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Abstract 

Background Retinal ischemia–reperfusion (RIR) injury refers to an obstruction in the retinal blood supply followed by 
reperfusion. Although the molecular mechanism underlying the ischemic pathological cascade is not fully under-
stood, neuroinflammation plays a crucial part in the mortality of retinal ganglion cells.

Methods Single-cell RNA sequencing (scRNA-seq), molecular docking, and transfection assay were used to explore 
the effectiveness and pathogenesis of N,N-dimethyl-3β-hydroxycholenamide (DMHCA)-treated mice with RIR injury 
and DMHCA-treated microglia after oxygen and glucose deprivation/reoxygenation (OGD/R).

Results DMHCA could suppress inflammatory gene expression and attenuate neuronal lesions, restoring the retinal 
structure in vivo. Using scRNA-seq on the retina of DMHCA-treated mice, we provided novel insights into RIR immu-
nity and demonstrated nerve injury-induced protein 1 (Ninjurin1/Ninj 1) as a promising treatment target for RIR. 
Moreover, the expression of Ninj1, which was increased in RIR injury and OGD/R-treated microglia, was downregu-
lated in the DMHCA-treated group. DMHCA suppressed the activation of the nuclear factor kappa B (NF-κB) path-
ways induced by OGD/R, which was undermined by the NF-κB pathway agonist betulinic acid. Overexpressed Ninj1 
reversed the anti-inflammatory and anti-apoptotic function of DMHCA. Molecular docking indicated that for Ninj1, 
DMHCA had a low binding energy of − 6.6 kcal/mol, suggesting highly stable binding.

Conclusion Ninj1 may play a pivotal role in microglia-mediated inflammation, while DMHCA could be a potential 
treatment strategy against RIR injury.
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induced protein 1

†Yunhong Shi and Yidan Liu contributed equally to this work

*Correspondence:
Wenru Su
suwr3@mail.sysu.edu.cn
Yehong Zhuo
zhuoyh@mail.sysu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12974-023-02754-5&domain=pdf


Page 2 of 18Shi et al. Journal of Neuroinflammation           (2023) 20:91 

Background
Ischemia–reperfusion injury, a well-known pathologic 
hallmark associated with multiple degenerative diseases, 
refers to a reduction in the blood supply and then the 
oxygen and various nutrients; subsequent blood reperfu-
sion induces oxidative stress and inflammatory responses 
[1]. Ischemia in the retinas has been extensively studied 
due to its impact on glaucoma, diabetic retinopathy, trau-
matic optic neuropathy, central retinal venous occlusion, 
and retinopathy of prematurity, among others [2]. Reti-
nal Ischemia–reperfusion (RIR) injury pathogenesis is 
characterized by a self-reinforcing destructive cascade, 
such as the dysfunction of mitochondria; oxidative stress; 
activation of glial cells, and retinal pigment epithelium; 
ultimately terminating in photoreceptor cell death [3]. 
Owing to the relative lack of effective treatment options, 
RIR remains a major challenge of blindness worldwide 
[4].

Inflammation has been widely recognized as a common 
characteristic of RIR injury, and its extent and persistence 
affect the endpoint pathology, i.e. neuronal death [5]. Fol-
lowing RIR injury, astrocytes, Müller cells, and microglia 
produce mediators such as cytokines and interleukins [6]. 
It has been reported that in microglia, as the potential 
cellular regulators of inflammation, activation is the pilot 
event during a neural injury [7]. Microglia exhibit vari-
ous phenotypes involved in inflammation [8, 9] by secret-
ing two pleiotropic cytokines, namely tumour necrosis 
factor-α (TNFα) and interleukin (IL)-1β, which facilitate 
the recruitment of leukocytes into the retina [10]. In 
view of this, therapies aimed at modulating microglia’s 
inflammatory responses and immune homeostasis repre-
sent a promising approach [11]. We have recently shown 
that programmed cell death (PCD), including apopto-
sis, necroptosis, pyroptosis, and ferroptosis, can induce 
severe inflammation in RIR injury [12, 13]. Hence, an in-
depth investigation of the molecular pathobiology under-
lying RIR-induced neuroinflammation, retinal ganglion 
cell (RGC) death, and identification of new therapeutic 
targets are desperately needed.

The nerve injury-induced protein 1 gene (Ninjurin 1 
or Ninj 1) encodes a cell surface protein of 152 amino 
acids that contains two transmembrane domains [14]. 
The Ninj1 protein was initially found to concentrate in 
dorsal root ganglion neurons and Schwann cells and 
mediate homophilic contacts, thereby suggesting its 
potential involvement in nerve regeneration [14]. The 
importance of oligomerized Ninj1 in generating plasma 
membrane rupture, a critical pyroptotic event, was 
emphasized [15]. This function may be carried out via 
the putative-helix domain of the protein. Additionally, 
research has demonstrated that pyroptotic cells emit 

certain intracellular damage-associated molecular pat-
terns (DAMPs) in a Ninj1-dependent manner, indicat-
ing the pro-inflammatory activity of Ninj1 [16]. Ninj1 
is also widely expressed in immune cells, including 
macrophages, microglia, and monocytes, as well as in 
hepatocellular carcinoma, fibroblasts, epithelial cells, 
pericytes, and other tissues [17, 18]. This suggests that 
Ninj1 may play a role in the functioning of many tissues 
[17, 18]. We hypothesize that Ninj1 may contribute to 
the progression of RIR injury based on the well-known 
idea that neuroinflammation plays a crucial role in the 
progression of programmed RGC death in RIR [2, 9].

