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Abstract 

Alzheimer’s Disease (AD) contributes to most cases of dementia. Its prominent neuropathological features are 
the extracellular neuritic plaques and intercellular neurofibrillary tangles composed of aggregated β-amyloid (Aβ) 
and hyperphosphorylated tau protein, respectively. In the past few decades, disease-modifying therapy targeting Aβ 
has been the focus of AD drug development. Even though it is encouraging that two of these drugs have recently 
received accelerated US Food and Drug Administration approval for AD treatment, their efficacy or long-term safety 
is controversial. Tau has received increasing attention as a potential therapeutic target, since evidence indicates 
that tau pathology is more associated with cognitive dysfunction. Moreover, inflammation, especially neuroinflam-
mation, accompanies AD pathological processes and is also linked to cognitive deficits. Accumulating evidence 
indicates that inflammation has a complex and tight interplay with tau pathology. Here, we review recent evidence 
on the interaction between tau pathology, focusing on tau post-translational modification and dissemination, 
and neuroinflammatory responses, including glial cell activation and inflammatory signaling pathways. Then, we sum-
marize the latest clinical trials targeting tau and neuroinflammation. Sustained and increased inflammatory responses 
in glial cells and neurons are pivotal cellular drivers and regulators of the exacerbation of tau pathology, which further 
contributes to its worsening by aggravating inflammatory responses. Unraveling the precise mechanisms underlying 
the relationship between tau pathology and neuroinflammation will provide new insights into the discovery and clin-
ical translation of therapeutic targets for AD and other tau-related diseases (tauopathies). Targeting multiple patholo-
gies and precision therapy strategies will be the crucial direction for developing drugs for AD and other tauopathies.
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Background
Dementia is currently one of the leading causes of dis-
ability and dependency among the elderly [1]. The World 
Health Organization reported that in 2022, more than 55 
million people live with dementia worldwide, which will 
increase to 139 million by 2050 [2]. Dementia has become 
a major public health challenge and imposes enormous 
societal and economic burdens. Alzheimer’s disease (AD) 
contributes to 60–70% of dementia cases and is charac-
terized by poor learning and memory as well as progres-
sive and irreversible declines in cognition and behavior 
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[3]. The two prominent pathological hallmarks of AD are 
the extracellular neuritic plaques (NPs) and intercellular 
neurofibrillary tangles (NFTs) consisting of the accumu-
lation of β-amyloid (Aβ) and hyperphosphorylated tau 
protein, respectively [4]. In addition, activation of inflam-
matory processes and immune responses are commonly 
observed in AD brain tissues [5].

As an age-related neurodegenerative disease, AD is 
divided into two subtypes according to the age of onset: 
early-onset AD (EOAD, < 65  years) and late-onset AD 
(LOAD, ≥ 65 years). Most AD cases are LOAD, a complex 
disease with heterogeneous etiologies including genetics, 
aging, environment, lifestyle, and chronic diseases, such 
as obesity [6]. EOAD accounts for about 10% of the total 
AD cases. Only 5% of patients with EOAD carry a patho-
genic variant in the AD genes (APP, PSEN1, and PSEN2 
coding for the amyloid precursor protein, the presenilin 
1 and 2, respectively) or the apolipoprotein E (APOE) 
ε4 allele. The pathogenesis remains unknown in most 
patients with EOAD [7].

Although the symptoms of AD are well-studied, no 
treatments can halt and reverse the progression of AD. 
Our understanding of AD pathogenesis is still limited. At 
present, the pathogenic hypotheses of AD mainly include 
the amyloid cascade hypothesis, tau hypothesis, inflam-
matory hypothesis, cholinergic hypothesis, etc. The amy-
loid cascade hypothesis is the most widely accepted one. 
However, nearly, all anti-Aβ drugs have failed to show 
satisfactory therapeutic efficacy in the past two decades. 
It is encouraging that in 2021, aducanumab, a humanized 
recombinant monoclonal antibody targeting Aβ, became 
the first disease-modifying therapy (DMT) drug for AD 
approved by an accelerated pathway of the US Food and 
Drug Administration (FDA). This approval based on 
reduced amyloid markers and its clinical efficacy remains 
controversial [8, 9]. In January 2023, FDA approved a new 
monoclonal antibody against Aβ called lecanemab for the 
treatment of early AD, also by its accelerated approval 
pathway. Lecanemab reduced brain amyloid burden 
markedly in early AD and cognitive decline moderately 
than placebo at 18  months but was related to adverse 
events [10]. The efficacy or long-term safety of these two 
drugs needs further validation. In addition, it is timely to 
revisit the amyloid cascade hypothesis and consider other 
targets, such as anti-tau or anti-inflammatory drug devel-
opment for AD. Increasing evidence demonstrates that 
the cognitive dysfunction and severity of the disease are 
more related to tau pathology [11–14]. The inflammatory 
responses (especially neuroinflammation) accompany the 
entire progress of AD pathogenesis and are also linked to 
cognitive dysfunction [15]. Therefore, this review focuses 
on tau pathological changes in the progression of AD and 
summarizes recent studies on the mutual regulation and 

influence of neuroinflammation and tau pathology. The 
current clinical drug development based on the tau and 
inflammation hypotheses is also discussed. This review 
will provide new insights into AD pathogenesis and drug 
treatment strategies.

Mechanisms of tau‑mediated neurodegeneration
Neuronal inclusions composed of the aberrant aggre-
gated microtubule-associated protein tau (MAPT) 
have been found in the brains of patients with neurode-
generative disorders called tauopathies, including AD, 
progressive supranuclear palsy (PSP), frontotemporal 
lobar degeneration (FTLD), and Pick’s disease [PiD, also 
termed frontotemporal dementia and parkinsonism 
linked to chromosome 17 (FTDP-17)]. Misfolded tau is a 
key pathological feature in AD, the most common tauop-
athy. The insoluble tau deposits comprised of fibrils are 
most commonly found in the cell bodies and dendrites 
of neurons, and they are called NFTs [16]. Correlations 
between NFT density and clinical symptoms, such as 
a cognitive decline in AD, have been demonstrated [11, 
12].

Expression and function of tau
Tau was first discovered in 1975. As a microtubule-asso-
ciated protein, it is expressed at a high and soluble level 
in neurons throughout the central nervous system (CNS) 
[17]. Tau is predominantly found in the axons of neu-
rons. A pivotal function of tau is to bind to microtubules, 
enhance the assembly, and regulate the stability of micro-
tubules, which plays essential roles in neurite outgrowth, 
cell shape and polarity, and intracellular cargo (such as 
neurotransmitters) transport [18].

The human tau is encoded by the 16 exons-comprising 
MAPT gene on chromosome 17q21 [19]. In the human 
brain, alternative splicing of exons 2 and 3 of the tau 
gene produces three isoforms with 0, 1, or 2 N-termi-
nal repeats (0N, 1N, 2N), whereas the absence or pres-
ence of exon 10 results in tau species with either three 
(3R) or four (4R) carboxyl-terminal microtubule-binding 
domain. Thus, six major tau isoforms are expressed in 
the human brain and range from 352 to 441 amino acids 
in length [19]. The expression of Tau isoforms is regu-
lated developmentally. In the normal adult brain, all six 
isoforms are present with approximately equimolar 4R 
and 3R isoforms, whereas, in the human fetal brain, only 
0N3R tau is expressed [18]. The 4R tau isoforms exhibit 
higher affinity when binding to microtubules than the 
3R isoforms [20]. Studies have shown that some known 
mutations in the tau gene affect the alternative splicing 
of exon 10, resulting in an altered 4R:3R ratio, a crucial 
feature of primary tauopathies [21, 22]. Primary tauopa-
thies are a subgroup of FTLD disorders characterized by 
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neuronal and glial tau inclusions with predominant fron-
tal and temporal lobe atrophy. According to the fibril-
lated tau isoform (3R or 4R), primary tauopathies can be 
further classified into three major subtypes, including 3R 
tauopathies (such as PiD), 4R tauopathies (including PSP 
and corticobasal degeneration (CBD)), and mixed 3R/4R 
tauopathies [23]. AD is considered a secondary tauopa-
thy due to tau pathology may occur as a consequence of 
extracellular amyloid plaques. In AD brains, tau aggre-
gates into NFTs or neuropil threads composed of 3R and 
4R Tau [24]. In this review, we focused on AD, the repre-
sentative of secondary tauopathies.

