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SARS‑CoV‑2 envelope protein triggers 
depression‑like behaviors and dysosmia 
via TLR2‑mediated neuroinflammation in mice
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Abstract 

Background  Depression and dysosmia have been regarded as primary neurological symptoms in COVID-19 patients, 
the mechanism of which remains unclear. Current studies have demonstrated that the SARS-CoV-2 envelope (E) pro-
tein is a pro-inflammatory factor sensed by Toll-like receptor 2 (TLR2), suggesting the pathological feature of E protein 
is independent of viral infection. In this study, we aim to ascertain the role of E protein in depression, dysosmia and 
associated neuroinflammation in the central nervous system (CNS).

Methods  Depression-like behaviors and olfactory function were observed in both female and male mice receiving 
intracisternal injection of E protein. Immunohistochemistry was applied in conjunction with RT-PCR to evaluate glial 
activation, blood–brain barrier status and mediators synthesis in the cortex, hippocampus and olfactory bulb. TLR2 
was pharmacologically blocked to determine its role in E protein-related depression-like behaviors and dysosmia in 
mice.

Results  Intracisternal injection of E protein evoked depression-like behaviors and dysosmia in both female and male 
mice. Immunohistochemistry suggested that the E protein upregulated IBA1 and GFAP in the cortex, hippocampus 
and olfactory bulb, while ZO-1 was downregulated. Moreover, IL-1β, TNF-α, IL-6, CCL2, MMP2 and CSF1 were upregu-
lated in both cortex and hippocampus, whereas IL-1β, IL-6 and CCL2 were upregulated in the olfactory bulb. Furtherly, 
inhibiting microglia, rather than astrocytes, alleviated depression-like behaviors and dysosmia induced by E protein. 
Finally, RT-PCR and immunohistochemistry suggested that TLR2 was upregulated in the cortex, hippocampus and 
olfactory bulb, the blocking of which mitigated depression-like behaviors and dysosmia induced by E protein.

Conclusions  Our study demonstrates that envelope protein could directly induce depression-like behaviors, dys-
osmia, and obvious neuroinflammation in CNS. TLR2 mediated depression-like behaviors and dysosmia induced by 
envelope protein, which could serve as a promising therapeutic target for neurological manifestation in COVID-19 
patients.
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Introduction
The COVID-19 pandemic has dramatically impacted 
the world since the SARS-CoV-2 virus infection out-
break in 2019. Clinical symptoms of COVID-19 could 
involve several human body systems, apart from the 
most commonly known respiratory system symptoms. 
The COVID-19 infection can cause a series of neuro-
logical symptoms, including attention disorders, sleep 
disorders, short-term memory loss, seizures, strokes, 
headaches, dizziness, smell and taste loss, and neuropsy-
chiatric symptoms, such as anxiety and depression [1–8]. 
Furthermore, brain MRI imaging of COVID-19 patients 
showed a decrease in overall brain size, prefrontal brain, 
and parahippocampal gyrus gray matter thickness. Addi-
tionally, changes of tissue damage markers in the primary 
olfactory cortex regions were more significant compared 
with the negative control group [9]. Further pathological 
observation revealed that brain samples from patients 
with COVID-19 showed replication of SARS-CoV-2 in 
CNS and infection of glial cells by the virus [10]. How-
ever, the relationship between SARS-CoV-2 infection and 
COVID-19 neurological symptoms remains unclear.

The SARS-CoV-2 virus has four structural proteins: 
the membrane protein, spike protein, nucleocapsid 
protein, and envelope protein (E) [11]. The E is a small 
integral protein composed of only 75 amino acids. How-
ever, E involves many processes in the virus’s life cycle, 
such as assembly, budding, envelope formation, and 
pathogenic mechanism [12]. The E is highly expressed 
in infected cells during the virus’s replication cycle [13]. 
E plays a vital role in the production and maturation of 
the virus. Evidence reveals that recombinant coronavirus 
lacking E showed significantly decreased virus titers and 
offspring with impaired virus maturation or insufficient 
production and proliferation [14, 15]. Meanwhile, E, as 
a multifunctional protein, not only acts as a structural 
component in the virus capsid and participates in virus 
assembly, but also acts as a virulent toxin and participates 
in the pathogenesis of the virus [16, 17].