N,N-Dimethyl-3β-hydroxycholenamide (DMHCA) 
is an experimental synthetic steroid acting as a liver 
X receptor (LXR) activator. LXRs (LXRα and LXRβ) 
belong to the nuclear receptor superfamily. Previ-
ous studies have shown that LXRs play a critical role 
in reversing cholesterol transport, regulating immune 
cell function, and influencing macrophage polarization 
[19]. According to a recent study, DMHCA reduces the 
levels of pro-inflammatory M1-like macrophages and 
classical monocytes, which are involved in diabetic 
retinopathy’s inflammation [20]. Additionally, DMHCA 
was thought to be a viable therapeutic drug against 
neurodegenerative conditions like Alzheimer’s disease 
because of its ability to target rat cortical neurons and 
stop memory loss [21]. However, whether DMHCA 
mediates neuroprotection or hammering inflammation 
in RIR injury remains unknown.

The retina ganglion cells, an extension of the cen-
tral nervous system (CNS), are the most metabolically 
active place in the body [22]. This makes the retina 
an ideal model system for research to assess different 
therapeutic strategies in vivo and effectively extrapolate 
the findings to the whole body. Therefore, this study 
explores the effects, potential therapeutic targets, and 
molecular mechanisms of DMHCA treatment in  vivo, 
using an RIR mice model, and in  vitro, focusing on 
microglia-induced inflammation.

Methods
Animals
The 6- to 8-week-old wild-type C57BL/6J mice (male, 
RRID:IMSR_JAX:005304) were purchased from 
Guangdong Medical Laboratory Animal Center and 
raised in the Experimental Animal Center of Zhong-
shan Ophthalmic Center, Sun Yat-sen University. All 
animal experiments were approved by the Animal 
Care and Ethics Committee of the Zhongshan Oph-
thalmic Center (ref no. 2015–108, Approval number: 
O2021080).
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Pharmacologic treatment and RIR injury model
Mice were first dosed with 0.08 g/kg DMHCA daily via 
oral gavage for three days. The sham and RIR groups 
received an aqueous solution of 0.9% saline at the same 
time. Three days after DMHCA treatment, the mice 
underwent surgical RIR injury as previously described 
[12, 23]. Briefly, a sterile needle linked to an elevated 
normal saline (NS) bottle was placed into the anterior 
chamber of the eyeball to create a persistent intraocular 
pressure (IOP) at approximately 110 mmHg for 1 h. The 
needle was gently pulled out to induce reperfusion injury. 
Three days after reperfusion, the eyeballs or retinal tis-
sues were harvested for analysis.

Haematoxylin and eosin (HE) staining
Mice’s eyes were fixed with 4% paraformaldehyde (PFA) 
and embedded in paraffin; 7 μm sections were prepared 
across the optic nerve head of each eye and stained with 
HE. Four cross-sectional around the optic nerve (within 
1000 μm) for every eyeball were chosen to measure the 
inner plexiform layer (IPL) thickness, and data were ana-
lysed using the ImageJ software (version 1.53v, https:// 
imagej. nih. gov/ ij/).

Serum analyses
For serum collection, mice were anaesthetized with 
pentobarbital sodium (0.01  g/mL), and blood was gath-
ered by cardiac puncture. Serum was separated from 
clotted blood at 4° via centrifugation at 1200 × g  for 
30  min to separate the serum. Serum was isolated and 
analysed for triglycerides (TG), total cholesterol (TC), 
high-density lipoprotein (HDL) cholesterol, and low-den-
sity lipoprotein (LDL) cholesterol concentrations using 
commercial enzymatic kits (JINGME, Jiangsu, China).

Simulation of in vitro ischemia with oxygen‑glucose 
deprivation/reoxygenation (OGD/R) and microglia 
pharmacologic treatments
The BV2 microglial cell line was purchased from Zhong 
Qiao Xin Zhou Biotechnology Company (Shanghai, 
China). DMHCA (5  μmol/mL) was prepared into the 
medium 8–12 h before OGD/R. To simulate the model of 
RIR in vivo, BV2 cells were cultivated in serum- and glu-
cose-free media and placed under conditions of 5%  CO2 
and 95%  N2 in a 37 °C incubator for 3 h, then returned to 
the normal environment (37  °C, 5%  CO2 and normoxic) 
and complete medium (DMEM with 10% foetal bovine 
serum and glucose [4.9 g/L]) for 24 h until harvesting.

Expression vector cloning and transfection
Ninj1(m) cDNA, including coding sequences with or 
without 3′-untranslated region, was amplified via poly-
merase chain reaction (PCR) with the forward primer 
(5′–3′) CTT GGT ACC GAG CTC GGA TCC GCC ACC 
ATG GAG TCG GGC ACT GAG GAG TAT GAG C and the 
reverse primer (5′–3′) GAA GGG CCC TCT AGA CTC 
GAG CTG CCG GGG CGC CAC GTC CAT TAC AGG CT. 
The PCR products were inserted into the pcDNA3.1-
3xFlag-T2A-EGFP expression vector (MHBIO, Guang-
Zhou, China) between the EcoRI and XbaI sites 
(Additional file 1). When BV2 microglia reached 30–50% 
confluency, they were transfected with Ninj1 plasmids 
(20  nM) or negative control plasmids (20  nM) using 
LipoTrans™ Liposomal Transfection Reagent (MHBIO, 
GuangZhou, China) according to the instruction book.

Immunofluorescence staining
The eyeballs were embedded in optimal cutting tem-
perature (OCT) compound, frozen, and sectioned 
at 10  μm. Rabbit polyclonal RBPMS (GeneTex Cat# 
GTX118619, RRID:AB_10720427) at a concentration of 
1:100, beta Tubulin 3/TUJ-1 (GeneTex Cat# GTX130245, 
RRID:AB_2886220) at a concentration of 1:200, Goat 
Polyclonal AIF-1/Iba-1 antibody (Novus Cat# NB 100-
1028, RRID:AB_521594) at a concentration of 1:100, and 
Rabbit monoclonal to GFAP N-terminal (Abcam Cat# 
ab194324) at a concentration of 1:50 were used. DAPI 
(Bioss Cat# C02-04002) was used for nuclear staining. 
Images were obtained using immunofluorescence micro-
scope (Leica DMi8, software: Leica Application Suite 
X Core 3.7.6, leica-microsystems.com).