Insoluble fibril formation of tau has long been consid-
ered an essential toxic event in AD. However, numerous 
studies have shown that the smaller, soluble, and non-
fibrillar tau oligomers, called the “tau we cannot see” [25], 
play a more critical role in the neurotoxicity and propaga-
tion of tau damage in the CNS [25–29]. Mutations in the 
MAPT gene lead to FTDP-17 [22], providing evidence 
that tau dysfunction due to tau mutations induces neuro-
degeneration. Recent studies have found that overexpres-
sion of either wild-type tau or human P301L-mutant tau 
inhibits neural network activity independent of fibril for-
mation. Turning off their overexpression attenuates the 
inhibition of network activity, which is associated with 
soluble tau but not fibrillar tau [30]. Furthermore, inhibi-
tion of endogenous tau improves behaviors and protects 
neurons from toxicity in APP/PS1 mice, a mouse model 
with AD-like Aβ pathology [31]. These findings indicate 
that soluble oligomeric tau may play a more essential role 
in neurodegeneration than insoluble fibrillar tau (includ-
ing NFT), the “tau we can see”.

Post‑transcriptional modifications of tau
In humans, tau protein undergoes several post-trans-
lational modifications to regulate the interactions with 
microtubules, including phosphorylation, N-linked gly-
cosylation (N-glycosylation), O-linked N-acetylglucosa-
minylation (O-GlcNAcylation), glycation, ubiquitination, 
truncation, nitration, and oxidation [19]. Phosphoryla-
tion is the most widely studied post-translational modi-
fication for tau, as more than eighty serine and threonine 
residues and five tyrosine residues are potential phospho-
rylation sites on the longest isoform of human tau [32]. 
The normal phosphorylation state of tau is critical for 
neuronal plasticity.

However, under pathological conditions, various highly 
increased post-translational modifications, such as 
hyperphosphorylation, destabilize the interaction of tau 
with microtubules [33] and enhance the capacity of tau 
to accumulate in the cytoplasm [34], leading to microtu-
bule instability and transport dysfunction. In the normal 
adult brain, there are 2–3 mol of phosphate per mole of 

tau, but in the AD brain, tau protein is twofold to three-
fold hyperphosphorylated [35]. Studies have shown 
that individual missense mutations in tau alter poten-
tial phosphorylation sites and promote phosphoryla-
tion levels compared to unmutated tau [36]. In addition, 
various kinases and phosphatases have been found to 
regulate tau phosphorylation, such as glycogen synthase 
kinase-3β (GSK3β), cyclin-dependent kinase-5 (CDK5), 
p38 mitogen-associated protein kinase alpha (p38α 
MAPK), extracellular signal-related kinase (ERK), c-Jun 
N-terminal kinase (JNK), protein kinase A (PKA), and 
protein phosphatase 2 (PP2A) [4, 37–39]. A recent study 
demonstrated that tau phosphorylation is controlled by 
interdependence, an initial site-specific phosphorylation 
(they called “master sites”) leads to subsequent multi-site 
phosphorylation. Co-targeting p38α, the most central tau 
kinase associated with interdependence, and the master 
sites synergistically eliminated hyperphosphorylation 
of tau [39]. Hyperphosphorylated tau leads to abnormal 
aggregation of tau protein, which loses its ability to sta-
bilize microtubules, thereby impairing neuronal function 
[23]. In addition, tau aggregates have been shown to have 
prion-like seeding and spreading properties [40]. The 
pathogenic tau can be released from diseased neurons, 
then uptake by previously unaffected normal neurons, 
inducing pathogenic tau production in normal neurons. 
This property of pathogenic tau leads to disease progres-
sion and broader clinical symptoms [41, 42]. Further dis-
cussion of tau propagation is provided in the following 
section.

In addition to abnormal hyperphosphorylation, other 
types of post-translational modifications of tau may also 
contribute to tau dysfunction in disease states. For exam-
ple, reduced tau O-glycosylation could lead to increased 
phosphorylation, while the enhancement of O-glycosyla-
tion reduces the extent of tau phosphorylation [43–45]. 
In addition, the acetylation of tau is an early pathologi-
cal feature of neurodegeneration. Acetylated tau inhibits 
its degradation, promotes pathological aggregation and 
propagation, and contributes to tauopathy [46–51]. Other 
post-translational modifications, such as isomerization 
and truncation, have been shown to promote and stabi-
lize paired helical filaments (PHFs) [52, 53]. The methyla-
tion of tau could suppress the aggregation of tau [54]. The 
precise mechanism of these post-translational modifica-
tions of tau in Alzheimer’s neurofibrillary degeneration 
is unclear. However, the hyperphosphorylation alone can 
induce pathological functional changes in tau, promoting 
self-aggregation into PHF tangles. Moreover, tau hyper-
phosphorylation is present in almost every tauopathy, 
suggesting that different post-translational modifications 
may be involved in modulating hyperphosphorylation [4]. 
Therefore, targeting hyperphosphorylation of tau, which 
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may be a convergent pathway of tauopathies, including 
AD, is a crucial direction for drug development.

Propagation of tau pathology
Studies propose that AD and other non-infectious neu-
rodegenerative disorders associated with aggregation of 
fibrillar proteins exhibit features similar to prion disease 
[55]. The transfer of abnormal misfolded proteins, includ-
ing tau and Aβ, has a common feature of the pathological 
propagation between cells [42, 56]. Postmortem studies 
have shown that the spread of tau pathology in AD fol-
lows a predictable pattern, allowing neuropathological 
diagnosis of different AD stages defined by Braak staging 
(I–VI). Initial neurofibrillary tangles and neuropil threads 
develop in the entorhinal cortex, then the hippocampus, 
and gradually affect additional brain regions as the dis-
ease progress, eventually affecting the neocortex [57]. 

An in vivo study has demonstrated that the intracerebral 
injection of synthetic tau fibrils into the hippocampus or 
frontal cortex of tau-P301L transgenic mice at 3 months 
increases tau hyperphosphorylation and accumulation 
around the injection site. In addition, the spread of tau 
pathology is time-dependent from the injection site to 
distant interconnected brain regions [58].

