  min. The arena 
was cleaned with 20% ethanol between trials to elimi-
nate olfactory cues. The training session was performed 
in the presence of two identical objects. One of the two 
objects used in the training session was then replaced by 

a novel object for the test session, carried out one and a 
half hours after training. Sniffing and touching the object 
were considered exploratory behavior, and the amount 
of time spent exploring each object was registered by a 
trained researcher [28].

Statistical analyses
All datasets were submitted to the Shapiro–Wilk normal-
ity test. Specific statistical tests employed are mentioned 
in figure legends. Datasets showing normal distribution 
were analyzed by ANOVA or Student’s t-test. Histologi-
cal datasets were analyzed by ANOVA and differences 
were considered statistically significant with p < 0.05. 
Data from the NOR task were analyzed using a one-sam-
ple Student’s t-test, comparing the exploration time of 
the novel object to the fixed value of 50% (chance level) 
as previously described [28–31]. All analyses were per-
formed using GraphPad Prism 8 (GraphPad Software; La 
Jolla, CA). Results are expressed as means ± SEM, and 
corresponding t-values.

Results
Intratracheal administration of silica induces alveolar 
collapse and lung infiltration by polymorphonuclear (PMN) 
cells
Lung histology showed that intratracheal administration 
of SiO2 (silica) particles caused a significant increase in 
the percentage of collapsed alveoli compared to control, 
saline-instilled mice (F (3, 25) = 22.2908, p = 0.000003), 
both 24  h (p = 0.00007) and 15 d (p = 0.00007) after 
administration of silica (Fig.  1A–E). The number of 
polymorphonuclear (PMN) cells in the lungs was sig-
nificantly increased 24 h after administration of silica (F 
(6, 48) = 13.452, p = 0.000166), and returned to baseline 
values 15 d after administration (p = 0.000066). No differ-
ences were observed in lung mononuclear cell numbers 
in silica-treated mice.

Intratracheal administration of silica induces lung 
inflammation
Lung pro-inflammatory cytokines IL-1β [t (1,16) = 2.656; 
p = 0.0172] and IL-6 [t (1,16) = 5.997; p = 0.0001] were 
significantly increased 24 h after administration of silica 
(Fig.  2A, B). Cytokine levels were markedly reduced 15 
days after administration of silica, compared to the levels 
found 24 h after instillation. Compared to Ctrl mice, lung 
IL-1β remained elevated 15 d after administration of sil-
ica [t (1,15) = 2.653; p = 0.0181], whereas IL-6 returned to 
baseline levels 15 days after instillation of silica (Fig. 2D, 
E). Intriguingly, lung TNF-α showed an initial decrease 
24  h after administration of silica [t (1,16) = 4.529; 
p = 0.0003] followed by a trend of elevation at 15 days [t 
(1,15) = 1.605; p = 0.1294] (Fig. 2C, F).
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Fig. 1  Alveolar collapse and lung infiltration by PMN cells in silica-instilled mice. Representative photomicrographs of lungs from control (Ctrl) or 
silica-instilled (Si) animals. A Ctrl 24 h; B Si 24 h; C Ctrl 15 d; D Si 15 d. E Percentage of collapsed alveoli in Ctrl (white bars) or Si (black bars) animals. 
F Cellularity expressed as total cell counts per area. Data are expressed as mean ± SEM; white bars represent Ctrl mice, and black bars represent 
silica-instilled (Si) mice. Two-way ANOVA with Duncan post hoc test. *p < 0.05 between Ctrl and Si; #p < 0.05 between 24 h and 15 d. N = 7–10 mice 
per experimental group
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Intratracheal administration of silica induces hippocampal 
inflammation in mice
No differences in hippocampal pro-inflammatory 
cytokines (IL-1β, IL-6, TNF-α) were detected 24  h 
after intratracheal administration of silica in mice 
(Fig. 3A–C). Interestingly, however, hippocampal IL-1β 
[t (1,13) = 2.358; p = 0.0347], and IL-6 [t (1,15) = 3.543; 
p = 0.0030], but not TNF-α [t (1,15) = 1.668; 
p = 0.1175], were significantly increased (compared to 
Ctrl mice) 15 days after intratracheal administration of 
silica (Fig. 3D–F).