Single‑cell genomics
scRNA‑seq library preparation
scRNA-seq libraries were prepared using the Chromium 
Single Cell 3’ Library and Gel Bead Kit (10 × Genomics) 
according to the manufacturer’s instructions. The librar-
ies were sequenced on the NovaSeq platform (Illumina) 
to yield 150 bp paired-end reads.

Analysis of scRNA‑seq data
Gene expression matrices were generated using cell-
ranger count, and cellranger aggr in CellRanger (v7.0.0) 
with default parameter settings by mapping sequencing 
reads to the 10 mm mouse genome and quantifying the 
expression of transcripts in each cell. All downstream 
data processing was conducted using R (v4.1.3) and the 
Seurat R package (v4.1.1) [24] unless otherwise specified. 
Cells with more than 200, fewer than 7500 genes, and less 
than 20% mitochondrial genes were retained for further 

https://imagej.nih.gov/ij/
https://imagej.nih.gov/ij/
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analysis. Batch effects were removed using the harmony 
R package (v0.1.0), and subsequent analyses were based 
on the merged data. The principal components (20 for 
total cells and myeloid cells, 10 for microglia) were then 
used to reduce the dimensionality by Uniform Manifold 
Approximation and Projection (UMAP).

Differential expression analysis
Differential expression analysis from different kinds of 
cells from groups was conducted by "FindMarkers" func-
tion of the Seurat R package. Genes with | Log2 (Fold 
Change) |> 1 and P value < 0.05 were established as differ-
entially expressed genes (DEGs).

Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway enrichment analysis
Pathway enrichment analyses were completed using 
the Metascape webtool [25] according to DEGs found 
between different samples. Five to 10 GO terms or path-
ways associated with inflammatory responses and visual 
functions were visualized using the ggplot2 R package 
(v3.3.6).

Inflammatory score
Inflammatory signature scores were calculated using the 
Seurat function AddModuleScore, which analyses the 
average expression of interested signatures per cell. This 
list was created by searching for inflammatory response-
related genes (GO: 0006954) found in the DEG datasets 
between different samples (RIR vs. sham, RIR + DMHCA 
vs. RIR). Statistical analysis was conducted with the two-
sided Wilcoxon rank sum test.

Cell–cell communication analysis
Intracellular cell–cell communication was performed 
with the CellChat R package (v1.4.0) [26]. Differen-
tial numbers of interactions and differential interaction 
strengths were analysed. Cellular pathway networks 
across the three groups were compared, and the expres-
sion of pathway-related genes was visualized using violin 
plots.

Transcription factor (TF)
According to the workflow (http:// scenic. aerts lab. org/), 
transcription factor activity was inferred with the pySCE-
NIC package [27].

Western blotting
The following antibodies were obtained from Cell Signaling 
Technology: Phospho-nuclear factor kappa B (NF-κB) p65 
(Cell Signaling Technology Cat# 3033, RRID:AB_331284), 
NF-κB p65 (Cell Signaling Technology Cat# 8242, 

RRID:AB_10859369), Phospho-IKKα/β (Cell Signaling 
Technology Cat# 2697, RRID:AB_2079382), IKKα (Cell 
Signaling Technology Cat# 11930, RRID:AB_2687618), 
Cleaved-caspase8 (Cell Signaling Technology Cat# 
8592, RRID:AB_10891784), Cleaved-caspase3 (Cell 
Signaling Technology Cat# 9661, RRID:AB_2341188), 
and GAPDH (Cell Signaling Technology Cat# 5174, 
RRID:AB_10622025). Ninj1 (Bioss Cat# bs-11105R) 
was obtained from Bioss, and iNOS (GeneTex Cat# 
GTX130246, RRID:AB_2886221) antibodies were obtained 
from GeneTex. Western blotting was performed as previ-
ously described [12, 23].

Reverse transcription‑quantitative PCR (RT‑qPCR)
Total RNA was extracted from BV2 microglial cells and 
mouse retinal tissues using the RN002 RNA-Quick Puri-
fication Kit (ESscience). cDNA was synthesized using 
PrimeScript RT Master Mix (TaKaRa). Quantitative 
amplification of target genes was performed using the 
Light Cycler 480 Real-Time PCR System with software 
version LCS480 1.5.1.62. The mRNA levels of the tar-
get genes were normalized to the GAPDH level. Primer 
sequences for target genes are listed in Additional file 6: 
Table S1.

Molecular docking
Molecular docking verification of potentially important 
active components and their key targets was performed 
as follows: First, the three-dimensional structure file 
of Ninj1 was quoted from the RCSB protein database 
(http:// www. rcsb. org/), and the crystal structure of NInj1 
was synthesized, including removing solvent molecules 
and ligands, adding polar hydrogen, and energy initializa-
tion. The MM2 force field was optimized for the three-
dimensional structure of the chemical composition, and 
the number of rotatable keys was set. The molecular 
structures of DMHCA were retrieved from PubChem 
Compound (https:// pubch em. ncbi. nlm. nih. gov/).  The 
molecular docking software AutoDock Vina was used 
for molecular docking scoring, and the scoring threshold 
was set as − 7 kcal/mol.