Although the specific mechanisms underlying the 
interneuronal spread of these tau aggregates remain 
poorly understood, there is a large amount of evidence 
indicating that the abnormally hyperphosphorylated or 
oligomeric tau can be secreted from neurons into the 
extracellular space, then be taken up by other normal 
neurons, and finally causes interneuronal transfer of 
tau pathology and spreading of tau toxicity across dif-
ferent brain regions [59–61] (Fig.  1). The protopathic 
tau seeds may be released and internalized by neurons 

Fig. 1  Schematic diagram showing the interaction between neuroinflammation and tau pathology contributing to the progress of AD 
pathogenesis. Aβ β-amyloid, ApoE4 apolipoprotein E4, cGAS cyclic GMP–AMP synthase, CMKLR1 chemerin chemokine-like receptor 1, CX3CL1 
chemokine (C–X3–C motif ) ligand 1. CX3CR1 CX3C motif chemokine receptor 1, GSK3β glycogen synthase kinase-3 beta, IL-1β interleukin-1β, IL-1R 
interleukin-1 receptor, HSPGs heparan sulfate proteoglycans, LRP1 low-density lipoprotein receptor-related protein 1, MAPK mitogen-activated 
protein kinase, NF-κB nuclear factor kappa B, NFTs neurofibrillary tangles, NLRP3 NLR family pyrin domain-containing protein 3, Nox2 NADPH 
oxidase 2, P2RX7 P2X purinoceptor 7, PHFs paired helical filaments, PQBP1 polyglutamine-binding protein 1, pTau phosphorylated tau, STAT1 signal 
transducer and activator of transcription 1, STING stimulator of interferon genes, TFEB transcription factor EB, TNF-α tumor necrosis factor α, TREM2 
triggering receptor expressed on myeloid cells 2
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through trans-synaptic and non-synaptic pathways in 
parallel to promote tau spreading [62–65]. Sokolow 
et  al. revealed that C-terminal truncated tau is abun-
dant in the cortical pre-synaptic terminals, and tau 
cleavage promotes tau aggregation, secretion, and 
propagation in AD [66]. In addition, trans-synaptic tau 
propagation and aggregation can also be independ-
ent of the presence of endogenous soluble tau, but the 
absence of endogenous tau reduces its neurotoxicity 
[63].

It has been proposed that intracellular tau can be 
released from neurons by exocytosis, including secre-
tion (free protein), extracellular vesicles (such as 
exosomes and ectosomes/microvesicles), and neuronal 
death pathways [67]. Meanwhile, the extracellular tau 
can be taken up by neighboring cells, both neurons 
and glial cells, through various pathways, including 
phagocytosis [68], macropinocytosis [69], receptor-
mediated uptake [67, 70], endocytosis [71], and/or 
membrane fusion of exosomes [72, 73]. A recent study 
showed that the low-density lipoprotein receptor-
related protein 1 (LRP1) expressed in neurons regulates 
the endocytosis of tau and its subsequent spread [74]. 
Knockdown or inhibition of LRP1 significantly reduces 
tau uptake and spread in vitro and in vivo [74]. In addi-
tion, exosomes are involved in the dissemination of 
tau pathology. Exosomes isolated from the brain, cer-
ebrospinal fluid (CSF), and plasma of AD patients and/
or AD animal models contain pathologic Aβ and tau 
[73, 75–77]. Increased neuronal activity enhances the 
release of tau-containing exosomes [75] and exacer-
bates tau propagation and pathology [78]. Exosomes 
carrying tau are taken up by local and remote cells and 
contribute to apoptosis and neuronal loss [79]. Peeraer 
and colleagues found that the tau pathology as a conse-
quence of injection with tau-preformed fibrils into the 
hippocampus of tau-P301L transgenic mice induced 
selective neuron loss of the CA1 region [58]. Inhibi-
tion of exosome synthesis using the neutral sphingo-
myelinase-2 inhibitor reduces tau propagation from the 
entorhinal cortex to the dentate gyrus in adeno-asso-
ciated virus (AAV)-based and P301S tauopathy mouse 
models [80]. These findings reveal a pivotal role in the 
cell-to-cell spreading of abnormal tau in neurotoxicity 
and provide potential therapeutic strategies for tau-tar-
geted immunotherapies in AD and other tauopathies. 
Furthermore, tau propagation-induced tau pathology 
is based on the spread of tau between neurons and the 
dissemination between neurons and glial cells [81, 82]. 
Glial cells such as microglia and astrocytes perform 
normal immune functions in CNS and also play a vital 
role in the spreading of pathological tau [80, 83]. This 
part will be discussed in detail in the next section.

Neuroinflammation: a link between tau and AD
Over the last decade, evidence indicates that CNS inflam-
mation (neuroinflammation) may play a pivotal role in 
the pathological progression of AD. The chronic, sus-
tained inflammatory response in the brain is considered 
the third core pathological feature of AD. It provides a 
link between the other two core pathologies, Aβ plaques 
and NFTs [84]. The acute neuroinflammatory response is 
a fundamental protective immune response against nox-
ious and irritable stimuli, such as infection, toxins, and 
injury, which is a well-established defense response and 
is essential for the brain’s repair process. However, when 
the balance of pro-inflammatory and anti-inflammatory 
signaling is disrupted, it leads to a chronic inflammation 
response. This chronic neuroinflammation is caused by 
persistent activation of glial cells and excessive release of 
cytotoxic molecules, which adversely affects brain func-
tion and is a major cofactor in the pathogenesis of many 
neurodegenerative disorders, including AD [84].

The neuroinflammatory process in AD is mainly 
driven by the innate immune cells in the brain, including 
microglia and astrocytes [85]. Microglia are the resident 
immune cells of the brain and play a pivotal role in the 
immune defense of CNS. They are in an inactive “resting” 
state under physiological conditions while actively moni-
toring the brain environment and brain parenchyma with 
highly motile processes [86]. Microglia will shift from the 
resting status to an activated state when they recognize 
a stimulus in CNS, characterized by the morphological 
changes and modulations in the gene expression, includ-
ing pro- and anti-inflammatory molecules and microglial 
surface receptors. These receptors include the triggering 
receptor expressed on myeloid cells 2 (TREM2), toll-
like receptors (TLRs), and G protein-coupled recep-
tors (GPCRs), such as chemokine CX3C motif receptor 
1 (CX3CR1), formyl peptide receptor 2 (FPR2) and 
chemokine-like receptor 1 (CMKLR1), which upon acti-
vated by the stimuli, mediate microglial activation and 
polarization phenotype [87, 88]. Microglial activation is 
believed to be a double-edged sword in AD pathology. In 
the early stages of AD, activated microglia cause phago-
cytosis and clearance of pathologic Aβ and/or tau, posi-
tively affecting AD pathologies in animal models [89, 90]. 
However, sustained activation of microglia leads to the 
continuous release of inflammatory factors and reduces 
their ability to phagocytose and degrade neurotoxins, 
which in turn exacerbates Aβ accumulation, tau propaga-
tion, and neuronal death, ultimately promoting AD pro-
gression [5, 91, 92].

Recent evidence suggests that reactive astrocytes also 
contribute to neuroinflammatory processes associated 
with AD pathology [93]. Astrocytes are the most abun-
dant glial cells in the brain and have a variety of complex 



Page 6 of 21Chen and Yu ﻿Journal of Neuroinflammation          (2023) 20:165 

and essential functions in CNS, including maintenance of 
brain homeostasis, synaptic transmission, and informa-
tion processing through neural circuits [94]. Astrocytes 
become activated in AD and exhibit certain immune 
functions. Like microglia, astrocytes can be triggered by 
various factors, such as pathological Aβ, tau species, and 
proinflammatory cytokines [95, 96]. The activated micro-
glia and reactive astrocytes produce nitric oxide (NO) 
and inflammatory cytokines, such as interleukin-1 (IL-1), 
IL-6, tumor necrosis factor α (TNF-α), and transforming 
growth factor β (TGF-β), that contribute to a reinforced 
inflammatory cascade [85, 97]. Studies have shown that 
these pro-inflammatory cytokines are markedly elevated 
in the brain and CSF of AD patients [98–100]. Interest-
ingly, the upregulation of such proinflammatory cytokine 
has been observed even before signs of increased Aβ 
and hyperphosphorylated tau in CSF of mild cognitive 
impairment (MCI) patients [101], suggesting that the 
inflammatory processes had occurred in the early stages 
of AD.

