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Abstract 

Alzheimer’s disease (AD) is an incurable, progressive and devastating neurodegenerative disease. Pathogenesis of AD 
is associated with the aggregation and accumulation of amyloid beta (Aβ), a major neurotoxic mediator that triggers 
neuroinflammation and memory impairment. Recently, we found that cellulose ether compounds (CEs) have benefi‑
cial effects against prion diseases by inhibiting protein misfolding and replication of prions, which share their replica‑
tion mechanism with Aβ. CEs are FDA‑approved safe additives in foods and pharmaceuticals. Herein, for the first time 
we determined the therapeutic effects of the representative CE (TC‑5RW) in AD using in vitro and in vivo models. 
Our in vitro studies showed that TC‑5RW inhibits Aβ aggregation, as well as neurotoxicity and immunoreactivity 
in Aβ‑exposed human and murine neuroblastoma cells. In in vivo studies, for the first time we observed that single 
and weekly TC‑5RW administration, respectively, improved memory functions of transgenic 5XFAD mouse model 
of AD. We further demonstrate that TC‑5RW treatment of 5XFAD mice significantly inhibited Aβ oligomer and plaque 
burden and its associated neuroinflammation via regulating astrogliosis, microgliosis and proinflammatory media‑
tor glial maturation factor beta (GMFβ). Additionally, we determined that TC‑5RW reduced lipopolysaccharide‑
induced activated gliosis and GMFβ in vitro. In conclusion, our results demonstrate that CEs have therapeutic effects 
against Aβ pathologies and cognitive impairments, and direct, potent anti‑inflammatory activity to rescue neuroin‑
flammation. Therefore, these FDA‑approved compounds are effective candidates for developing therapeutics for AD 
and related neurodegenerative diseases associated with protein misfolding.
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Introduction
Alzheimer’s disease (AD) is a progressive, devastating, 
and incurable neurodegenerative disorder that is clini-
cally characterized by gradual loss of learning and mem-
ory functions. AD is the most common type of dementia. 
The neuropathological hallmark of AD includes the accu-
mulation of misfolded proteins, such as amyloid beta 
(Aβ) that forms extracellular senile plaques, and intra-
cellular neurofibrillary tangles of hyperphosphorylated 
tau proteins in the cortex, hippocampus and other brain 
regions [1–4]. Misfolded Aβ accumulation precedes neu-
rofibrillary tangle formation [5]. Aβ oligomers (AβO) 
and Aβ fibrils induce AD pathologies, causing oxidative 
stress, aberrant neurotransmission, neuroinflammation, 
misfolding of other proteins and consequently, lead to 
synaptic and neuronal damage, which triggers cognitive 
deficit. Aβ is generated by the cleavage of a transmem-
brane amyloid precursor protein (APP) by beta-site amy-
loid precursor protein cleaving enzyme 1/beta-site APP 
cleaving enzyme 1 (BACE-1) and γ-secretase [5–11]. Aβ 
aggregation triggers the activation of numerous proin-
flammatory mediators in activated glial cells [12] leading 
to neuroinflammation. It is widely reported that chronic 
neuroinflammation in turn generates further Aβ accu-
mulation, creating a vicious cycle, which leads to the 
progression of AD pathologies. Neuroinflammation also 
plays a vital role in the pathogenesis of AD and is criti-
cally involved in the progression of brain degeneration 
[13–15]. Hence, it is important to target both misfolded 
Aβ and subsequent neuroinflammation to halt and treat 
AD.

In this study, our primary objectives were to explore 
the therapeutic efficacy of cellulose ether (CE)-derived 
compounds for the treatment of AD. Numerous studies 
reported the health benefits of dietary supplementation 
of CE-derived hydroxypropyl methylcellulose (HPMC), 
which improves peripheral metabolic disorders in ani-
mals, including humans [16–26]. The US Food and Drug 
Administration (FDA) approved HPMC as a safe phar-
maceutical and food additive and reported that quanti-
ties up to 670 mg in oral formulations are safe to humans 
[27–29]. However, recently our and other groups’ studies 
showed that CEs have therapeutic effects in neurodegen-
erative diseases via inhibiting the propagation of prions, 
infectious agents consisting of a misfolded protein [30–
35]. Most importantly, subcutaneous (SC) administration 
of CEs even one year prior to prion infection significantly 
increased the life span of prion-infected mice [31]. Prions 
share their mechanism of propagation with other mis-
folded proteins including Aβ and α-synuclein. Moreover, 
recent studies extended the CE effect in prion diseases 
and demonstrated that it is dependent upon immune 
cells along with the proinflammatory glial maturation 