Previous evidence reported that the E protein of SARS-
CoV-2 could bind to the Toll-like receptors (TLRs) and 
induce pulmonary inflammation [18]. Additionally, 
the E protein is also necessary for the release of inflam-
matory cytokines during coronavirus infection. It was 
found that the E protein could interact with TLR2 recep-
tors and induce the expression of tumor necrosis factor, 
interferon-γ, interleukin 6, and interleukin 1β in human 
peripheral blood mononuclear cells. The SARS-CoV-1 
strain lacking the E protein was unable to activate the 
NF-κB signal transduction pathway, resulting in a sig-
nificant decrease in the production of inflammatory 
cytokines [19]. Combined the neurological SARS-CoV-2 
infection with the essential role of E protein–TLRs 

interaction in the virus pathogenesis, we hypothesize that 
the COVID-19 patients’ dysosmia and depression symp-
toms might be mediated by the interaction of E protein 
with TLRs of glial cells.

Methods
Animals
Wild type C57BL/6 male and female mice (20–25  g; 
6–8  weeks), purchased from the National Institutes for 
Food and Drug Control in China, were used in this study. 
Animals were housed under a 12-h light/12-h dark cycle 
with ad libitum access to food and water.

Sucrose preference test (SPT)
The mice were housed in cages with a two-bottle-choice 
setting for 48  h (one bottle for water and the other for 
1.5% sucrose solution). In addition, the position of the 
two bottles was switched at 24 h. Water access was then 
deprived from the tested mice for 24  h. The two-bottle 
drinking setting was provided again for the tested mice 
for 2 h, during which the position of the two bottles was 
switched at 1 h. The ratio of sucrose solution consumed 
to the total fluid intake was determined as the sucrose 
preference [20].

Tail suspension test (TST)
The TST was performed as previously described. Briefly, 
each mouse was suspended by its tail with a short adhe-
sive tape connected to a load cell that transmitted a signal 
corresponding to activity. The total test time was 6 min. 
After setting a low threshold, the duration of immobility 
was recorded and analyzed by tail suspension software 
(SOF-821, Med Associates) [20].

Forced swimming test (FST)
Mice were individually placed in a beaker (height: 19 cm; 
diameter: 14 cm) containing 14 cm of water (23 ± 2  °C). 
The total test duration was 6 min. The process was vid-
eotaped, and the immobility time in the last 4  min was 
scored by an experienced observer blinded to the experi-
mental treatment. Floating or only slight movement to 
maintain balance was considered as immobility [20].

Olfactory measurement (OM)
On the first day, the mice were trained for 3 min in a cage 
containing sunflower seeds in four corners. Then, the 
mice were trained for 3  min again, but sunflower seeds 
were placed only in one corner. Following the training, 
the mice were separated from their dam and food was 
withheld for one day. Three 3-min trials were conducted 
on day 3. In trials 1 and 2, one sunflower seed was placed 
in the cage on bedding, each time in a different corner. In 
trial 3, a seed was buried under the bedding at the center 
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of the cage. The latency to find the food was recorded. If 
mice could not to find a seed within 3 min, the latency to 
find food was recorded as 180 s. A shorter latency to find 
buried sunflower seed indicates better olfaction [21].

Intracisternal injection
To observe the effects of E protein in CNS, mice received 
intracisternal injection of E protein. Briefly, E protein 
(0.2 μg/μl buffered in PBS, 5 μl) (ENN-C5128, Acro Bio-
systems) or Vehicle (PBS, 5  μl) was slowly injected into 
the cisterna magna using a specially made length-limited 
syringe [22–24]. To inhibit microglia and astrocytes, 
minocycline (a microglial inhibitor, 5  μg in 5  μl PBS, 
delivered daily for constructive 5  days prior to E pro-
tein application) (M9511, sigma) and L-α-aminoadipate 
(LAA, an astroglial toxin, 50  nmol buffered in 1N HCl 
and further diluted in PBS, delivered 1 h prior to E pro-
tein application) (A7275, sigma) were applied via intra-
cisternal injection [25, 26]. To specifically block TLR2, 
C29 (a specific TLR2 inhibitor, 50 mg/kg, buffered in PBS 

containing 10% DMSO) was injected into the cisterna 
magna via syringe 1 h prior to E protein application. The 
timeline of drug delivery, behavior test, and tissue collec-
tion is depicted in Fig. 1.