Although the link between neuroinflammation and 
AD was discovered decades ago [102], it remains unclear 
whether it is a cause or a consequence of the disease. 
Recent studies have shown that microglial activation 
occurs in the preclinical AD stage. In addition, with the 
progression of the disease, immune activation, includ-
ing the activation of microglia and astrocytes, diverts to 
a more harmful stage [103]. This indicates that neuroin-
flammation may be involved in the etiology of AD. Fur-
thermore, since the immune response exists throughout 
the pathological progress of AD [104, 105], suggesting 
that it may also participate in and aggravate the disease 
development. In addition, not limited to neuroinflam-
matory response, systemic inflammation is currently 
beginning to be considered a contributor to AD develop-
ment of AD [106, 107]. Multiple epidemiological studies 
show that anti-inflammatory drugs such as non-steroidal 
anti-inflammatory drugs (NSAIDs) have a sparing effect 
on AD [108–110]. Unexpectedly, clinical trials targeting 
inflammation with NSAIDs have not improved cognition 
in AD patients [111, 112]. The outcomes of clinical tri-
als may be related to the disease stages of recruited AD 
patients. Moreover, these results also indicate that fur-
ther elucidation of the exact relationship and mechanism 
between brain inflammatory events and the pathologi-
cal development of AD is necessary to explore successful 
therapies and drugs.

Evidence suggests that the pathological activation of 
glial cells and the release of inflammatory factors involved 
in neuroinflammation can exacerbate tau pathology via 
direct or indirect pathways, leading to neuronal dam-
age and cognitive impairment, ultimately aggravat-
ing AD pathology [113, 114]. The neuroinflammation 

exacerbating tau pathology may be correlated with the 
regulation of tau post-translational modification and 
propagation [115]. Modifying or intervening in the 
immune response to slow down or inhibit tau pathology 
provides a potential direction for developing potential 
therapeutic drugs for AD. In the succeeding sections, we 
discuss several possible mechanisms for the link between 
altered neuroinflammation and tau pathology observed 
in AD (Fig.  1). We highlight the potential value of tar-
geting the combination of neuroinflammation and tau 
pathology and/or their link in AD treatment.

Role of neuroinflammation in post‑transcriptional 
modifications of tau
Accumulating evidence suggests that microglia activa-
tion participates in the progression of tau-related neu-
ropathology. Felsky et al. reported that the proportion of 
morphologically activated microglia (PAM) in postmor-
tem cortical tissue from AD patients is strongly related 
to tau pathology, and their mediation models support 
microglial activation as an upstream event in AD leading 
to accumulation of hyperphosphorylated tau and sub-
sequent cognitive decline [116]. Our and other studies 
found that systemic administration of lipopolysaccharide 
(LPS, inducer of inflammation) leads to microglial acti-
vation in the mouse brain, which results in tau hyper-
phosphorylation at specific sites [117, 118]. The effect 
of microglial activation on tau hyperphosphorylation is 
related to cell surface receptors which mediate inflamma-
tory responses.

TREM2, a pivotal risk factor for LOAD [119, 120], is 
associated with tau pathology. TREM2 is a receptor for 
Aβ [121] and is exclusively expressed by microglia in the 
brain of mice and humans [122, 123]. In the CSF of AD 
patients, the R47H (rs75932628) variant of TREM2 or 
soluble TREM2 has been found to correlate with total 
or phosphorylated tau (Thr181), respectively, but not 
with Aβ42 [124, 125]. Numerous studies have been con-
ducted in animal models to explore how TREM2 affects 
tau pathology. TREM2 deficiency in a hTau (expressing 
human MAPT but not endogenous mouse Mapt) mouse 
model exacerbates tau phosphorylation and aggregation 
at the early disease stage [126]. In contrast, in tau-P301S 
transgenic mice, TREM2 deletion attenuates neuroin-
flammation and protects against neurodegeneration at 
a late stage without altering tau phosphorylation and 
aggregation [127]. Further research reveals that only in 
the presence of Aβ pathology, TREM2 deletion further 
exacerbates tau accumulation and brain atrophy [128]. 
TREM2 may play a pivotal role in all stages of AD patho-
genesis, and maintaining the normal function of TREM2 
may point out a direction for AD treatment.
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CX3CR1, another receptor explicitly expressed on 
microglia, is involved in tau pathology. CX3CR1 belongs 
to G protein-coupled receptors (GPCRs). GPCRs, as 
one of the most prominent protein families, is a class of 
receptors with seven-transmembrane domains. GPCRs 
sense extracellular molecules and then transduce the 
signals to intracellular effector molecules, resulting in 
cellular responses [129]. A body of evidence indicates 
the opposing effects of CX3CR1 with its ligand frac-
talkine (CX3CL1) on Aβ and tau pathologies. Deletion 
of CX3CR1 or depression of the CX3CL1/CX3CR1 axis 
reduces Aβ deposition [130–132] but exacerbates tau 
pathology, such as increased phosphorylation and aggre-
gation of tau, and this is associated with worsened behav-
ioral and cognitive impairments [132–137] (Fig. 1). These 
findings suggest that regulating the CX3CL1/CX3CR1 
axis may be a potential target for preventing tau-related 
neurodegeneration.

In addition, astrocytes are also suggested to play a role 
in the hyperphosphorylation of tau. Astrocytes exacer-
bate Aβ-induced tau hyperphosphorylation and trunca-
tion. The mechanism relates to the increased caspase-3 
activity caused by soluble inflammatory factors released 
by active astrocytes [96]. Our recent study shows that 
p47phox, the organizer subunit of NOX2 (Nicotinamide 
adenine dinucleotide phosphate oxidase 2, NADPH oxi-
dase 2), is associated with cognitive function and tau 
pathology in AD. The expression of p47phox in neurons 
contributes to tau hyperphosphorylation directly, while 
p47phox in astrocytes affects tau hyperphosphorylation 
by activating astrocytes indirectly [13]. ApoE4, the most 
potent risk factor for the pathogenesis of LOAD, modu-
lates neuroinflammatory response and glial activation 
[138]. Astrocyte- or neuron-specific ApoE4 could regu-
late tau phosphorylation in glia-dependent or independ-
ent manner [139–141]. Saroja et  al. demonstrated that 
astrocyte-secreted ApoE4 and glypican-4 (GPC-4) bind 
to LRP1 in neurons, leading to tau accumulation and 
propagation [141] (Fig. 1). Deletion of astrocytic ApoE4 
markedly reduces phosphorylated tau [142]. ApoE4 
affects neuroinflammation, tau pathology, and tau-medi-
ated neurodegeneration independently of Aβ pathology 
[143]. These findings indicate that astrocytes are cru-
cial in exacerbating tau hyperphosphorylation and ulti-
mately promoting AD pathology. In addition, tau is also 
present in the astrocytes of individuals with AD [144, 
145]. However, how tau pathology is induced and regu-
lated in astrocytes in AD and other tauopathies remains 
unknown.