factor beta (GMFβ) gene and other genes which are in 
its vicinity [36, 37]. Several studies reported that GMFβ 
has been found to be upregulated in several neuroinflam-
mation and neurodegeneration conditions including AD 
and Parkinson’s disease [38–51]. The beneficial effect of 
CEs in prion diseases and findings demonstrating that 
CEs inhibit amyloid formation by crowding effects high-
light the potential beneficial effects of CEs in the treat-
ment of multiple neurodegenerative diseases associated 
with protein misfolding and amyloid formation [52–54]. 
Therefore, in this study we aimed to determine the ther-
apeutic efficacy of CEs in both in  vitro and in  vivo AD 
models. We found that TC-5RW, a HPMC representa-
tive, inhibited Aβ aggregation, reduced Aβ neurotoxicity 
and rescued its associated pathologies such as activation 
of proinflammatory marker GMFβ and activated gliosis 
in transgenic 5XFAD mice overexpressing human APP 
and presenilin 1 (PSEN1) transgenes harboring in total 5 
mutations associated with familial AD. Of note, for the 
first time we demonstrate that CE treatment significantly 
improves learning and memory functions in the 5XFAD 
mouse model of early-onset, familial AD. Overall, our 
findings suggest that CE treatment targets both Aβ 
aggregation and neuroinflammation, breaking the vicious 
cycle leading to clinical AD.

Materials and methods
Mouse strains, housing, and animal ethics statement
The transgenic hemizygous 5XFAD mice (B6SJL-Tg 
(APPSwFlLon, PSEN1*M146 L*L286 V)6799Vas/Mmjax) 
and wild type (WT) control mice with the same genetic 
background were purchased from Jackson Laboratory, 
USA. The mice were housed at 12-h (h)/12-h light/dark 
cycle and a maintained temperature at 23 °C, in an envi-
ronment with 60 ± 10% humidity. The mice were allowed 
to access food and water ad  libitum. All experiments 
related to mice in this study were approved by the Uni-
versity of Calgary Health Sciences Animal Care Commit-
tee (AC18-0030) according to the guidelines issued by 
the Canadian Council for Animal Care and international 
ARRIVE guidelines.

Single and chronic administration of TC‑5RW to 5XFAD 
mice
For the first experiment, 6-week-old 5XFAD female mice 
were divided into two groups the non-treated 5XFAD 
control group (n = 5 mice) and a group of 5XFAD (n = 10 
mice) treated with a single dose of TC-5RW (4  g/kg) 
subcutaneously (SC) [31–33]. TC-5RW was dissolved 
in ultra-pure de-ionized distilled water at 37  °C for 1 h. 
After complete solubilization, TC-5RW was infused very 
slowly and carefully SC at the neck of mice. At the age 
of 10 months, mice were euthanized using 5% isoflurane 
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and cervical dislocation. The brains were extracted for 
biochemical and immunohistochemical analysis.

In the second experiment, we used male mice at the age 
of 6 weeks and included four groups: (1) control WT, 10 
male mice; (2) control 5XFAD, 15 male mice; (3) 5XFAD 
mice (15 male) received a weekly SC dose of TC-5RW 
(4 g/kg; WI) started at the age of 6 week and continued 
till the age of 9 months; (4) 5XFAD mice (15 male) were 
SC injected with a single dose of TC-5RW (4 g/kg; SI), at 
the age of 6  week and we performed behavioral experi-
ments at the age of 9–10 months of all four groups, i.e., 
WT, 5XFAD, 5XFAD (WI) and 5XFAD (SI).

Behavioral assessments of mice
To assess the cognitive functions of mice, we performed 
the novel object recognition (NOR), Y-maze and contex-
tual fear conditioning (FC) tests.