Immunofluorescence
Immunofluorescence (IF) was performed as previously 
described. Briefly, mice were anesthetized with intraperi-
toneal sodium pentobarbital injection (40 mg/kg) under 
aseptic condition and then transcardially perfused with 
ice-cold PBS followed by ice-cold paraformaldehyde. The 
whole brain from each tested mouse was collected, post-
fixed in 4% paraformaldehyde at 4 °C for 2 h, then dehy-
drated in 30% sucrose at 4  °C. Then, these brain tissues 
were embedded in OCT (Tissue-Tek, Japan) and seri-
ally sectioned in a cryostat (Leica 2000, Germany) into 
30-μm-thick slices. The tissue sections were blocked with 
5% donkey serum containing 0.3% Triton X-100 for 1 h, 
and then primary antibodies were incubated at 4 °C over-
night in a wet box. After washing in PBS buffer, secondary 

Fig. 1  The timeline of E protein injection, drug delivery and behavioral testing
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antibodies were incubated for 1  h at room temperature 
(primary antibodies list: ZO-1, ab 221547, abcam, 1:200; 
IBA1, ab5076, abcam, 1:1000; GFAP, ab53554, abcam, 
1:1000; TLR2, ab209216, abcam, 1:200. Secondary anti-
body list: Donkey anti-Rabbit 488, A32790, Invitrogen, 
1:500; Donkey anti-Mouse 488, A-21202, Invitrogen, 
1:500; Donkey anti-Goat 488, ab150129, abcam, 1:500). 
The slides were then coverslipped by Mounting Medium 
solution containing DAPI (ZSJB-Bio, Beijing, China). 
Images were captured by a laser confocal microscopic 
imaging system under the same settings (TCS-SP8 STED 
3X, Leica, Germany). The quantification for IF stain-
ing referred to previous studies [27]. At least 10 sections 
from 3 randomly selected mice in each group were exam-
ined. The positive area of IBA1, GFAP, ZO-1 and TLR2 
staining was measured with Image J.

Quantitative RT‑PCR
Total RNAs from the cortex, hippocampus, and olfactory 
bulb were extracted using Trizol reagent (CW-bio, Bei-
jing, China) and then reverse transcribed by RT Master 
Mix according to the instruction (Takara, Japan). Finally, 
qRT-PCR was performed using a CFX96™ Real-Time 
PCR Detection System (Bio-Rad, California, USA) with 
TB Green Premix Ex Taq (Takara, Japan). The primers 
used are listed in Additional file 4: Table S1.

Statistical analysis
Data values were presented as means with standard 
errors (mean ± SEM). Statistical analyses were performed 
by Graph Pad software. The Shapiro–Wilk test was 
applied to determine the normality for the parametric 
test. The Student’s t-test was used to determine the sta-
tistical difference between two groups. The criterion for 
statistical significance was a value of p < 0.05.

Results
E protein induced depression‑like behaviors and dysosmia 
in female and male mice
To identify the neuropathological effects of E protein, we 
applied intracisternal injection of E protein and evalu-
ated the mental and olfactory status. The SPT, TST, and 
FST tests indicated that E protein in the CNS signifi-
cantly induced depression-like behaviors in both female 
and male mice (Fig.  2A–C). Furthermore, the OM test 
showed that E protein increased the time to find the tar-
get food in both female and male mice, suggesting that 
E protein evoked olfactory impairment (Fig. 2D). Collec-
tively, we observed typical depression-like behaviors and 
olfactory disturbances in COVID-19 patients as a result 
of E protein delivery to the CNS.