FPR2 and CMKLR1, two GPCRs expressed on astro-
cytes and/or microglia, are also shown to be related to 
AD pathology. They are known initially as orphan recep-
tors and recognize various endogenous and exogenous 

chemotactic ligands to exert pro-inflammatory or anti-
inflammatory functions [146, 147]. Aβ is one of their 
ligands [148, 149]. Recently, the structure of the FPR2-Gi 
protein complexed with Aβ has just been solved [150]. 
Deficiency of FPR2 or administration of its inhibitors/
anti-inflammatory ligands could alleviate the pathologi-
cal symptoms of AD, including reduced activation of glial 
cells (microglia and/or astrocytes) and tau hyperphos-
phorylation, and ultimately leading to improvement in 
cognitive function [151–154]. Our recent study identi-
fied that CMKLR1 deletion increases Aβ plaques in the 
AD mouse brain but reduces mortality and cognitive 
deficits of AD mice and attenuates tau hyperphospho-
rylation [14]. Further studies found that CMKLR1 and 
its ligand chemerin regulate the migration and recruit-
ment of microglia to Aβ plaques in  vivo and in  vitro 
[155]. Pro-resolving ligands or inhibitors of CMKLR1 
have been shown to attenuate inflammatory responses, 
including neuroinflammation [156–158]. Whether FPR2 
and CMKLR1 regulate the abnormal phosphorylation 
of tau by mediating microglial activation needs further 
verification.

The effect of microglia and astrocytes on tau pathology 
is related to the production and release of pro-inflam-
matory cytokines after their activation. A recent study 
shows that NLR family pyrin domain-containing protein 
3 (NLRP3) inflammasome activation induces tau hyper-
phosphorylation and aggregation through modulating 
tau kinases and phosphatases [159]. NLRP3 inflamma-
some has been proven to accumulate inside microglia 
upon activation, promoting cleavage and activity of cas-
pase-1 and release of IL-1β [160]. IL-1β treatment or 
overexpression exacerbates tau phosphorylation through 
the activation of p38 mitogen-activated protein kinase 
(MAPK) and/or glycogen synthase kinase-3β (GSK-3β) 
in neuron–microglia co-cultures [161] and AD model 
mice [162, 163]. Bhaskar et  al. reported that microglia 
activation induces tau hyperphosphorylation via the 
IL-1β/p38α MAPK pathway in  vitro and in  vivo [135, 
137]. Selective suppression of p38α MAPK significantly 
reduces tau hyperphosphorylation and improves work-
ing memory in hTau mice [164]. Our previous studies 
indicate that the deficiency of serum amyloid A (SAA), 
an acute-phase protein with cytokine-like properties, 
enhances tau phosphorylation induced by systemic LPS 
administration [117]. Overexpression of SAA by intrac-
erebral injection attenuates tau hyperphosphorylation, 
and the mechanism is related to SAA-induced secretion 
of IL-10 from microglia [117]. Another study demon-
strates that IL-10 deletion activates microglia, increases 
IL-6 production, and leads to tau hyperphosphorylation 
in response to acute systemic inflammation [165]. Other 
inflammatory factors such as IL-3, IL-6, IL-18, tumor 
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necrosis factor-α (TNFα), and macrophage migration 
inhibitory factor (MIF) are also found to be involved in 
tau phosphorylation and/or truncation [166–170]. All 
these findings suggest that glia-neuron signaling con-
tributes to the pathogenesis of tauopathy, and in-depth 
exploration of this signaling and regulation may provide 
valuable strategies for AD treatment.

In addition, tau also undergoes both N-linked glyco-
sylation (N-glycosylation) [171] and O-linked N-acetyl-
glucosaminylation (O-GlcNAcylation) [172], which 
have been proposed to affect tau phosphorylation and 
aggregation [173]. As discussed above, a reciprocal rela-
tionship has been found between O-GlcNAcylation and 
phosphorylation on tau [43]. Increases in tau O-Glc-
NAcylation inhibit tau aggregates and neuronal cell loss 
[174], indicating that O-GlcNAcylation modification 
can protect AD progression. O-GlcNAcylation levels 
are reduced in the cortex and hippocampus of AD indi-
viduals and in vivo and in vitro models of AD [175]. The 
reduced O-GlcNAcylation is related to mitochondrial 
dysfunction and neurodegeneration [175], which may 
be associated with neuroinflammation. Interestingly, the 
R47H variant of TREM2, which is expressed by microglia 
and linked to innate immunity, has been found to present 
an altered glycosylation pattern and decreased stabil-
ity compared with wild-type TREM2 [176], indicating a 
potential link between microglial neuroinflammation and 
glycosylation [177, 178]. However, the direct correlation 
between neuroinflammation and glycosylation and how 
it regulates tau post-translational modification and tau 
pathology remains to be explored.

Abnormal acetylation of tau on lysine residues spans 
the microtubule-binding repeat region (MTBR), and 
this modification alone is sufficient to induce tau pathol-
ogy and neurodegeneration [51]. Tau is acetylated by 
the lysine acetyltransferase p300 and its close homolog 
CREB-binding protein (CBP) [48]. The expression and 
activity of p300 are increased in the brain of AD patients 
[179], and the dysregulation of p300/CBP promotes tau 
acetylation, which could aggravate tau accumulation and 
pathology [46, 48]. Inhibiting p300 with salsalate, a non-
steroidal anti-inflammatory drug, could induce tau dea-
cetylation, preserve tau axonal localization, and protect 
mice from neurodegeneration [51]. The histone deacety-
lase 6 (HDAC6) has also been implicated in tau deacety-
lation/acetylation [180]. Cohen et  al. reported that tau 
is a substrate of HDAC6, and the inhibition of HDAC6 
increases tau acetylation [47]. HDAC6 also inhibits tau 
hyperphosphorylation within the MTBR [181]. However, 
other studies found that under neuroinflammatory stress, 
deletion or inhibition of HDAC6 suppresses mislocali-
zation and neuritic aggregation of tau through a matrix 
metalloproteinase (MMP-9)-mediated mechanism [182]. 

HDAC6 inhibitors are being developed to treat immune 
and inflammatory diseases, including human immu-
nodeficiency virus (HIV)/acquired immunodeficiency 
syndrome (AIDS) [183]. HDAC6 knockdown attenu-
ates reactive oxygen species (ROS) generation, NADPH 
oxidase activation, and neuroinflammation response in 
HIV-1 transactivator of transcription (Tat)-stimulated 
astrocytes [184]. In addition, Nox2 knockdown sup-
presses HIV-1 Tat-induced HDAC6 expression and sub-
sequent upregulation of pro-inflammatory chemokines 
[184], indicating a possible link between neuroinflamma-
tion and mediation of HDAC6. All these findings suggest 
that neuroinflammation-involved regulation of tau acety-
lation may be a potential therapeutic strategy to amelio-
rate tau pathology-involved neurodegeneration.

Role of neuroinflammation in the propagation of tau
A large number of studies have explored the mechanisms 
of tau transmission between neurons and its impact on 
tau pathology. Here, we review the interplay between 
neuroinflammation and tau transmission. Emerging 
studies have indicated a possible interaction between 
the prion-like features of tau protein and the neuroin-
flammatory response in tau transmission and pathology 
[185, 186], although their causal relationship is currently 
uncertain. Microglia have been strongly implicated as a 
pivotal player and play a complex role in the propaga-
tion of tau pathology. In the brain of AD patients, micro-
glial activation and tau accumulation propagate spatially 
in parallel, following brain circuits and staging of tau 
pathology [187]. Microglia can phagocytose and degrade 
pathologic tau, neuronal synapses, or whole live neu-
rons, although not very efficiently [188, 189]. In addition, 
sustained reactive or senescent microglia become hypo-
functional and release seed-competent tau, leading to the 
exacerbated spread of tau pathology [190].