NOR test
A white square plastic box (approx. 40 × 40  cm) and 
2 sets of different items (each set has varied in texture, 
shape, and color) were used for NOR test. Mice were 
habituated by gentle handling for 2 days prior to training 
and testing sessions. In the training session, we kept two 
identical objects with the same distance from each cor-
ner and side of the box. All mice were placed in the same 
place in the box and allowed to freely explore two identi-
cal objects for 5 min and then they were returned to their 
home cage. In the testing session on the next day, mice 
were allowed to explore one familiar and one novel object 
of different shape and texture but similar height with the 
familiar object. The time to explore both familiar and 
novel object was recorded. The recognition index (RI) 
was calculated as the percentage of time spent by mice 
exploring the novel object divided by the total time spent 
to explore both objects.

Y‑maze test
The Y-maze test evaluates mice’ short-term spatial learn-
ing and memory behavior. The Y-maze consists of three 
equally spaced arms labeled with letters A, B and C. Each 
mouse was placed at the end of one arm for 8 min and 
allowed to move freely to enter another arm. Entries into 
each arm were recorded and alternation behavior was 
defined as entry into all three arms sequentially. Spon-
taneous alteration was defined as the successive entry of 
the mice into the three arms in overlapping triplet sets. 
Alteration behavior (%) was calculated as follows: [suc-
cessive triplet sets (entries into three different arms con-
secutively)/total number of arm entries-2] × 100.

FC test
After completion of NOR and Y-maze tests, we per-
formed FC test using a chamber with plastic walls and a 
metal mesh floor. The inner dimensions of the chamber 
are approximately 17 cm × 17 cm × 25 cm. Before start-
ing the training and testing, mice were acclimatized for 
1–2 h in the behavioral rooms. After acclimatization, on 
day one mice were placed into the conditioning chamber 
and habituated to their surroundings for at least 2 min. 
Following habituation, the mice received three pairings 
of tone/light signals (20  s, 80  dB; or user specific set-
ting) and a co-terminating electric shock (1  s, 0.5  mA). 
The inter-trial interval between each of the pairings 
was 2  min. Once the trial was complete, the mice were 
returned to their home cage. The chamber was cleaned 
with 70% ethanol after each mouse. On the final testing 
day, each animal was then placed in the same chamber for 
6  min (testing). The tone/light in the absence of shocks 
was presented twice 20, 120, and 260 s after the animal 
was placed into the chamber. During this testing period, 
the behavior of the mouse was recorded by a digital video 
camera directly mounted above the conditioning cham-
ber. The amount of time spent freezing is quantified and 
defined by the complete absence of motion. FC was con-
ducted with the ANY-maze (Stoelting Co. UK). Freezing 
detection is automatically quantified by the software with 
the default freezing detection settings.

Extraction of mouse brains and preparation of brain 
homogenates
Brain hemispheres were separated, and homogenates 
were prepared according to our previously published 
protocol [55]. Briefly, one brain hemisphere was homoge-
nized in 0.1 M phosphate buffered saline (PBS) (10% w/v) 
using a gentle MACS™ Dissociator for 2 min at room 
temperature, followed by centrifugation at 2000g for 1 
min at 4 °C. The homogenates were aliquoted and stored 
at − 80  °C until further processing for immunoblotting, 
dot blotting and other biochemical assays.

SDS‑PAGE (sodium dodecyl sulfate‑polyacrylamide gel 
electrophoresis) and immunoblotting
Ten % brain hemisphere homogenates were mixed 
with equal volume of cold protein extraction buffer, 
while cell lysates were mixed with the relevant amount 
of cold protein extraction buffer according to the 
number of cells and according to manufacture proto-
col (PROP-PREP™, Catalogue number: 17081, iNtron 
Biotechnology, USA). Protein samples were prepared 
in 1 × SDS sample buffer and processed on 12.5–18% 
Tris–HCl SDS-PAGE gel. However, for separation 
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of low molecular weight Aβ, samples were loaded on 
pre-cast tris–tricine SDS-PAGE gels (ThermoFisher 
Scientific, USA) or prepared according to previously 
published method [56].