E protein triggered neuroinflammation and blood–brain 
barrier damage in cortex, hippocampus and olfactory bulb
Neuroinflammation has been regarded as a key cause 
of depressive and olfactory disorders, so we further 
systemically assessed the neuroinflammatory status in 
the cortex, hippocampus and olfactory bulb regions. IF 
staining for the microglia marker IBA1 suggested sig-
nificant microglia activation induced by E protein in 
the cortex (Fig.  3A, B), hippocampus (CA1, CA3 and 
DG regions) (Fig.  3C–F), and olfactory bulb (Fig.  3G, 
H) in both male and female mice. Meanwhile, GFAP, 
the astrocytes marker, was also upregulated by E pro-
tein in the cortex (Fig.  4A, B), hippocampus (CA1, 
CA3 and DG regions) (Fig. 4C–F), and olfactory bulb 
(Fig.  4G, H). These results indicated that E protein 
triggered significant glial activation in the cortex, hip-
pocampus and olfactory bulb regions. The destruc-
tion of the blood–brain barrier (BBB) plays a critical 
role in the formation of neuroinflammation; there-
fore, we also tested the expression of tight junction 
marker ZO-1 to evaluate BBB status. The IF staining 
showed a significant decrease of ZO-1 expression in 
the cortex (Fig.  5A, B), hippocampus (CA1, CA3 and 
DG regions) (Fig.  5C–F), and olfactory bulb (Fig.  5G, 
H) induced by E protein injection in both female and 
male mice. Further, we screened the typical neuroin-
flammatory mediators in the relative brain areas. The 
RT-PCR results showed that the mRNA expression 
levels of IL-1β, TNF-α, IL-6, CCL2, MMP2 and CSF1 
were upregulated in the cortex and hippocampus. 
Meanwhile, the mRNA levels of IL-1β, IL-6 and CCL2 
were increased in the olfactory blob (Fig. 6). Together, 
the above results suggested the occurrence of neuro-
inflammation induced by E protein in brain regions 
related to depression-like behaviors and dysosmia.

Inhibiting microglia mitigated depression‑like behaviors 
and dysosmia induced by E protein
Both microglia and astrocytes are essential components 
in neuroinflammation and neuropathological process. 
To further investigate the contribution of microglia and 
astrocytes in E-induced depression-like behaviors and 
dysosmia symptoms, we used minocycline and LAA to 
inhibit microglia and astrocytes, respectively, before E 
protein administration. Immunofluorescence staining 
suggested that minocycline significantly downregulated 
the expression of IBA-1 in the cortex, hippocampus, and 
olfactory bulb (Fig.  7A–C). Similarly, the GFAP mole-
cule expression was inhibited by LAA (Additional file 1: 
Figure S1A-C). The SPT, TST, and FST tests showed 
that microglia inhibition by minocycline could suc-
cessfully alleviate E-induced depression-like behaviors 
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and olfactory disorder in mice (Fig.  7D–G). However, 
the astrocytes inhibition by LAA failed to recover the 
depression-like behaviors and olfactory disorder in mice 
at our observed time point (Additional file 1: Figure S1D-
G). Furtherly, minocycline blocked the pro-inflammatory 
cytokines production induced by E protein (Additional 
file  2: Figure S2), which might serve as the key source 
of depressive behavior and dysosmia. Taken together, 
these results indicated that it was microglia rather than 

astrocytes that mediated E-induced depression-like 
behaviors and dysosmia.

E protein upregulated TLRs in cortex, hippocampus 
and olfactory bulb
As an exogenous protein, E protein may be recognized 
by Toll-like receptors, a group of classic pattern recog-
nition receptors. To identify the possible interaction 
between TLRs and E protein, we investigated the TLRs 
mRNA expression in associated brain regions. The 

Fig. 2  The SPT, TST, FST, and OM for mice receiving intracisternal injection of E protein. A The percentage of sucrose water consumption for female 
and male mice receiving Vehicle or E protein injection. B. The immobility duration in TST test for female and male mice receiving Vehicle or E protein 
intracisternal injection. C The immobility duration in FST test for female and male mice receiving Vehicle or E protein intracisternal injection. D The 
latency time for discovering the sunflower seed in the OM test. n ≥ 6 mice per group; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; Student’s t test
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RT-PCR results showed that TLR2, TLR3, TLR5, and 
TLR8 mRNA expression were upregulated in the cor-
tex (Fig.  8A). Additionally, the E protein injection also 

significantly upregulated TLR2, TLR3, TLR4, TLR5 and 
TLR8 in the hippocampus (Fig. 8B). In the olfactory bulb, 
the TLR2, TLR7 and TLR8 mRNA expression levels were 