Microglia sense pathological tau species via various 
surface receptors to trigger phagocytosis and/or degra-
dation. Tau can bind to microglial CX3CR1 and initiate 
the internalization and degradation of tau [191]. CX3CL1 
competes with tau for binding to CX3CR1, leading to a 
decrease in the internalization of tau. In addition, phos-
phorylated tau at Ser396 exhibits reduced binding affinity 
to CX3CR1 [191]. These findings indicate that CX3CL1/
CX3CR1 axis plays a crucial role in tau phagocytosis and 
degradation by microglia. In addition, several studies 
have shown that tau seeds taken up by microglia can acti-
vate microglia, further exacerbating tau propagation and 
pathology [186, 192, 193]. Jin et al. reported that micro-
glia uptake exogenous monomeric tau in parallel via two 
surface receptors, LRP1 and TREM2, and then induce 
nuclear factor NF-κB activation in microglia through two 
different pathways, LRP1/polyglutamine binding protein 
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1 (PQBP1)/cyclic GMP–AMP synthase (cGAS)/Stimula-
tor of interferon genes (STING) and TREM2/extracel-
lular signal-regulated kinase (ERK)/Phosphoinositide 
3-kinase (PI3K) pathways, respectively (Fig. 1), ultimately 
triggering neuronal death [192]. Microglial NF-κB path-
way activated by tau can exacerbate the processing and 
release of pathological tau with seeding activity. In con-
trast, deficiency or inhibition of NF-κB reduces the seed-
ing and spread of tau inclusions in tauopathy mice [193]. 
However, another study revealed that TREM2 knockout 
or its R47H variant decreases microgliosis around Aβ 
plaques and enhances the propagation of tau aggregates 
[70]. This may be related to the different types of micro-
glia [194]. In addition, the microglial NLRP3 inflamma-
some is also involved in the pathological propagation of 
tau. The aggregated tau seeds activate NLRP3/apoptosis-
associated speck-like protein containing a CARD (ASC) 
inflammasome in microglia, following microglial uptake 
and lysosomal sorting of tau seeds [186]. Administration 
of NLRP3 inhibitor or ASC deficiency reduces the exog-
enously or non-exogenously seeded tau pathology, high-
lighting the promotion of NLRP3/ASC axis activation on 
the propagation of tau seeds [186]. In addition, exosomes 
are involved in the microglia-mediated pathological 
propagation of tau. Asai et al. demonstrated that deplet-
ing microglia or inhibiting microglial exosome synthesis 
reduces tau propagation from the entorhinal cortex to the 
dentate gyrus in the adeno-associated virus (AAV)/tau-
injection P301S tauopathy mice [80] (Fig. 1). Suppression 
of P2X purinoceptor 7 (P2RX7)-induced exosome secre-
tion from microglia attenuates misfolded tau aggregates 
in the hippocampus and improves cognitive deficits of 
P301S mice [195]. Furthermore, Zhu et  al. reveal that 
TREM2 deficiency exacerbates pathological tau propaga-
tion via microglial exosomes [196]. These findings sug-
gest that elucidating the mechanisms by which microglia 
participate in tau propagation may provide new strategies 
for the intervention of tau pathology.

In addition to microglia, astrocytes contribute to the 
spreading of tau pathology. It has been shown that astro-
cytic tau pathology occurs in AD and other tauopathies 
[197]. The aberrant tau in astrocytes may also come from 
the phagocytosis of neuronal debris and dystrophic syn-
apses containing tau aggregates [198, 199]. TFEB induces 
astrocytic trafficking of tau fibrils via macropinocytosis, 
possibly through interaction with heparan sulfate proteo-
glycans (HSPGs) [200, 201]. Overexpression of transcrip-
tion factor EB (TFEB, a regulator of lysosomal biogenesis) 
in astrocytes promotes tau fibril species uptake and lyso-
somal activity as well as attenuates tau spreading and 
pathology in the hippocampus of P301S tauopathy mice 
[201] (Fig.  1). Astrocytes can internalize tau monomers 
or fibrils through mechanisms independent of HSPGs 

[202]. The integrin αV/β1 receptor interacts with tau 
monomers or fibrils and mediates tau uptake in primary 
astrocytes. The binding of tau fibrils to astrocyte αV/β1 
activates integrin signaling, resulting in NF-κB activation, 
leading to an increase of pro-inflammatory cytokines and 
chemokines, and induction of expression of neurotoxic 
astrocytic markers [203]. These findings suggest that 
phagocytized tau by astrocytes can be degraded and/or 
induce astrocytic activation. Whether astrocytic tau is 
secreted to the outside of cells as exosome remains con-
troversial [80, 204]. As discussed above, we indicated that 
CMKLR1 expressed on neurons affects tau phospho-
rylation via mediating tau seeding [14] (Fig. 1), and how 
CMKLR1 on glial cells contributes to tau propagation 
needs investigation. In addition, it has been found that 
astrocyte-derived exosomes drive neurodegeneration of 
AD through the acceleration of Aβ aggregation in  vivo 
[205]. Whether astrocytes can promote tau pathology via 
secreting exosomes still requires clinical evidence and 
experiment verification.

Thus, these results suggest that the interaction of path-
ological tau with glial cells promotes the propagation of 
pathological tau and AD progression. Modulating the 
activity of glial cells, the expression of surface receptors, 
the activation of inflammation-related signaling path-
ways, or the release of exosomes to interfere with their 
promotion of tau spread may provide potential strategies 
for AD treatment.

Advances in AD drug development focused on tau 
pathology and neuroinflammation
Current pharmacologic treatments for AD are three 
cholinesterase inhibitors (donepezil, rivastigmine, and 
galantamine), one N-methyl-D-aspartate (NMDA) recep-
tor antagonist (memantine), and two DMT anti-Aβ 
antibody drugs (aducanumab and lecanemab). These 
cholinesterase inhibitors and NMDA receptor antago-
nist memantine only temporarily relieve the symptoms of 
AD patients but do not delay the progression of the dis-
ease [206, 207]. For the past two decades, the therapeutic 
approaches have focused on developing DMT drugs, par-
ticularly those targeting Aβ. However, with the failures or 
unsatisfactory efficacy of drugs anti-Aβ [9, 208–211], the 
development of drugs targeting other targets is increas-
ing, such as anti-tau pathology and anti-neuroinflamma-
tion [212]. According to the report by Cummings et al., 
among the 143 drugs in trials in the AD drug develop-
ment pipeline as of January 2022, DMT drugs account 
for 83.2% [212]. There are 20 (16.8%) agents targeting 
Aβ, 13 (10.9%) targeting tau, 28 (19.3%) targeting inflam-
mation, and 19 (16%) targeting synaptic plasticity or 
neuroprotection.
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Tau pathology as a therapeutic target
There are no drugs yet approved to treat tauopathies. 
Currently, tau-targeted disease-modifying therapies 
developed for AD or other tauopathies mainly include 
mediators of tau post-translational modifications, anti-
tau immunotherapy (active and passive), tau aggregation 
inhibitors, microtubule stabilizers, and gene therapy. We 
will primarily review drugs in clinical trials targeting tau 
post-translational modifications and anti-tau immuno-
therapy (Table 1). Anti-tau immunotherapy aims to tar-
get tau phosphorylation, aggregation, and propagation, 
and clear extracellular and/or intracellular pathological 
tau.