Intratracheal administration of silica induces hippocampal 
synapse damage and increases Aβ42 levels in mice
We next investigated whether the induction of pro-
inflammatory cytokines induced by lung silicosis could 
entail synapse damage in the hippocampus. Pre- and 
post-synaptic markers, synaptophysin [t (1,14) = 2.310; 
p = 0.0413] and PSD-95 [t(1,10) = 2.326; p = 0.0423], 
respectively, were significantly reduced in hippocampal 
homogenates from silica-instilled mice (Fig. 4A, B).

The decreases in pre- and post-synaptic marker pro-
teins in the hippocampi of silica-instilled mice were 
similar to previous observations in Alzheimer’s dis-
ease (AD) mouse models [31]. This led us to investi-
gate if hippocampal inflammation in silica-instilled 
mice could be associated with changes in levels of the 
amyloid-β peptide (Aβ), a neurotoxin that accumu-
lates in AD brains and is implicated in brain inflamma-
tion and synapse damage in AD [8, 30, 32–34]. Aβ was 
indeed elevated in the hippocampi of Si mice compared 
to Ctrl animals [t (1,14) = 2.157; p = 0.0488] (Fig. 4C).

To examine a possible mechanism underlying increased 
hippocampal Aβ in silica-instilled mice, we measured 
protein levels of β-secretase (BACE 1), a key protease 
involved in the cleavage of the amyloid precursor protein 
(APP) to release Aβ [35, 36]. No difference was observed 
in BACE1 immunoreactivity between Ctrl and Si mice [t 
(1,12) = 0.2663; p = 0.410] (Fig.  4D). However, APP was 
significantly increased in the hippocampus 15 days after 
administration of silica in mice [t (1,11) = 2.174; p = 0.05] 
(Fig.  4E), suggesting that the increase in Aβ might be 
related to increased substrate (APP) availability.

Fig. 2  Lung pro-inflammatory cytokines in silica-instilled mice. Lung IL-1β, IL-6, and TNF-α were determined by ELISA 24 h (A–C; N = 8 Ctrl mice, 10 
Si mice) or 15 d (D–F; N = 8 Ctrl mice, 9 Si mice) after intratracheal administration of saline (Ctrl) or silica (Si). Data are expressed as means ± SEM. 
*p < 0.05, Student’s t-test
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Recent studies have established that inflammation-
associated inhibition of brain insulin signaling plays an 
important role in neurodegenerative mechanisms lead-
ing to synapse damage and cognitive impairments in AD 
[8] and sepsis [13, 37]. To determine whether a similar 
mechanism might be induced by silicosis-induced hip-
pocampal inflammation, we examined pSer473-Akt lev-
els as a proxy of activity of the insulin signaling pathway. 
pSer473-Akt was reduced in Si mice compared to Ctrl 
animals [t (1,12) = 2.124; p = 0.0551], indicating that 
brain inflammation induced by intratracheal administra-
tion of silica is accompanied by inhibition of hippocam-
pal insulin signaling.

Intratracheal administration of silica induces memory 
impairment in mice
Finally, we hypothesized that the impact of silicosis 
on hippocampal pro-inflammatory cytokines, synap-
tic markers, and phosphorylation of Akt could result in 
memory impairments in mice. Control open field tests 
revealed no differences in total distance traveled or time 
spent at the center of the arena between Ctrl and Si mice, 

indicating that silica instillation did not affect locomotor/
exploratory behavior or induced anxiety in mice (Fig. 5A, 
B, D, E).