Fig. 3  Intracisternal injection of E protein upregulated IBA1 in the cortex, hippocampus and olfactory bulb. A Representative images of IBA1 
expression in the cortex from mice receiving Vehicle or E protein injection. B Fluorescence area analysis showed that E protein significantly 
upregulated IBA1 expression in the cortex. C Representative images of IBA1 expression in the hippocampus (CA1, CA3 and DG regions) from mice 
receiving Vehicle or E protein injection. D–F Fluorescence area analysis showed that E protein significantly increased IBA1 expression in the CA1, 
CA3, and DG regions of hippocampus. G Representative images of IBA1 expression in the olfactory bulb from mice receiving Vehicle or E protein 
injection. H Fluorescence area analysis showed that E protein significantly upregulated IBA1 expression in the olfactory bulb. Scale bar: 50 μm. n ≥ 6 
per group; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; Student’s t test
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Fig. 4  Intracisternal injection of E protein upregulated GFAP in the cortex, hippocampus and olfactory bulb. A Representative images of GFAP 
expression in the cortex from mice receiving Vehicle or E protein injection. B Fluorescence area analysis showed that E protein significantly 
upregulated GFAP expression in the cortex. C Representative images of GFAP expression in the hippocampus (CA1, CA3 and DG regions) from mice 
receiving Vehicle or E protein injection. D–F Fluorescence area analysis showed that E protein significantly upregulated GFAP expression in the 
CA1, CA3 and DG regions of the hippocampus. G Representative images of GFAP expression in the olfactory bulb from mice receiving Vehicle or 
E protein injection. H Fluorescence area analysis showed that E protein significantly upregulated GFAP expression in the olfactory bulb. Scale bar: 
50 μm. n ≥ 6 per group; *p < 0.05, **p < 0.01, ****p < 0.0001; Student’s t test
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Fig. 5  Intracisternal injection of E protein downregulated ZO-1 in the cortex, hippocampus and olfactory bulb. A Representative images of 
ZO-1 expression in the cortex from mice receiving Vehicle or E protein injection. B Fluorescence area analysis showed that E protein significantly 
downregulated ZO-1 expression in the cortex. C Representative images of ZO-1 expression in the hippocampus (CA1, CA3 and DG regions) from 
mice receiving Vehicle or E protein injection. D–F Fluorescence area analysis showed that E protein significantly downregulated ZO-1 expression in 
the CA1, CA3, and DG regions of the hippocampus. G Representative images of ZO-1 expression in the olfactory bulb from mice receiving Vehicle or 
E protein injection. H Fluorescence area analysis showed that E protein significantly downregulated ZO-1 expression in the olfactory bulb. Scale bar: 
50 μm. n ≥ 6 per group; *p < 0.05, **p < 0.01, ****p < 0.0001; Student’s t test
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Fig. 6  Intracisternal injection of E protein induced neuroinflammatory mediators in the cortex, hippocampus and olfactory bulb. A qRT-PCR 
analysis showed that intracisternal injection of E protein upregulated IL-1β, TNF-α, IL-6, CCL2, MMP2 and CSF1 in the cortex. B qRT-PCR analysis 
showed that intracisternal injection of E protein upregulated IL-1β, TNF-α, IL-6, CCL2, MMP2 and CSF1 in the hippocampus. C qRT-PCR analysis 
showed that intracisternal injection of E protein upregulated IL-1β, IL-6, and CCL2 in the olfactory bulb. n = 4; *p < 0.05, **p < 0.01, ***p < 0.001, 
****p < 0.0001; n.s., no significance; Student’s t test
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upregulated by E protein injection (Fig. 8C). These results 
indicated that the E protein might take effect via activat-
ing the TLRs-dependent signaling pathway. Given that 
TLR2 was upregulated among three brain regions and its 
crucial role in microglia function, we further investigated 
the distribution and role of TLR2 in E-related depres-
sion-like behaviors and dysosmia.