Mediators of tau post‑translational modifications
Various kinases are known to induce tau hyperphos-
phorylation, such as GSK-3β, a major tau kinase. These 
kinases are hyperactivated during the progression of AD 
and other tauopathies [19], indicating that the develop-
ment of their mediators may be an effective treatment for 
these diseases. Two GSK-3β inhibitors, lithium and tide-
glusib, have been tested [213]. Forlenza et  al. reported 
that long-term lithium treatment at subtherapeutic doses 
attenuates cognitive and functional decline in amnes-
tic MCI (ClinicalTrials.gov Identifier: NCT01055392) 
[214]. However, this dose of lithium treatment still 
has safety issues, such as side effects and tolerability 
(NCT01055392, NCT00703677) [215]. Another clinical 
trial evaluating the safety and efficacy of a lower dose of 
lithium in patients with mild to severe AD just started in 
June 2022 and is estimated to be completed in June 2024 
(NCT05423522). Tideglusib, a thiadiazolidinone deriva-
tive, acts as a non-ATP competitive GSK-3β inhibitor. 
Tideglusib has been reported to reduce tau phosphoryla-
tion and has anti-inflammatory effects in animal models 
[216, 217]. The clinical studies in patients with mild-to-
moderate AD (NCT01350362, NCT00948259) or PSP 
(NCT01049399) patients treated with tideglusib were 
negative on the clinical outcomes [218]; however, a sub-
group analysis of PSP patients showed reduced brain 
atrophy [219].

There is a reciprocal relationship between O-Glc-
NAcylation and tau phosphorylation [43]. Inhibitors 
of the O-GlcNAcase enzyme (OGA)-like thiamet G 
increase tau glycosylation, reduce NFTs and neuronal 
cell death, improve motor behavior, and prolong sur-
vival of tau transgenic mice [174, 220, 221]. Three OGA 
inhibitors, ASN90, ASN51, and LY3372689, are cur-
rently in clinical trials. They have shown well safety and 
tolerance in phase 1 clinical trials [222, 223]. Phase 2/3 
clinical trials of these inhibitors for the treatment of AD 
and PSP are ongoing (NCT05063539, [223]). Salsalate, 
which we discussed above, induces tau deacetylation. 

A clinical trial has shown that it does not affect disease 
progression in PSP patients (NCT02422485). A phase 1 
clinical trial testing the safety, tolerability, and cognitive 
ability of salsalate in patients with mild to moderate AD 
(NCT03277573) has not yet published the results.

Anti‑tau immunotherapy
In addition to the small molecule drugs targeting tau 
post-translational modifications discussed above, active 
and passive immunotherapies have been developed to 
neutralize and clear toxic tau species to reduce tau phos-
phorylation, aggregation, and dissemination. Active 
immunization, such as vaccination, can cause the body to 
produce an antibody-like response. AADvac1 and ACI-
35/ACI-35.030 are anti-tau active vaccines for AD and 
other tauopathies currently in clinical trials [224, 225]. 
AADvac1 is a synthetic peptide corresponding to amino 
acids 294 to 305 of the tau sequence, and ACI-35 con-
sists of 16 copies of a synthetic tau fragment phospho-
rylated at Ser396 and Ser404 sites [225]. Phase 1 clinical 
data show that AADvac1 has well safety, tolerability, and 
immunogenicity in patients with mild to moderate AD 
(NCT02031198, NCT01850238) [226]. However, the 
treatment of this vaccine did not slow cognitive and func-
tional decline in mild AD patients in the phase 2 clinical 
trial (ADAMANT, NCT02579252), although it shows the 
high immunogenicity [227]. A phase 1 pilot trial investi-
gating the effect of AADvac1 in patients with non-fluent 
primary progressive aphasia (AIDA) has yet to publish 
results (NCT03174886). ACI-35 treatment was reported 
to produce a weak immune response in a phase 1 study 
[228]. Therefore, a redesigned version, ACI-35.030, was 
indicated to elicit a stronger immune response [228]. A 
phase 1/2 clinical trial to test its safety and immunogenic-
ity in patients with early AD is undergoing and expected 
to be completed in 2023 (NCT04445831).

Another immunotherapeutic approach is administer-
ing preformed anti-tau antibodies direct against different 
tau epitopes, also known as passive immunotherapy. Pas-
sive immune antibody drugs have the advantages of low 
risk of adverse effects to immunogenicity and more spec-
ificity for targeted epitopes. A total of 12 tau antibodies 
have entered clinical trials, but half of tau antibody tri-
als have been terminated due to poor clinical efficacy 
for AD or PSP. These antibodies include gosuranemab 
[229], tilavonemab [230], zagotenemab [231], semorin-
emab [232], RG7345 [233], and BIIB076 [234]. These 
antibodies mainly bind the N- or C-terminal epitopes 
of tau. Recent clinical evidence indicates that antibod-
ies targeting the microtubule-binding region (MTBR, 
residues 224 to 369) or phosphorylated epitopes around 
the center of tau are more likely to prevent the propaga-
tion of pathogenic aggregated tau [235, 236]. Antibodies 
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binding MTBR such as E2814 [237] and antibodies tar-
geting phosphorylated epitopes of MTBR or mid-domain 
of tau, including JNJ-63733657 [238], Lu AF87908 [239], 
PNT001 [225], bepranemab (UCB0107) [240], and APN-
mAb005 [241] have been shown to prevent tau pathology 
and dissemination in preclinical animal experiments. The 
antibody Lu AF87908 also regulates the uptake and lyso-
somal function to clear pathological tau by interacting 
with the IgG antibody receptor FcγR in primary micro-
glia cultures [242], indicating that anti-tau antibodies 
may induce microglial clearance of tau and reduce tau 
propagation. Furthermore, the antibodies bepranemab, 
semorinemab, JNJ-63733657, E2814, and PNT001 
showed good safety and tolerability in the phase 1 clini-
cal trial (NCT03605082, NCT02820896, NCT03689153, 
NCT04231513, and NCT04096287). The phase 2/3 
clinical trials to test the efficacy of E2814, bepranemab, 
semorinemab, and JNJ-63733657 in patients with AD 
or other tauopathies are ongoing (NCT04971733, 
NCT04867616, NCT03828747, and NCT04619420). 
Since E2814 is designed to target pathologic tau and 
can attenuate aggregated tau spreading in preclinical 
experiments [237], and lecanemab, an anti-Aβ antibody 
approved through the FDA accelerated approved pro-
cess for AD treatment, can reduce the brain amyloid and 
slow the rate of cognitive decline in patients with early 
AD [10]. A phase 2/3 clinical study is underway to evalu-
ate the cognition and clinical efficacy of E2814 alone, 
lecanemab alone, and the combination of these two drugs 
in participants with autosomal dominant AD (DIAN-TU, 
NCT05269394).

Therapeutically targeting tau through modulating 
neuroinflammation
A total of more than 50 inflammation-related agents have 
entered clinical trials for AD treatment, and 22 are cur-
rently undergoing mainly targeting the inflammatory 
(especially neuroinflammatory) response process that 
may result in neurodegeneration, such as regulating the 
function of microglia and the immune system, the activ-
ity of inflammatory response-related kinases/pathway, 
and the expression and release of pro-inflammatory 
factors. Here, we will mainly review neuroinflamma-
tion-related drugs in clinical trials that may also have 
modulatory effects on tau pathology (Table 1).