Statistics
We used one-way analysis of variance (ANOVA) fol-
lowed by Tukey’s multiple comparison tests among 
multiple groups and calculated statistical significance, 
and unpaired Student’s t-test between two groups. A P 
value < 0.05 was considered statistically significant. Sta-
tistical figures and calculations were performed using 
GraphPad (https:// www. graph pad. com/).

http://scenic.aertslab.org/
http://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://www.graphpad.com/
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Results
Impacts of systemic DMHCA treatment on the general 
physiological state
LXR activator plays a key role in cholesterol transport, 
although is associated with side effects such as hyper-
triglyceridemia or hepatic steatosis [28]. Therefore, we 
first assessed the safety of DMHCA (Fig.  1a) on the 
body weight and serum lipid parameters. Each experi-
mental cycle was seven days and included treatment 
for the first 3 days; here, we recorded the general phys-
iological data at the end of day 7. In Fig. 1b, no signifi-
cant differences (P > 0.05) were observed in the serum 
lipid plasma levels, including TC, TG, HDL, and LDL 
among groups. Additionally, as shown in Fig. 1c, body 
weight in the sham group continuously and stead-
ily increased under the normal diet. The body weight 
decreased remarkably after RIR injury, whether in the 
RIR group or RIR + DMHCA treatment group, and 
these results were significantly different than those 
observed in the sham group.

DMHCA treatment restored IOP‑induced RIR injury 
and RGC death
We created an IOP-induced RIR injury animal model to 
mimic the pathogenetic process of acute ischemic retin-
opathy to evaluate the therapeutic efficacy of DMHCA 
in vivo. Various cell types are harmed by RIR injury, but 
RGC loss has been the main focus of models. First, RGCs’ 
dendrites were damaged, displaying a reduction in IPL 
thickness, and then the soma of the RGCs was found to 
be damaged, displaying a reduction in the number of gan-
glion cells (GCL). In order to compare the RIR-induced 
damage on neurons, these histological parameters (IPL 
thickness and cell quantity in GCL) can be quantified. 
Retinas affected by RIR damage showed a substantial 
reduction in IPL thickness (Fig.  2a). This RIR-induced 
IPL decrease was improved in the DMHCA-treated ret-
ina. RGCs were labelled with RBPMS and β-tubulin-III 
(Tuj-1) staining in the retina. We quantitatively assessed 
RGCs in retinal flatmounts (Fig. 2b) and frozen sections 
(Fig.  2c). Results consistently revealed that the survival 

Fig. 1 Security evaluation of DMHCA systemic administration on body weight and serum lipid levels in mice. a Molecular formula of DMHCA. 
b Serum lipid level in the Sham, RIR, and RIR + DMHCA treatment groups. Detection of triglycerides (TG), total cholesterol (TC), high-density 
lipoprotein (HDL) cholesterol and low-density lipoprotein (LDL) cholesterol concentrations. Sham, control C57BL/6J with sham operation; RIR, retinal 
ischemia/reperfusion injury model mice; RIR + DMHCA, DMHCA treatment with RIR mice; n = 3–6. ns, P > 0.05. c Body weight in sham and RIR group: 
mean C57BL/6 with normal feed and DMHCA group: 80 mg/kg DMHCA of body weight/day daily via oral gavage for 7 days treatment. n = 6. Data 
are expressed as means ± standard deviation

Fig. 2 DMHCA treatment significantly attenuate RIR damage. a HE staining and quantitative analysis of IPL thickness in retina tissue harvested 
3 days post-RIR injury; n = 6–10. Scale bar = 50 μm. Sham, control C57BL/6J with sham operation; RIR, retinal ischaemia/reperfusion injury model 
mice; DMHCA, DMHCA treatment with RIR mice. All in vivo experiments shared this grouping system. b Representative immunofluorescence 
images of anti-RBPMS (red) and anti-TUJ1 (green) labelled RGCs on a flat mount retina. From Sham, RIR, and DMHCA-treated mice at 3 days 
post-RIR. Quantitative analysis of numbers of RGCs shows a neuroprotection effect of DMHCA; n = 6. Scale bar = 50 μm. c Representative 
immunofluorescence images of RGCs in the retinal frozen section. Consistent with images of flat mount retina; n > 3. Scale bar = 50 μm. d TUNEL 
staining (red) labelled level of apoptosis in retina, showing an anti-apoptosis effect of DMHCA in vivo; n = 3. Scale bar = 50 µm. e Western blot 
analysis of the indicated proteins, Cleaved-caspase3, protein levels were normalized to GAPDH levels. f Transcriptional levels of RGC-specific indices, 
including Brn3a, Brn3c and RBPMS, and programmed cell death-related mRNA, such as caspase 8 and GSDMD, in retinas were detected using 
qRT-PCR; n > 3

(See figure on next page.)
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rate of RGCs was decreased in response to RIR injury, 
which was prevented by DMHCA treatment.

In RIR-induced neuroinflammation, apoptosis is essen-
tial. The terminal deoxynucleotidyl transferase dUTP 
nick end labelling (TUNEL)-positive cells and the expres-
sion of clv-casp3, an executor protease of apoptosis, were 
less prevalent in the DMHCA-treated retina than in the 
RIR counterpart (Fig.  2d) (Fig.  2e). Although we found 
that DMHCA could reduce RIR-induced RGC loss, the 
ONL was the primary site where TUNEL positive cells 
were observed. The TUNEL results were consistent with 
those of Lam, Chen, and HU [29–31], indicating the 
induction of apoptosis in RIR retina, the mechanism of 
which is still unclear.were observed in the GCL.

Additionally, transcriptional levels of RGC-specific 
indices, including Brn3a, Brn3c, RBPMS, and PCD-
related mRNA, such as caspase 8 and GSDMD, were used 
as indices of nerve injury (Fig. 2f ). These results suggest a 
neuroprotection role of DMHCA.