Blocking TLR2 alleviated depression‑like behaviors 
and dysosmia induced by E protein
We hypothesized that the E protein triggered neuroin-
flammation and evoked depression-like behaviors and 
dysosmia symptoms via TLR2 in CNS. Firstly, IF staining 
of TLR2 suggested that E protein application to the CNS 
significantly upregulated TLR2 expression in the cortex 
(Fig.  9A, B), hippocampus (CA1, CA3 and DG regions) 
(Fig. 9C–F), and olfactory bulb (Fig. 9G, H). Secondly, we 
pharmacologically blocked TLR2 using C29a, a specific 
TLR2 blocker. Simultaneously, the activation of micro-
glia (Fig. 10A–C) and the synthesis of pro-inflammatory 
cytokines (Additional file 3: Figure S3) were inhibited by 
C29. The SPT, TST, and FST tests indicated the depres-
sion-like behaviors induced by E protein were alleviated 
by C29 (Fig. 10D–F). Additionally, the shortened latency 
time in the OM test suggested that the olfactory disor-
der in mice was also relieved by C29 (Fig. 10G). Overall, 
these results revealed that blocking TLR2 could alleviate 
E-induced dysosmia and depression-like behaviors.

Discussion
Patients with COVID-19 suffer from various neurological 
and psychiatric symptoms such as dysosmia and depres-
sion [28, 29]. The cellular and molecular mechanisms 
are still elusive, though. The recent discovery provides 
evidence in support of the notion that the SARS-CoV-2 
envelope protein may cause a neuroinflammatory 
response separate from viral infection [18, 30]. Given 
these pro-inflammatory properties of the E protein and 
that neuroinflammation often leads to olfactory dysfunc-
tion and mood disorder, we examined the ability of the E 
protein to trigger inflammatory responses in CNS in vivo 
and the behavioral sequelae of that response. We dem-
onstrated that intracisternal injection of E protein led to 

depression-like behaviors and dysosmia as well as neu-
roinflammation in CNS of mice. Our results suggest that 
several neurological and psychiatric disorders observed 
in COVID-19 patients can be mediated by the E protein 
during SARS-CoV-2 infection.

Hyperactivation of the neuroimmune system is closely 
related to mood disorders and olfactory dysfunction. 
There is mounting evidence that microglia play an etio-
logical role in this process [31, 32]. Depression is con-
sidered a microglia-associated disorder. Suicidal people 
and depressive patients exhibit notably elevated micro-
glia activation [33, 34]. Several depression-related brain 
regions have shown sustained microglial activation 
exhibiting high amounts of pro-inflammatory cytokines 
[35–37]. Microglial cells are highly concentrated in hip-
pocampus, particularly in the CA1 region, and activation 
of these cells has been linked to the pathophysiology of 
major depressive disorder [38]. Depressive-like behav-
iors were reduced by inhibiting microglial activation and 
neuroinflammation [39]. Some clinical antidepressants, 
such as nonsteroidal anti-inflammatory drugs, appear 
to reduce the symptoms of depression by preventing the 
activation of microglia [40–42]. In addition, CNS inflam-
mation is one of the etiologies of olfactory disorders [43]. 
Olfaction is a crucial sense controlled by the olfactory 
epithelium’s perception of odor molecules, which is then 
transported to the olfactory bulb via olfactory nerves and 
processed in the brain [44]. There are lots of microglia in 
the olfactory bulb. Microgliosis is frequently observed 
in the olfactory bulb of olfactory dysfunction animals 
[45, 46]. Olfactory impairments may be caused by the 
microglial reaction in the olfactory bulb which leads to 
the loss of neuroblasts [47]. As we observed, the inhibi-
tion of microglia effectively suppressed the inflammatory 
responses in associated brain regions (Additional file  2: 
Figure S2) and alleviated the depression-like behaviors 
and olfactory dysfunction induced by the E protein.

The E protein induces potent inflammatory responses 
as a virulence factor [48]. Microglia and astrocytes were 
activated by intracisternal injection of the E protein. 
SARS-CoV-2 virus caused microglial activation and 
astrogliosis, according to a postmortem case study [49]. 
Microglia and astrocytes are CNS resident cells and play a 
crucial role in homeostasis and neuroinflammation [50]. 