Electroblotting was done using Amersham Hybond 
P 0.45 µm and 0.22 µm PVDF membranes (Amersham, 
USA). After blocking with 5% nonfat dry milk in 1× 
TBST, membranes were incubated with primary anti-
bodies at 4 °C overnight. Membranes were washed three 
times each for 5 min and then incubated in secondary 
antibodies according to the source of primary antibod-
ies at room temperature at least for 1 h. After washing at 
least three times each for 5 min, membranes were devel-
oped using Luminata Western Chemiluminescent HRP 
Substrates (Millipore, USA). ImageJ was used for densito-
metric analysis of immunoblots.

Enzyme‑linked immunosorbent assay (ELISA) for soluble 
and insoluble Aβ42
The soluble and insoluble Aβ42 levels were analyzed 
in brain homogenates from 5 and 5XFAD mice treated 
with TC-5RW. The ELISA was performed according 
to the manufacturer’s protocols (Invitrogen, Thermo 
Fisher Scientific, Rockford, IL, USA). Briefly, for the 
soluble and insoluble Aβ42 analyses we used 10% brain 
homogenates in cold protein extraction buffer and 
spun for 15–25 min at 10,000 rpm and then removed 
the supernatant for the soluble Aβ42 contents. Simi-
larly, for insoluble Aβ42 the remaining pellet was incu-
bated in 70% formic acid for 30–40 min and following 
the formic acid incubation the suspension was spun for 
15–25 min at 10,000 rpm and collected the superna-
tant for the measurement of insoluble Aβ42 contents. 
Soluble and insoluble Aβ42 results were analyzed and 
calculated as pg/ml.

Collection of mouse brain sections 
for immunohistochemical analyses
Mice were anesthetized deeply with isoflurane (5%) and 
continued control anesthesia at 2.5% isoflurane while 
mice were transcardially perfused with 0.1  M PBS. The 
mouse brain hemispheres were post-fixed in 4% para-
formaldehyde for 72  h and brain tissues were cryopro-
tected with 20% sucrose for 72 h in 0.1 M PBS at 4 °C for 
3–5 days until they completely sank. Brain hemispheres 
were frozen in OCT (optimum cutting temperature) 
compound (A.O, USA), and 12-μm coronal sections were 
collected using a CM 3050C cryostat (Leica, Germany). 
Brain tissue sections were thaw-mounted on commer-
cially available ProbeOn Plus charged slides (Fisher, 
USA).

Immunofluorescence staining and confocal microscopy
Single and double-immunofluorescence staining was 
performed as described previously with some modifi-
cations [55, 57]. Briefly, gelatin-coated slides contain-
ing brain tissues were dried 2–4 h at room temperature. 
After drying, the slides were washed twice for 5 min each 
in 0.01 M PBS. Following washing, the tissues were pro-
cessed for antigen retrieval by incubation for 10  min at 
room temperature in 1× proteinase-k. The slides were 
washed twice for 5  min each, followed by incubation 
for 1 h in blocking solution containing 2% FBS and 0.1% 
Triton X-100 in 0.01  M PBS according to the source of 
primary antibodies. After blocking, tissue sections were 
incubated overnight at 4  °C in the primary antibodies 
(Table  1), washed twice for 5  min each and incubated 
for at least 1 h with donkey anti-mouse IgG H&L (FITC) 
(ab6816, Abcam, USA), rhodamine (TRITC) donkey 
anti-goat IgG (H + L) Alexa Fluor 488, goat anti-rabbit, 
or Alexa Fluor™ 555 goat anti-rabbit secondary anti-
bodies (Jackson Immunoresearch, USA) (1:100). For 