Treatment with DMHCA decreased inflammation 
and inhibited the NF‑κB signalling pathway
Resident glial cell activation was observed in RIR injury 
throughout the process; hence we immunolabelled the 
glial cells in retina cross-sections with GFAP and Iba-
1. GFAP, a Müller cell and astrocyte activation marker, 
showed higher staining in the RIR group. The fluores-
cence intensity was reduced in the RIR + DMHCA group 
(Fig.  3a), indicating that DMHCA alleviated the activa-
tion of Müller cells and astrocytes following RIR injury. 
Microglia play an important role in the surveillance and 
maintenance of neuronal functionality. When detected 
via immunostaining, the retinal Iba-1 positive cells in the 
RIR group were more abundant than equivalent sham 
retinas, which was one sign of microglia activation.

In contrast, the number of RIR-induced Iba-1+ cells 
was remarkably attenuated by DMHCA (Fig.  3a). Fur-
thermore, in morphology, RIR-induced Iba-1+ cells 
showed a larger soma with shorter and thicker branch-
ing processes than their sham counterparts, a phenotype 
characteristic of the activation stage. When compared 
with RIR + DMHCA group, Iba-1+ cells restore a mor-
phological feature of the resting stage, similar to the 
sham group. Consistently, DMHCA reduced the protein 
abundance of iNOS, a marker of the pro-inflammatory 
microglial phenotype (Fig. 3b).

Since activation of NF-κB signalling pathway has been 
implicated in promoting neurotoxicity and neuroinflam-
mation in CNS tissue ischemia [32], we explored the 
potential role of the NF-κB signalling in IOP-induced 
retinal damage. We examined the activation of an essen-
tial protein of the NF-κB pathway and observed that it 
was significantly inhibited by DMHCA (Fig.  3c, d). To 

investigate the level of inflammation, we measured the 
reportedly increased inflammatory mediators in RIR 
at the retinal levels, such as iNOS, IL-6, Caspase-1, and 
NLRP3. In all measures, DMHCA suppressed the level of 
these cytokines (Fig. 3e).

Generation of single‑cell transcriptome atlas from sham, RIR, 
and RIR + DMHCA‑treated murine retina
To determine the mechanisms underlying the therapeu-
tic effects of DMHCA, we conducted scRNA-seq of the 
pooled retinal cells taken from the retinas of sham, RIR, 
and RIR + DMHCA-treated mice.

After quality assurance, we collected high-quality cells 
totaling 49,799 from the sham sample, 26,451 from the 
RIR sample, and 14,005 from the sample that had been 
treated with DMHCA (Fig. 4a). Rods, cones, cone bipo-
lar cells (CBC), rod bipolar cells (RBC), amacrine cells 
(AC), macroglia, horizontal cells (HC), RGCs, vascular 
endothelial cells (VEC) and pericytes, T cells (TC), den-
dritic cells (DC), monocyte macrophage and microglia 
(Myeloid), and neutrophils were among the cell popula-
tions that were distinguished based on the expression of 
known markers (Fig. 4b, c Additional file 2: a, b). Astro-
cytes and Müller glia were grouped together in the mac-
roglia population because of the transcriptional overlap. 
The myeloid group was extracted and further analysed. 
Although the cluster distributions among the three 
groups seemed comparable, there were differences in the 
proportions of single clusters. A considerable number of 
immune cells appeared after RIR injury and were greatly 
reduced following DMHCA treatment (Fig. 4d, e; Addi-
tional file 2: c).

To explore the retinal cellular response to RIR and 
DMHCA treatment, we first performed DEG analy-
sis among the three groups (Fig.  4f; Additional file  3: a; 
Additional file  7: Table  S2, Additional file  8: Table  S3). 
Subsequent GO analysis showed that pathways related 
to immune response, inflammation, and apoptosis were 
up-regulated during RIR but downregulated by DMHCA 
treatment, while pathways associated with normal vis-
ual functions and maintenance of retinal homeostasis 
exhibited the opposite trend (Fig. 4g; Additional file 3: b; 
Additional file 9: Table S4, Additional file 10:   Table S5, 
Additional file 11: Table S6, Additional file 12: Table S7).

The activity of the inflammatory pathway and over-
expression of the specifc genes after RIR showed that 
RIR induced the inflammatory response. To quantify 
the severity of these responses enhanced by RIR injury, 
we next calculated the inflammatory scores in the three 
samples and found that the retinas of RIR showed an 
elevation in the inflammatory response score, with neu-
trophils exhibiting the highest inflammatory response 
score. Correspondingly, inflammatory responses were 
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suppressed by DMHCA treatment (Fig.  4h). These 
results suggest that DMHCA suppressed inflammatory 
responses induced by RIR.

DMHCA suppressed inflammation in microglia 
and regulated the expression of Ninj1
Microglia are critical players in glaucoma development 
because activated microglia exacerbate RGC degenera-
tion through pro-inflammatory and oxidative stress path-
ways and increase expression of complement molecules 
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[33]. Therefore, we explored the anti-inflammatory effect 
of DMHCA on microglia [24].

We first extracted the myeloid population and re-clus-
tered the cells into monocytes (Ly6c2 +), macrophages 
(C1qa +), and microglia (Sparc + C1qa +) (Fig.  5a–c). 
To identify the underlying mechanism through which 
DMHCA alleviates RIR-induced stress on the retina, we 
performed DEG analysis in microglia across the three 
groups (Fig.  5d; Additional file  13: Table  S8, Additional 
file  14: Table  S9) and found that inflammatory gene 
expression was elevated after RIR injury and reduced in 
the treatment group. Subsequent GO analysis showed 
that pathways related to inflammation, immune cell 
chemotaxis, and apoptosis were up-regulated during RIR 
injury but downregulated by DMHCA treatment (Fig. 5e, 
f, g; Additional file  15: Table  S10, Additional file  16: 
Table  S11). The pathways associated with the inherent 
immune function of microglia exhibited the opposite 
trend (Additional file 3: c, d).