As mentioned above, p38α MAPK is a key kinase 
involved in microglia-induced neuroinflammation lead-
ing to tau pathology [135, 137], and this kinase can also 
directly regulate tau phosphorylation [39]. Recently, the 
p38α inhibitors such as neflamapimod have attracted 
attention as potential treatments for neurodegenerative 
diseases, including AD. A multi-center phase 2 clini-
cal trial showed that although a 24-week treatment with 

neflamapimod did not ameliorate episodic memory in 
individuals with mild AD, neflamapimod treatment sig-
nificantly reduces CSF total tau and tau phosphorylated 
at threonine 181 (pTau181) compared to the placebo 
group (NCT03402659). The results of this trial sug-
gest that a longer study of neflamapimod at higher dose 
levels is needed to assess the effect on AD progression 
[243]. Notably, a phase 2a clinical study suggested that 
neflamapimod treatment improved cognitive and motor 
functions in patients with mild-to-moderate dementia 
with Lewy bodies (DLB) [244] (NCT04001517). These 
results indicate that inhibiting p38α MAPK to improve 
tau pathology may be one of the most promising strate-
gies for AD treatment. Other p38α inhibitors, such as 
MW150 [245], MW151 [246], and MW189 (the intra-
venous formulation of MW151), all showed good safety 
and tolerability in phase 1 clinical trials (NCT04120233, 
NCT02942771) [247]. A phase 2 study of MW150 
in patients with mild to moderate AD is underway 
(NCT05194163).

Nilotinib is a small molecule tyrosine kinase inhibitor 
with potent p38α inhibitory activity [248]. It modulates 
the immune profiles of glial cells and induces phospho-
rylated tau clearance, although not more efficiently than 
Aβ [249, 250]. A phase 2 clinical trial in 37 patients with 
mild to moderate AD (NCT02947893) showed that nilo-
tinib was well-tolerated and reduced CSF pTau181 at 
6 months compared to the placebo group [251].

NE3107, which reached phase 3 (NCT04669028), is a 
derivative of β-androstenediol. It binds to ERK and inhib-
its the activation of ERK/NF-κB signaling. NE3107 orally 
enters the brain. It has anti-neuroinflammatory and insu-
lin-sensitizing properties, which make it attractive in AD 
treatment [252, 253]. A phase 2 clinical study presented 
at the 2022 clinical trials on Alzheimer’s disease (CTAD) 
conference showed that NE3107 was associated with 
improvement in CSF p-tau in patients with MCI or mild 
dementia [254]. A phase 3 trial to evaluate the safety and 
efficacy of this agent in subjects with mild to moderate 
probable AD (NCT04669028) started in August 2021 and 
is estimated to be completed in October 2023.

In addition, AZP2006, a small molecule to prevent 
the growth factor progranulin (PGRN) cleavage and 
promote its secretion, has also been reported to inhibit 
tau phosphorylation and neuroinflammation in a pre-
clinical study [255]. The chronic treatment of AZP2006 
attenuates the cognitive impairments and neuronal syn-
aptic damage, accompanied by significant decreases in 
microglial activation, proinflammatory cytokine release, 
and tau hyperphosphorylation in the brains of AD and 
aging model mice. Further mechanistic studies dem-
onstrated that AZP2006 binds to PSAP (a cofactor of 
PGRN) and inhibits the TLR9-driven signaling to reduce 
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pro-inflammatory responses. These results indicate the 
potential of AZP2006 as a novel strategy for the treat-
ment of AD and other tauopathies [255]. One phase 2 
trial is ongoing to evaluate the safety, tolerability, phar-
macokinetics, and effect of AZP2006 in patients with PSP 
(NCT04008355).

Another promising new therapy targeting tau pathol-
ogy and neuroinflammation is the combination treat-
ment of dasatinib and quercetin. Dasatinib is a cancer 
drug that inhibits Src tyrosine kinase. Quercetin inhibits 
the anti-apoptotic protein Bcl-xL and has anti-inflamma-
tory activity. This drug combination eliminates the senes-
cent cells (also known as “senolytic therapy”), reduces tau 
pathology, amyloid load, and neuroinflammation, and 
ameliorates cognitive impairment in preclinical studies 
[256, 257]. Dasatinib orally enters the brain, and the drug 
combination appears safe and tolerable in phase 1/2 clini-
cal studies [258, 259]. Several clinical studies are under-
way to test this drug combination’s efficacy in treating 
AD.

Sodium oligomannate (GV-971), a derivative of marine 
algae oligosaccharides, received conditional approval in 
China to treat mild to moderate AD in 2019 [260]. The 
preclinical data showed that GV-971 remodels the gut 
microbiota and the associated accumulation of pheny-
lalanine and isoleucine, reduces microglial activation, 
immune responses, Aβ plaque deposition, and tau phos-
phorylation in the brain, and improves the cognitive 
impairment in 5xFAD mice [261]. GV-971 has also been 
demonstrated to reverse cognitive deficits in patients 
with mild to moderate AD in the phase 2/3 clinical trial 
in China (NCT02293915) [262]. Although the long-term 
efficacy and safety of GV-971 need to be further verified, 
these results highlight that multi-target drugs against 
multiple AD pathological changes may be a more poten-
tial therapeutic strategy.

Conclusions and perspectives
Over the past few decades, accumulated efforts in basic 
and clinical research in the AD field have improved our 
understanding of the multifactorial nature of AD patho-
genesis. It is particularly encouraging that two DMT 
drugs targeting Aβ have recently received accelerated 
FDA approval for AD treatment. However, the efficacy of 
these drugs is controversial and needs further validation. 
The most likely reason for the failure of drugs targeting 
Aβ may be that Aβ pathology in AD does not always cor-
relate with cognitive decline.

Tau has received increasing attention as a potential 
alternative therapeutic target, since evidence indicates 
that tau pathology is more associated with cognitive 
degradation. To date, there are no tau-focused drugs 
approved by FDA. Still, several agents targeting tau 

post-translational modification and dissemination have 
recently entered clinical trials for treating AD and other 
tauopathies. Accumulating evidence indicates that neu-
roinflammation may be the third pathological feature of 
AD and plays an integral role in AD pathogenesis and 
the promotion of cognitive impairment. In recent years, 
growing findings of fundamental research have dem-
onstrated the complex interplay between neuroinflam-
mation and tau pathology, as summarized above. These 
findings suggest that in the early stage of AD, a moder-
ate inflammatory response may alleviate tau pathology, 
such as activated microglia promoting the clearance of 
tau seeds. While in the middle and late stages of AD, 
sustained and increased inflammatory responses in glial 
cells and neurons are pivotal cellular drivers and regula-
tors of the exacerbation of tau pathology, further con-
tributing to its worsening by promoting inflammatory 
responses. This vicious circle aggravates the pathologi-
cal progression of AD. There are temporal and spatial 
dynamic regulatory processes between tau pathology and 
inflammation as the disease progresses. Further elucida-
tion of these dynamic regulatory mechanisms will pro-
vide essential insights into AD pathogenesis and drug 
development.

Furthermore, current studies indicate that targeting 
only a single therapeutic target may not be able to reverse 
the pathological process of AD. As mentioned above, 
multi-target therapies (including multi-target single 
drugs such as the p38α inhibitors and single or multiple 
target multi-drug combination such as the combination 
of dasatinib and quercetin) targeting tau pathology and 
neuroinflammation, or simultaneously targeting Aβ 
pathology, which is currently undergoing clinical trials, 
may offer hope of reversing the course of AD and even 
curing it. These therapeutic strategies have shown good 
safety and tolerability, and clinical trials of their therapeu-
tic effects are underway. In summary, both basic research 
and clinical trials suggest that targeting multiple patholo-
gies and precise treatment strategies will be the trend of 
future drug development for AD and other tauopathies. 
They will be more likely to bring breakthroughs in the 
treatment of these diseases.
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