Table 1 List of primary antibodies and their detailed information

WB western blotting, IF immunofluorescence, DB dot blotting

Antibody name Host species Application Manufacturer Catalog/reference 
number

Concentrations

Aβ (6E10) Mouse WB/DB/IF Biolegend, USA 803001 1:2000/1:100

Aβ (4G8) Mouse WB/DB/IF Biolegend, USA 800708 1:2000/1:100

GMFβ Rabbit WB/IF ProteinTech, USA 10690‑1‑AP 1:2000/1:100

GMFβ Rabbit WB/IF Abcam, USA Ab224322 1:2000/1:100

Aβ (B4) Mouse WB/DB/IF Santa Cruz Biotechnology, USA SC‑28365 1:1000/1:100

GFAP Mouse WB/IF = SC: 33673 1:40,000/1000

Iba‑1 Mouse WB = SC: 32725 1:1000

Iba‑1 Goat IF Novus Biologicals, LLC, USA NB100‑1028 1:25

GFAP Rabbit IF = BN300‑141 1:1500

β‑Actin Mouse WB Sigma Aldrich, USA A5441 1:40,000
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double-immunofluorescence, primary and secondary 
antibody incubations were repeated (Table 1). Then slides 
were washed twice for 5  min each and coverslips were 
mounted with DAPI along with Dako fluorescent mount-
ing medium (Molecular Probe, Eugene, OR). All images 
were captured under the same conditions using a confo-
cal laser scanning microscope (Zeiss LSM 700). Several 
images per section (tissue) and more than 20 images per 
field of each brain area were captured from each respec-
tive group. Confocal images were converted to tagged 
image file format (TIF) and quantification of immunoflu-
orescence intensity in the same region of the brain areas 
was performed using ImageJ software. The background 
of TIF images was optimized according to the thresh-
old intensity. The immunofluorescence intensity was 
analyzed at a specified threshold intensity for all groups 
under the same conditions and was expressed as the rela-
tive integrated density between the groups.

Preparation of amyloid beta monomer (AβM), AβO and Aβ 
fibrils for in vitro experiments
Aβ1-42 peptide was oligomerized as previously described 
[58, 59] with few modifications. Briefly, recombinant 
Aβ1-42 (Innovagen) was dissolved in 1,1,1,3,3,3-hex-
afluoro-2-propanol (HFIP) (Sigma Aldrich, USA), and 
lyophilized using a Savant Speed Vac Plus freeze drier 
(ThermoFisher, USA). The peptides were then resus-
pended in dimethyl sulfoxide (DMSO) and diluted in 
N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid 
(HEPES) buffer (20  mM pH 7.4) to a final concentra-
tion of 100  µM. The preparation was vortexed, soni-
cated 2 min in a water bath, and incubated on a rocker 
for 24  h at 4  °C. The sample was again lyophilized and 
resuspended in a  NH4HCO3 (50 mM pH 8.5) buffer. The 
oligomeric Aβ1–42 (AβO) was separated from mono-
mers (AβM) on a Superdex 75 10/300 GL column cou-
pled to a liquid chromatography system (ÄKTA pure, GE 
Healthcare) (Additional file 1: Fig. S1A). The column was 
equilibrated with  NH4HCO3 (50 mM pH 8.5) and 500 µl 
sample was injected. The peptides were eluted at a flow 
rate of 0.5 ml/min, were AβOs pass through the column 
in the void volume (hence being > 70 kDa size) and AβMs 
pass through around half a column volume later (hence 
being of low molecular weight). The AβO and AβM were 
collected, lyophilized overnight and finally resuspended 
in PBS (Gibco). The peptides were quantified spectro-
photometrically at 215  nm on a NanoVue (GE Health-
care) and stored at − 80 °C.

For Aβ fibrils, the AβO were incubated at 37  °C for 
1–3  days for transmission electron microscopy (TEM) 
and dot blotting and 1–5  days for thioflavin T (ThT) 
assays.

AβO characterization
To characterize the oligomer size, the AβO and AβM 
were run on a 4–20% SDS page gel (Expedeon) upon 
equal loading at 130  V (Additional file  1: Fig. S1B). 
AβO were also analyzed on a Nanosight ns300 (Mal-
vern Panalytical) to track the particle size at a detection 
threshold of 6 and camera level 16. AβM were not ana-
lyzed due to the minimum particle size detection (10–
40 nm) of the machine (Additional file 1: Fig. S1C). To 
characterize the oligomer structure, AβO were negative 
stained for TEM. The sample was prepared by letting 
5 µl AβO (5 µM) be absorbed onto a Formvar carbon-
coated 300 mesh copper grid, followed by two 30  s 
washes with distilled water and one wash with 2% ura-
nyl acetate. Excess of uranyl acetate was removed using 
a lens paper and the grid was allowed to dry for 10 min. 
The sample was examined in a JEOL JEM-1230 electron 
microscope at 100  kV voltage (Additional file  1: Fig. 
S1D).