Among the DEGs, we observed that a new gene, Ninj1, 
played a role in several GO pathways associated with 
inflammatory response, cell migration, and cell adhesion 
(Fig.  5h). The expression of Ninj1, primarily in myeloid 
cells and neutrophils, was significantly up-regulated in 
the RIR group and downregulated after DMHCA treat-
ment (Fig. 5i). As an adhesion molecule, Ninj1 reportedly 
regulates macrophage function in endotoxin-mediated 
inflammation and is engaged in the immune responses 
triggered by cellular infection or stress [34]. Consistent 
with this notion, our in vivo findings demonstrated that 
up-regulated Ninj1 was associated with RIR injury and 
that DMHCA diminished the increase in Ninj1 expres-
sion (Fig. 5j, k), suggesting that DMHCA regulates Ninj1 
during the development of RIR-induced RGC death.

Comprehensive cell–cell communication landscape 
across the three samples
To explore the cell–cell interactions between the three 
groups, we used CellChat to visualize the communi-
cation networks between distinct cell types. Interac-
tions between resident retinal cells were generally 

downregulated, while immune cell populations exhib-
ited a variable elevation in cell–cell communications 
with all other cell types in the ischemia–reperfu-
sion retina. RIR + DMHCA-treated group showed an 
inverse trend, except for microglia among the immune 
cell subsets (Fig. 6; Additional file 4: a).

Additionally, signalling pathways were identified. The 
three groups shared several common pathways (Fig. 6b), 
including the neurotrophin (NT) and migration inhibi-
tory factor (MIF) signalling pathways. The NT signalling 
pathway can enhance neuronal survival and regeneration 
and exert a protective effect against RGC apoptosis in the 
glaucomatous model [35, 36]. As the network indicated, 
retinal neuronal interactions through the NT signalling 
pathway were reduced in the RIR group and increased 
following DMHCA treatment (Fig.  6c, d). Macrophage 
MIF coding a pro-inflammatory cytokine and the MIF-
mediated signalling pathway have been implicated in 
various inflammatory diseases and disorders [37]. Cor-
respondingly, cell–cell interactions and related ligand–
receptor gene expression were markedly up-regulated 
in the ischemia–reperfusion retina and substantially 
downregulated when the ischemia–reperfusion retina 
was exposed to DMHCA treatment (Figs. 6e; Additional 
file 4: b).

The IGF and CX3C signalling pathways were found in 
normal and DMHCA-treated retina, while not significant 
in the RIR group (Additional file 4: c, Additional file 5: d, 
e, f ). In particular, IGF is also a neurotrophic peptide in 
the CNS, where it reduces neuronal death and augments 
synaptic plasticity [38]. The CX3CL1–CX3CR1 axis has 
been implicated in regulating microglial homeostasis, 
and suppressing microglial activation [39]. Several sig-
nalling pathways were exclusive to the RIR + DMHCA 
group, including EphrinB (EPHB), reelin (RELN), and 
glial cell line-derived neurotrophic factor (GDNF) signal-
ling pathways. EPHB and RELN-mediated signalling have 
a major role in RGC axonal targeting [39, 40]. GDNF pre-
vents post-injury RGC death by downregulating extracel-
lular glutamate levels [41].

Fig. 4 Study design and scRNA-seq analysis of sham, RIR, DMHCA-treated murine retinal cells. a Experimental design for scRNA-seq. Retinal 
samples were collected from sham mice, RIR mice, and DMHCA-treated RIR mice. Each sample was collected from three mice. The gene expression 
data of the samples were obtained via scRNA sequencing for subsequent single-cell analysis. b UMAP clustering of pooled retinal cells coloured 
according to clusters. c Dot plot showing the expression of specific marker genes in each cell type. d Bar charts showing proportions of each cell 
type across the three samples derived from scRNA-seq data. e Cell ratio of immune to total retinal cells in the three samples. f Dot plot showing 
the DEGs between the RIR vs. sham comparison group. Red, blue, and grey dots indicate the up-regulated, downregulated, and unchanged DEGs, 
respectively. g Representative GO and KEGG pathway analyses of DEGs of retinal cells in the RIR vs. sham comparison group. Red and blue bars 
indicate up- and downregulated DEGs, respectively. h Violin plot of inflammatory response scores for each sample and cell type. Within each violin 
plot, middle lines indicate median values, and the line ranges from the 25th to the 75th percentile. Significance was calculated using a two-sided 
Wilcoxon test as implemented using the function "compare_means" with default parameters; ****P < 0.0001

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Overexpressed Ninj1 reversed the effects of DMHCA 
via NF‑kB pathway regulation
To explore the underlying mechanism of DMHCA stabi-
lizing microglia during OGD/R-induced inflammation, 
we detected PCR, western blot, and immunofluores-
cence (Fig.  7a–c, e). These results showed that TNFα, 
IL1β, IL6, and cleaved caspase-8 were elevated after 
OGD/R, whereas DMHCA reversed these changes, sug-
gesting that DMHCA can stabilize the microglia against 
inflammation.

By reducing the ratio of p-NF-kB p65/NF-kB p65 and 
p-IKK/IKK in comparison to those in the OGD/R group, 
DMHCA also drastically decreased the NF-kB signaling 
pathway and Ninj1, which could be restored by Ninj1 
gene overexpression (Fig.  7e, f ). We treated microglia 
with betulinic acid, a transcriptional activator of the 
NF-kB pathway (S3603; Selleck Chemicals, USA), to con-
firm the anti-inflammatory effects of DMHCA via the 
NF-kB pathway, and discovered that it counteracted the 
inhibition of RIR + DMHCA group on the key molecule 
of the NF-kB signalling pathway (Fig.  7d). These results 
suggest that the NF-kB pathway was controlled by over-
expressed Ninj1, which negated the anti-inflammatory 
effects of DMHCA.