As expected, Ctrl mice exhibited a clear preference for 
the novel object in the novel object recognition (NOR) 
test session, both 24  h [t (1,6) = 7.227; p = 0.0004] and 
15 days [t (1,7) = 4.713; p = 0.0022] after saline adminis-
tration. In contrast, silica-instilled mice failed to recog-
nize the familiar object as such, and spent comparable 
amounts of time exploring familiar and novel objects, 
both 24  h [t (1,7) = 1.276; p = 0.2425] and 15 days [t 
(1,8) = 1.180; p = 0.2720] after administration of silica 
(Fig. 5C, F).

Discussion
We initially established that a single dose of silica 
(2.5  mg/kg; particle size range: 500  nm–10  μm) admin-
istered into the trachea induced alveolar collapse, lung 
infiltration by PMN cells, and increased lung pro-inflam-
matory cytokines, all indicative of the induction of silico-
sis in mice. We further found that lung silicosis induced 
by this low dose of silica [38] was followed by an increase 

Fig. 3  Hippocampal pro-inflammatory cytokines in silica-instilled mice. Hippocampal IL-1β, IL-6 and TNF-α were determined by ELISA 24 h (A–C; 
N = 8 Ctrl mice, 10 Si mice) or 15 d (D–F; N = 8 Ctrl mice, 9 Si mice) after intratracheal administration of saline (Ctrl) or silica (Si). Data are expressed 
as mean ± SEM. *p < 0.05, Student’s t-test
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in hippocampal pro-inflammatory cytokines, synapse 
damage, accumulation of the Aβ peptide, and impaired 
memory.

In addition to an acute (24  h) examination of the 
impact of intratracheal administration of silica parti-
cles on the lung and brain, we analyzed lung and brain 
inflammation 15  days after administration of silica. The 
15-day time window is frequently used to study the out-
comes of exposure to SiO2 (e.g., Reiser et  al. [39]; Faffe 
et al. [26]; Yang et al. [40]. Numerous studies have dem-
onstrated significant pathological alterations induced by 
silica particles using a 15-day experimental window. The 
experimental design in our current study was thus based 
on a validated model in the silicosis field.

Silicosis is a restrictive disease that causes alveolar col-
lapse, an increase in lung elastic tissue and lung infiltra-
tion by inflammatory cells [26]. The increase in collapsed 
alveoli indicates tissue damage and impairment of pul-
monary function [41]. As a result, cytokines are secreted 

into the lung, triggering pulmonary remodeling pro-
cesses, and resulting in the production of connective tis-
sue fibers [41]. As expected, we found morphometric and 
cellularity alterations in the lung following intratracheal 
administration of silica. The percentage of collapsed 
alveoli was increased 24 h after instillation and remained 
elevated 15 days later, indicating that tissue damage was 
persistent over time. We further observed an increase in 
the number of PMN cells, but not in MN cells, in the lung 
24 h after silica instillation (but not 15 days after instilla-
tion), indicating an acute lung infiltration by peripheral 
immune/inflammatory cells.

Previous studies employing administration of higher 
doses of silica (20  mg/kg) demonstrated that histologi-
cal alterations in the lung were accompanied by robust 
increases in pro-inflammatory cytokines [42, 43]. Thus, 
we sought to determine whether the lower dose of silica 
employed here elicited a similar response. In accord-
ance with previous results [3], both IL-1β and IL-6 were 

Fig. 4  Intratracheal administration of silica induced hippocampal synapse damage and increased Aβ levels. Pre- and post-synaptic marker proteins 
(synaptophysin and PSD-95, respectively; A, B), Aβ42 (C), BACE1 (D), APP (E), and pSer473-Akt (F) were determined in hippocampal homogenates 
15 days after intratracheal administration of silica (N = 9 Ctrl mice, 7 Si mice). Actin and cyclophilin were used as loading controls, as shown (bottom 
of the representative figures). Data are expressed as mean ± SEM. *p < 0.05, Student’s t-test



Page 8 of 11Suman et al. Journal of Neuroinflammation          (2022) 19:303 

significantly increased in the lung 24 h after administra-
tion of silica. However, in contrast with the increase in 
lung TNF-α observed in mice instilled with a higher dose 
of silica [3], under our conditions TNF-α was reduced at 
24 h in Si mice compared to Ctrl animals. The different 
TNF-α response may be related to the low dose of silica 
administered or to the use of Swiss mice in the current 
work, as opposed to a higher silica dose and BALB/c mice 
in previous studies [3]. In addition, evidence suggests 
that TNF-α release is time-dependent in silica-induced 
toxicity [44], and lipoxins may regulate this release as dis-
cussed next. In line with the reduction in PMN cell num-
ber, IL-6 and TNF-α retuned to baseline levels 15 days 
after silica instillation.