ThT assay for analysis of Aβ fibril formation
To assess ThT fluorescence upon binding to Aβ fibrils 
formed in the absence and presence of TC-5RW at dif-
ferent time periods, we prepared a mixture of 5 μl Aβ 
fibrils in the absence and presence of TC-5RW (10 μg/
ml) with 995 μl of 5 μM ThT solution (Sigma, USA) in 
glycine–sodium hydroxide buffer at pH 8.5. Each sam-
ple was thoroughly mixed and added to the transpar-
ent glass cuvettes. The cuvettes were inserted into a 
spectrofluorometer and the ThT fluorescence intensity 
was measured at the corresponding excitation emis-
sion (445 nm and 490 nm) wavelengths. We repeated 
each experiment at least three times and the values 
were recorded in triplicate, and ThT blank readings 
were subtracted from the corresponding values of each 
sample.

TEM analysis of Aβ fibrils
We analyzed morphological characteristics of the sam-
ples with TEM (Hitachi H7650; Hitachi High-Technol-
ogies), with an acceleration voltage of 80  kV. In brief, 
5  μl of the sample was placed on glow-discharged, 
formvar-coated grids and dip stained with 2% uranyl 
acetate and thoroughly air-dried before imaging.

Dot blot analysis
Three μl of 10% brain homogenates, 2 μl of condi-
tioned cell media and 3 μl of Aβ monomeric, oligo-
meric and fibril solution were spotted on nitrocellulose 
membranes (0.45 µm; Bio-Rad, USA) and completely 
air-dried at least for 15–30 min at room temperature. 
Membranes were incubated in 5% nonfat dry milk in 1× 
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TBST for 1  h at room temperature. Membranes were 
incubated with Aβ (6E10), Aβ (B4) and Aβ (4G8) anti-
bodies overnight and then processed as described for 
immunoblotting.

Nondenaturing polyacrylamide gel electrophoresis (PAGE)
We performed immunoblotting under non-denaturing 
conditions according to a previously published method 
[60] and using the commercially available pre-cast Mini-
PROTEAN TGX Gels 4–20% (Cat. # 4561093; Bio-Rad), 
Native Sample Buffer (Cat. # 1610738; Bio-Rad) and 10× 
Tris/Glycine Buffer (Cat. # 1610734; Bio-Rad) according 
to manufacturer’s instructions. Immunoblotting, primary 
and secondary antibodies incubation and development 
were done as described above for SDS-PAGE.

Cell culture and treatments
Human neuroblastoma SH-SY5Y cells, murine microglial 
BV2 cells and the murine astrocyte C8D1A cells were cul-
tured in Dulbecco’s Modified Eagle’s Medium (DMEM) 
and murine neuroblastoma N2a cells were cultured in 
Opti-MEM Glutamax medium (Gibco Life Technologies, 
Grand Island, NY, USA) with 10% fetal bovine serum 
(FBS), and penicillin/streptomycin at 37 °C in a 5%  CO2 
atmosphere. After the cells reached 70–80% confluence 
they were treated with 2.5–5  μM AβO or lipopolysac-
charide (LPS, 1 μg/ml) with or without TC-5RW (10 µg/
ml) and incubated for 24 h. After 24 h the cell lysates and 
conditioned media were processed for immunoblotting 
and dot blotting.

Immunofluorescence and confocal microscopy of cells
SH-SY5Y, N2a, astrocytes (C8D1A) and BV2 cells were 
seeded (2 ×  104/ml) in chamber slides (ThermoFisher 
Scientific 75 Panorama Creek Drive Rochester, 
NY14625-2385, USA). After the cells reached 70–80% 
confluence they were treated with AβO 2.5–5  μM 
or LPS (1  μg/ml) with or without TC-5RW 10  μg/ml 
and incubated for 24  h. Then, cells were washed with 
0.01 M PBS, fixed with 4% paraformaldehyde, and again 
washed with 0.01 M PBS twice for 5 min each, followed 
by permeabilization for 10 min using 0.1% Triton X-100 
in 0.01  M PBS at room temperature. Following block-
ing for 1  h in blocking solution (2% serum and 0.1% 
Triton X-100 in 0.01 M PBS) cells were incubated with 
primary antibodies in blocking solution for overnight. 
After three washes (5  min each) in PBS, secondary 
antibody (Alexa  FluorTM 555 goat anti-mouse second-
ary antibody, Invitrogen − 1:500) was added for 1 h at 
RT. Nuclei were stained with DAPI for 10 min and after 
final washes, coverslips were mounted using Mounting 
Medium (PermaFluor™, Thermo fisher). Images were 
collected and processed using a confocal laser scanning 