To evaluate the affinity of DMHCA for Ninj1, we did 
the molecular docking experiment. The binding poses 
and interactions of DMHCA and the Ninj1 protein were 
gained using Autodock Vina v.1.2.2, and binding energy 
for each interaction was calculated (Fig.  7g, h). Results 
showed that DMHCA bound to its target Ninj1 through 
a visible hydrogen bond and strong electrostatic interac-
tions. For Ninj1, DMHCA had a low binding energy of 
− 6.6 kcal/mol, indicating a highly stable binding ability.

Discussion
We explored the intraocular therapeutic efficacy, mecha-
nism, and systemic safety of short-term DMHCA treat-
ment in developing IOP-induced retinal damage. Our 
main findings are as follows: (1) Prophylactic treatment 
with DMHCA prior to injury effectively reduced neuroin-
flammation and RGC apoptosis, thus restoring the retinal 

structure in retinal ischemia–reperfusion; (2) DMHCA 
attenuated microglia-mediated inflammation and polari-
zation by inhibiting activation of the NF-kB signalling 
pathway; (3) DMHCA-mediated anti-inflammation and 
anti-apoptosis effects were, at least partly, due to allevia-
tion of Ninj1, and further support came from the overex-
pression of Ninj1 largely abrogated the protection effects 
of DMHCA by up-regulating the expression of TNFα and 
clv-caspase8; (4) Short-term (3 days) administration and 
a high dose (80  mg/kg of body weight/day) of systemic 
took DMHCA did not increase serum TG or cholesterol 
levels; furthermore, DMHCA is a safe and effective thera-
peutic option against RIR injury.

Substantial evidence suggests that retinal ischemia–
reperfusion is the main mechanism of glaucoma and the 
cause of irreversible vision loss globally [42]. Therefore, 
exploring innovative drugs for RIR treatment is urgent. 
Many inducible rodent models of RIR injury include 
clipping the retinal vessels and cautery of extraocu-
lar veins [43]. The most frequently used model is the 
"pressure-induced RIR model" [12], adopted in the pre-
sent study. Research has revealed that the secretion of 
TNFα increases independently following RIR injury, 
which leads to RGC damage and optic nerve degen-
eration, primarily through originating its downriver 
apoptotic signal cascade [44, 45]. In the retina, TNFα is 
primarily secreted by microglia [6]. Overmuch release of 
cytokines, chemokines, and other inflammatory media-
tors by necrotic cells in the later stages further intensifies 
the inflammatory level. Microglia are intrinsic immuno-
logical cells present in the retina; owing to their toxic or 
protective effects in different contexts, we used the anti-
inflammatory effect of microglia as an important evalu-
ation index. We confirmed that DMHCA ameliorated 
the microenvironment of inflammation in microglia by 
downregulating the levels of pro-inflammatory cytokines, 
TNFα, IL1β, and IL6, and inhibiting the expression of 
apoptosis markers such as cleaved caspase 8, under 
OGD/R-induced inflammation. Similarly, several studies 
have shown that LXR activation decreases the expression 
of a few genes that mediate inflammation, such as iNOS, 

(See figure on next page.)
Fig. 5 Effects of DMHCA on microglia after RIR and Ninj1 activation. a UMAP clustering of myeloid cells. b Violin plot showing the expression of 
the marker genes for each cell type. c Bar plots showing cell abundances across myeloid for the sham, RIR, and RIR + DMHCA groups. d Dot plot 
showing the DEGs between the microglia of the RIR vs. sham and RIR + DMHCA vs. RIR comparison groups. Red, blue, and grey dots indicate the 
up-regulated, downregulated, and unchanged DEGs, respectively. e, f Representative GO and KEGG pathway analyses of up-regulated DEGs of 
microglia in the RIR vs. sham comparison group and downregulated DEGs of microglia in the DMHCA vs. RIR comparison group. Red and blue bars 
indicate up- and downregulated DEGs, respectively. g Heatmap showing the expression of enriched genes matched to the GO term inflammatory 
response. h Venn diagram showing the intersection of the genes enriched in GO terms related to inflammation from the previous GO and KEGG 
pathway analyses of up-regulated DEGs of microglia in the RIR vs. sham comparison group. i Violin plot showing the expression of Ninj1 in each 
group. j Western blot analysis of the indicated proteins, Ninj1; protein levels were normalized to GAPDH levels. k Transcriptional levels of Ninj1 in 
retinas were detected using qRT-PCR; n = 7
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Fig. 5 (See legend on previous page.)
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COX2, MMP9, IL-1β, and IL-6 [46]. In addition, microglia 
can rapidly change states in response to various stimuli 
in the microenvironment. Accompanying the inflamma-
tory activity, we also found that the expression of micro-
glial canonical markers, such as Serpine2, Olfml3, Gpr34, 
and Sparc, was remarkably reduced per the scRNA-seq 
results of our RIR group (Additional file  3: e), a pheno-
type reported in some CNS damages or diseases related 
to neuroinflammation [47, 48]. The expression of these 
genes was partially up-regulated in the RIR + DMHCA 
group, indicating that microglia had switched to a more 
homeostatic "resting" state. These results imply that 
DMHCA was instrumental in ameliorating microglia-
mediated inflammation, which provides evidence of the 
beneficial neuroprotective effects of DMHCA in the RIR 
model.