(See figure on next page.)
Fig. 7  Inhibiting microglia alleviated depression-like behaviors and dysosmia induced by E protein. A Representative images of IBA1 expression 
in the cortex, hippocampus regions, and olfactory bulb from E protein-treated mice receiving Vehicle or minocycline injection. B, C Fluorescence 
area analysis indicated that minocycline significantly downregulated IBA1 expression in the cortex, hippocampus (CA1, CA3, and DG regions), and 
olfactory bulb (Scale bar: 50 μm). D The percentage of sucrose water consumption for PBS- or E protein-treated female and male mice receiving 
Vehicle or minocycline injection. E The immobility duration in TST test for PBS- or E protein-treated female and male mice receiving Vehicle or 
minocycline injection. F The immobility duration in FST test for PBS- or E protein-treated female and male mice receiving Vehicle or minocycline 
injection. G The latency time for discovering the sunflower seed in the olfactory measurement for PBS- or E protein-treated female and male mice 
receiving Vehicle or minocycline injection. n ≥ 6 mice per group; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n.s., no significance; Student’s t-test
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We found that the inhibition of microglia, but not astro-
cytes, alleviated the E protein-induced depression-like 
behaviors and olfactory disorder. As the innate immune 

cells in the brain, microglia are more sensitive to patho-
gens than astrocytes and serve as the main mediators 
of neuroinflammation [51]. In response to CNS injury, 

Fig. 7  (See legend on previous page.)
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Fig. 8  Intracisternal injection of E protein upregulated TLRs in the cortex, hippocampus and olfactory bulb. A qRT-PCR analysis showed that 
intracisternal injection of E protein upregulated TLR2, TLR3, TLR5 and TLR8 in the cortex. B qRT-PCR analysis indicated that intracisternal injection 
of E protein upregulated TLR2, TLR3, TLR4, TLR5, and TLR8 in the hippocampus. C qRT-PCR analysis showed that intracisternal injection of E protein 
upregulated TLR2, TLR7, and TLR8 in the olfactory bulb. n = 4; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001; n.s., no significance; Student’s t test
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microglial activation is essential for host defense and 
neuron survival [52]. However, persistent activation and 
dysregulation of microglia may result in deleterious and 

neurotoxic consequences by overproduction of a variety 
of cytotoxic factors such as TNF-α [53]. Toxins and path-
ological stimuli injure neurons, which is enhanced and 

Fig. 9  Intracisternal injection of E protein upregulated TLR2 in the cortex, hippocampus and olfactory bulb. A Representative images of TLR2 
expression in the cortex from mice receiving Vehicle or E protein injection. B Fluorescence area analysis showed that E protein significantly 
upregulated TLR2 expression in the cortex. C Representative images of TLR2 expression in the hippocampus (CA1, CA3 and DG regions) from mice 
receiving Vehicle or E protein injection. D–F Fluorescence area analysis showed that E protein significantly upregulated TLR2 expression in CA1, CA3 
and DG regions of the hippocampus. G Representative images of TLR2 expression in the olfactory bulb from mice receiving Vehicle or E protein 
injection. H Fluorescence area analysis showed that E protein significantly upregulated TLR2 expression in the olfactory bulb. Scale bar: 50 μm. n ≥ 6 
per group; **p < 0.01, ***p < 0.001, ****p < 0.0001; Student’s t test
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amplified by overactive microglia [54]. This then further 
causes more extensive damage to nearby neurons and 
ultimately promotes pathogenic outcomes [55, 56].

On the other hand, both microglia and astrocytes can 
release pro-inflammatory mediators upon activation. In 
line with these findings, the E protein showed elevated 
expression of pro-inflammatory cytokines IL-1β and 
IL-6 in cortex, hippocampus, and olfactory bulb. Recent 
findings showed that increased levels of IL-1β and IL-6 
were discovered in the cerebral fluid of patients with 
COVID-19 infection and neurological symptoms [57, 
58]. Importantly, IL-1β and IL-6 have been identified as 
targets for alleviating the clinical condition, because they 
are thought to produce detrimental effects including the 
neurotoxic effect and inflammation. IL-1β has various 
biological activities. It increases neuronal apoptosis as 
well as neuronal loss by NMDA-evoked, glia-triggered, 
and/or proNGF-mediated pathways [59–62]. IL-6 also 
has been linked to neuronal cell death [63]. Furthermore, 
we observed that the E protein reduced the expression 
of ZO-1 in various brain regions. IL-1β and IL-6 have 
been shown to enhance blood–brain barrier permeabil-
ity through cytokines-induced tight junction degrada-
tion, particularly ZO-1 and claudin-5 [64–66]. Alteration 
of the BBB integrity increases the opportunity for the 
viruses and cytokines to pass the BBB and facilitate the 
infiltration of periphery immune cells into the CNS, 
resulting in brain injury and exacerbating neuropsychiat-
ric symptoms [67, 68].