Modulation of cytokine levels in silicosis may be fur-
ther be related to the upregulation of lipoxin A4 (LXA4) 
signaling. An increase in LXA4 has been found to con-
tribute to the protective effect of apolipoprotein A1 
(ApoA1) against fibrosis in an experimental model of 
lung silicosis [45]. The mechanism of LXA4 protection 
has been reported to involve attenuation of the release 
of pro-inflammatory cytokines and chemokines, such as 
TNF-α and macrophage inflammatory protein-2 [46]. In 
addition to its anti-inflammatory activity, LXA4 stimu-
lates macrophages to perform phagocytosis of apoptotic 

immune cells without the release of pro-inflammatory 
cytokines [47].

Administration of micro- and nano-sized particulate 
matter to animals via the lung has been shown to trig-
ger systemic inflammation and lesions to the spleen, 
heart, and kidney [40, 48], as well as autoimmunity 
[49]. Humans exposed to silica displayed increased lev-
els of systemic inflammatory markers [50], rheumatoid 
arthritis or systemic scleroderma [51]. The central nerv-
ous system can also be impacted by silica. After inhala-
tion, SiO2 nanoparticles penetrate the epithelium of the 
respiratory tract and are translocated to the brain via 
either the circulatory system or the olfactory nerve [52]. 
Following exposure to silica nanoparticles, mice showed 
neuropathology, degeneration, and synapse damage [3]. 
Silica nanoparticles were found to be primarily depos-
ited in the frontal cortex and hippocampus [3]. Because 
the hippocampus is centrally implicated in memory and 
cognition, and pathological deregulation of hippocampal 
function underlies cognitive and memory impairments 
in neurological disorders, we investigated the possibility 
that lung inflammation might be followed by hippocam-
pal inflammation and memory loss in silicosis.

Increasing evidence supports the notion that both 
acute and chronic peripheral inflammation can trigger 

Fig. 5  Intratracheal administration of silica induces memory impairment in mice. Mice were tested 24 h (A–C) or 15 d (D–F) after intratracheal 
administration of saline (Ctrl) or silica (Si). Open field tests showed no difference between groups in total distance traveled (A 24 h post-instillation, 
D 15 d post-instillation) or time spent at the center of the arena (B 24 h post-instillation, E 15 d post-instillation) (A, B N = 7 Ctrl mice, 8 Si mice; 
D, E N = 8 Ctrl mice, 9 Si mice). C, F Memory performance was assessed in the NOR paradigm 24 h (C; N = 7 Ctrl mice, 8 Si mice) or 15 d after 
administration of silica or saline (F; N = 8 Ctrl mice, 9 Si mice). Data are expressed as mean ± SEM. *p < 0.05, one-sample Student’s t-test compared to 
the fixed value of 50%. Old = familiar object; New = novel object
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brain inflammation, neurodegeneration, and cogni-
tive deficits [2, 30, 37]. Significantly, recent studies have 
revealed that restrictive pulmonary diseases, such as 
silicosis, are risk factors for cognitive impairment and 
dementia [23]. However, the mechanisms underlying the 
association between lung and brain dysfunction remain 
unknown.

The potential crosstalk between lung inflammation 
and brain dysfunction in the mouse silicosis model was 
initially evaluated by measuring hippocampal cytokines. 
Results showed no significant differences in hippocampal 
IL-1β, IL-6, or TNF-α 24 h after administration of silica. 
However, hippocampal IL-1β and IL-6 were significantly 
increased 15 days after instillation, suggesting that hip-
pocampus inflammation was triggered by and temporally 
followed the initial lung inflammation caused by silica.