Next, we explored the specific pathomechanism under-
lying the anti-inflammatory effects of DMHCA. Previous 
investigations have indicated that DMHCA might inhibit 
inflammation and cholesterol accumulation in glomeruli 
through LXR [49]. Additionally, in immune cells, particu-
larly macrophages, LXRs inhibit pro-inflammatory gene 
expression [50]. These findings prompted us to inves-
tigate the transcription factor activity of LXR. We used 
PYSCENIC to compare the transcription factor activity 
between the RIR and DMHCA-treated groups and found 
that LXRα activity was not detected, while LXRβ surpris-
ingly showed lower transcription factor activity in the 
DMHCA-treated retina (Additional file  17: Table  S12). 
We then assessed the expression of the LXR-controlled 
genes using the scRNA-seq data and showed that both 
Abca1 and ApoE expression were downregulated follow-
ing DMHCA treatment (Additional file  18: Table  S13). 
Silico’s analysis confirmed that the LXR pathway was not 
activated as a hinge in the retina through DMHCA treat-
ment, which is consistent with previous findings [51].

After RIR injury and therapy, we evaluated the global 
retinal landscape under homeostatic settings using our 
previously published single-cell transcriptome datasets 
[13]. We determined the proportionate changes in 13 cell 
populations. Ninj1 was enriched in several inflammatory, 
leukocyte migration, and chemotaxis-related pathways in 
the scRNA-seq data used in our studies, suggesting that 
Ninj1 plays a role in immune cell recruitment and the 
subsequent inflammatory damage in injury pathogenesis 

brought on by ocular hypertension. In vivo and in vitro, 
we noticed a noticeably higher expression of Ninj1 after 
inflammation. In line with this, Xiao [52] found that the 
levels of Ninj1 mRNA in circulating leukocytes from 
injured persons were significantly increased (1.87-fold). 
In endotoxin-mediated inflammation, diabetes, and ath-
erosclerosis, Ninj1 controls macrophage activity [34].

As no specific Ninj1 activator exists, we utilized genetic 
manipulations to overexpress Ninj1 and explore its dis-
tinct role in OGD/R injury. Our result implied that com-
pared with OGD/R, treatment with DMHCA decreased 
Ninj1 levels. Additionally, microglia-specific overexpres-
sion of Ninj1 increased inflammatory gene expression 
and apoptosis in the OGD/R model in  vitro (Fig.  7c). 
Similarly, Ninj1-overexpressed macrophages in Hwang’s 
study [34] showed notably higher levels of inflammatory-
related proteins and proangiogenic factors. Moreover, 
the authors found that inhibiting Ninj1 reduced these 
inflammatory mediators. To analyse the binding affinities 
and the possibility of interaction between DMHCA and 
Ninj1, AutodockVina 1.2.2, a silico protein–ligand dock-
ing software, was utilized. The data support a strong abil-
ity of DMHCA to incorporate into and directly bind with 
the membrane protein, Ninj1, which may contribute to 
some of the observed pleiotropic effects. DMHCA pos-
sesses chemical properties of amphipathicity owing to the 
synthetic oxysterol with a shortened sidechain and amide 
moiety. Similar to other oxysterols, DMHCA can be 
incorporated into the exofacial leaflet of the membrane, 
thereby directly modifying the functions of integral and 
membrane-associated proteins [53]. This supports our 
hypothesis that DMHCA can directly interact with Ninj1, 
indicated by preliminary data. The underlying mecha-
nisms remain to be elucidated. Despite our efforts to 
determine the role of Ninj1 in hypoxia and glucose-free 
induced microglial activation in vitro, other cells besides 
microglia might have contributed to the observed. NF-κB 
(p65) is an important transcriptional factor that regulates 
IL-1β and several inflammatory cytokines, while NF-κB 
activation plays a pivotal role in RIR-induced neuroin-
flammatory processes secondary to RGC damage [29, 
54]. Our scRNA-seq results indicate that the NF-κB sig-
nalling pathway was enriched in global RIR retinal cells 
and the immune cell subset, including the myeloid and 
neutrophil populations. NF-κB pathway regulation was 

Fig. 6 Cell–cell communication landscape in Sham, RIR and DMHCA group. a Heatmap showing the number of inferred interactions between the 
cell types analysed in the RIR vs. sham and RIR + DMHCA vs. RIR comparison groups. b Venn diagram showing the number of inferred signalling 
pathways shared across the three groups. c Circle plot showing cell–cell interactions via NT signalling across the three groups. d Violin plot showing 
the expression of the ligand–receptor pairs implicated in NT signalling across the three groups. e Chord plot showing cell–cell interactions via the 
MIF signalling pathway across the three groups

(See figure on next page.)
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further confirmed by the decrease in the NF-κB path-
way protein levels observed following DMHCA treat-
ment compared with those of the RIR model group both 
in vivo and in vitro. Previous preclinical and clinical stud-
ies have suggested that the NF-κB pathway has an anti-
inflammatory effect on inflammatory diseases, including 
dry eye syndrome and glaucoma [55, 56], which further 
affirms the potential clinical value of DMHCA for the 
treatment of glaucoma.

In summary, this study showed that DMHCA signifi-
cantly attenuated RIR-induced neuroinflammation, such 
as alleviating the activation of microglia and decreasing 
the levels of inflammatory mediators, thereby hindering 
apoptosis in RIR-injured mice. Furthermore, DMHCA 
ameliorated neuroinflammation by suppressing Ninj1 
and NF-κB pathway activity. However, genetic overex-
pression of Ninj1 reversed the anti-inflammatory and 
anti-apoptotic effects of DMHCA in the microglia cell 
line. These findings suggest that Ninj1 plays an important 
role in the mechanisms of RIR injury and that DMHCA 
is a promising potential treatment against RIR through 
Ninj1 inhibition.
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