The E protein may induce the production of inflamma-
tory factors through two potential mechanisms. TLR2 
can sense the E protein [18, 69]. The E protein specifi-
cally interacts with the TLR2 pathway, activating NF-κB 
and inducing the release of pro-inflammatory cytokines 
and inflammatory chemokines. Additionally, it was found 
that the SARS-CoV envelope protein interacted with syn-
tenin of the host cell. This interaction caused syntenin to 
be redistributed to the cytoplasm, where it caused the 
upregulation of inflammatory cytokines [70]. This would 
cause an exacerbated immune response, leading to tis-
sue damage, edema, and ultimately the characteristic 

acute respiratory distress syndrome, which was consist-
ent with the histopathological characteristics induced by 
the SARS-CoV-2 E protein in the mouse spleen and lung 
[48].

TLRs identify pathogen-associated molecular pat-
terns (PAMPs) and trigger immune responses on 
interaction with infectious pathogens. TLR1–9 are 
expressed in microglia. The expression of TLRs in 
microglia is controlled in response to pathogens [71]. 
Microglial activation and neurotoxicity have been con-
nected to TLRs [72, 73]. Several TLRs (TLR1, TLR2, 
TLR4, etc.) have an association with disease progres-
sion in patients with COVID-19 [18]. In particular, 
TLR2, which can sense the E protein, is necessary for 
inflammatory responses to coronavirus. We also found 
that the E protein upregulated TLRs in multiple brain 
regions and triggered microglial inflammatory response 
via TLR2 in  vivo. TLR2 is crucial for the microglia in 
response to viruses [74]. TLR2 activation induced 
microglia to release NO and other cytotoxic substances 
through multiple ligands [75].

This study has several limitations. We found that 
the E protein caused neuroinflammation by activat-
ing TLR2 and led to depression-like behaviors and 
dysosmia. Although C29 simultaneously inhibited the 
activation of microglia while suppressing TLR2, given 
that TLR2 receptors are expressed in both astrocytes 
and neurons, it would be a more explicit approach to 
use the Cre-loxP system to further knock out TLR2 in 
microglia. In the CNS, microglia constantly monitor 
the microenvironment and produce substances that 
have an impact on nearby astrocytes and neurons [76]. 
Although the interplay between glial cells and neurons 
is crucial in brain pathophysiology [77], it is impossible 
to disregard the immediate impact of SARS-CoV-2 on 
neurons. SARS-CoV-2 can infect neurons directly [78, 
79]. Whether the E protein causes injury to neurons 
and there is a relationship between this effect and the 
neurological complications of SARS-CoV-2  deserve 
further exploration.

Fig. 10  Blocking TLR2 alleviated depression-like behaviors and dysosmia induced by E protein. A Representative images of IBA1 expression in the 
cortex, hippocampus regions, and olfactory bulb from E protein-treated mice receiving Vehicle or C29 injection (scale bar: 50 μm). B, C Fluorescence 
area analysis showed that C29 significantly downregulated IBA1 expression in the cortex, hippocampus (CA1, CA3, and DG regions), and olfactory 
bulb. D The percentage of sucrose water consumption for PBS- or E protein-treated female and male mice receiving Vehicle or C29 injection. E The 
immobility duration in TST test for PBS- or E protein-treated female and male mice receiving Vehicle or C29 injection. F The immobility duration in 
FST test for PBS- or E protein-treated female and male mice receiving Vehicle or C29 injection. G The latency time for discovering the sunflower seed 
in olfactory measurement in PBS- or E protein-treated female and male mice receiving Vehicle or C29 injection. n ≥ 6 per group; *p < 0.05, **p < 0.01, 
****p < 0.0001; n.s., no significance; Student’s t-test

(See figure on next page.)
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