Increased brain levels of pro-inflammatory cytokines 
trigger synapse damage and affect neuroplasticity [6], 
resulting in cognitive impairments [2, 32]. We found 
that hippocampal pre- and post-synaptic markers 
(synaptophysin and PSD-95, respectively) were signifi-
cantly decreased 15 days after administration of silica, 
indicating synapse damage and loss. Numerous studies 
have established synapse loss as a hallmark of AD [33]. 
Soluble forms of the Aβ peptide accumulate in the AD 
brain [35, 36] and activate pro-inflammatory pathways 
leading to synapse loss and neuronal damage [7, 53]. 
This prompted us to investigate whether hippocampal 
inflammation in silica-instilled mice was associated 

with elevated Aβ levels. Hippocampal Aβ levels were 
indeed higher in silica-instilled than in control mice. 
While we did not detect any changes in BACE1, one of 
the secretases responsible for cleavage of APP and pro-
duction of Aβ [54], APP was found to be elevated in the 
hippocampi of mice that received silica. It is, thus, pos-
sible that the increase in hippocampal Aβ resulted from 
increased substrate (APP) availability for cleavage by 
secretases in silica-instilled mice. Results suggest that 
inflammatory signaling from the lung triggers a delete-
rious process involving elevated hippocampal cytokines 
and Aβ and leading to synapse damage in the hip-
pocampus. Communication via the vagus nerve might 
be an additional mechanism involved in the crosstalk 
between peripheral and central inflammation in silico-
sis, and further studies appear warranted to investigate 
this communication.

Inhibition of brain insulin signaling is thought to play a 
major role in the pathogenesis of neurodegenerative dis-
orders [7, 8, 37] and in sepsis [24, 25], and to be a lead-
ing mechanism underlying cognitive impairment. A key 
component of the insulin signaling pathway is Akt, which 
becomes phosphorylated at Ser473 in response to insu-
lin [8]. Disruption of Akt signaling is detrimental to insu-
lin response and may lead to brain dysfunction [7]. Our 
results showed a decrease in hippocampal pSer473-Akt 
in silica-instilled mice, suggesting disruption of insulin 
signaling such as observed in AD and other neurodegen-
erative disorders.

Fig. 6  Schematic representation of the current study findings. Hippocampal inflammation temporally follows the initial lung inflammation 
induced by silica particles. Cytokine (IL-1β and IL-6) levels first increase in the lung 24 h after intratracheal administration of silica, coinciding with 
lung infiltration by phagocytes (PMNs). The initial lung inflammatory response is followed by increased hippocampal IL-1β and IL-6 15 d after silica 
instillation. This, in turn, is accompanied by damage to synapses, leading to memory impairments
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Finally, our findings of hippocampal inflamma-
tion, synapse damage and impaired insulin signaling 
prompted us to assess the impact of the administra-
tion of silica on memory. Remarkably, we found that 
intratracheal instillation of a low-dose of silica impaired 
memory in the NOR test.

In conclusion, the current study identified a crosstalk 
between lung and brain leading to hippocampal inflam-
mation, synapse damage and cognitive impairment 
after a single intratracheal instillation of a low dose 
of silica in mice. Figure  6 schematically represent this 
sequence of events. Interestingly, a recent study showed 
a link between intranasal exposure to silica, α-synuclein 
aggregation and neurodegeneration in a Parkinson’s 
disease model [55]. In light of recent clinical and epi-
demiological studies connecting pulmonary dysfunc-
tion with cognitive impairments and dementia [22–25], 
and considering the prevalence of silicosis as an occu-
pational disease, investigation of potential neurological 
outcomes in patients appears warranted. Our findings 
further suggest that early intervention to attenuate 
peripheral pro-inflammatory signaling may be impor-
tant to preserve brain health in silicosis.
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