microscope (Zeiss LSM 700) and all the images were 
taken using the same conditions. The number of origi-
nal confocal images obtained per well of the chamber 
slide was five per group and the images were converted 
into TIF images. The fluorescence intensity was meas-
ured using ImageJ software (National Institutes of 
Health, Bethesda, MD, USA). The immunofluorescence 
intensity was analyzed and expressed as the relative 
integrated density.

MTT (3‑[4,5‑dimethylthiazol‑2‑yl]‑2,5‑diphenyltetrazolium 
bromide) assay for cell viability
MTT assay was performed according to the manufac-
ture protocol (Roche, Germany) and our previously 
published procedure [57]. Briefly, N2a cells were cul-
tured in 96-well plates (1 ×  105 cells/well). After 72 h of 
incubation and 70–80% confluency the N2a cells were 
treated with 10 μg/ml and 25 µg/ml TC-5RW, or 5 μM 
AβO with or without 10 μg/ml TC-5RW for 24 h. MTT 
(5  mg/ml in PBS) solution was added and the plates 
were incubated for 4  h at 37  °C. DMSO was added to 
the wells, and the plates were agitated for 10–20 min to 
dissolve formazan crystals. The absorbance was meas-
ured at 550–570 nm (L1) and 620–650 nm (L2) using a 
scanning microplate reader. The L2 absorbance meas-
ures cell debris and well imperfections. The absorbance 
(A = L1 − L2) of each well was used to calculate the per-
centage of cell survival as × 100 absorbance of treated 
wells/absorbance of control wells.

Data representation and statistical analyses
The scanned immunoblot images and confocal tiff 
images were analyzed using Image J software. The 
quantification of immunostaining results was produced 
from the raw integrated density of immunofluorescence 
intensity for immunoreactivity of each staining assay 
in image J. The raw integrated density values were con-
verted to single-digit relative integrated density values 
by dividing them by their average values. Similarly, for 
immunoblotting we did the same calculation and anal-
ysis. For immunoblotting we analyzed the raw band 
density for each marker and beta actin and then cor-
respondingly divided by their average numbers, which 
gave us the relative integrated density values. For statis-
tical analysis we used two-tailed independent Student’s 
t-test for two groups or for multiple groups, one-way/
two-way analysis of variance (ANOVA) followed by 
Tukey’s post hoc, as applicable. The histograms were 
produced using GraphPad Prism software (GraphPad 
8, Software, USA). Significance = *p ≤ 0.05, **p ≤ 0.01, 
***p ≤ 0.001 and ****p ≤ 0.0001.
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Results
TC‑5RW inhibits Aβ aggregation and reduce Aβ toxicity 
and immunoreactivity in in vitro
To examine whether TC-5RW has an inhibitory effect 
on Aβ aggregation and fibril formation, we performed 
ThT fluorescence assay. We incubated AβO with or 
without TC-5RW (10  µg/ml) at 37  °C for 5  days. We 
performed ThT assay at the start of day 1 which is set as 
0 h and then every 24 h until 120 h for all samples. We 
observed a time-dependent gradual increase in the per-
centage (80%) of ThT fluorescence intensity indicative 
of Aβ fibril formation while TC-5RW (10  µg/ml) sig-
nificantly reduced ThT fluorescence intensity (40–45%) 
and kept it constant after 24  h (Fig.  1A; ***p < 0.001). 
We also performed TEM to validate the ThT results by 
visualizing Aβ fibrils after 24 and 72  h at 37  °C in the 
absence and presence of TC-5W (10 µg/ml). The TEM 
results showed small protofibrils after 24  h and fibrils 
after 72  h incubation. Interestingly, we observed a 
reduction of protofibrils and in particular, large fibrils 
in the presence of TC-5RW (10 µg/ml), respectively, at 
24 h and 72 h (Fig. 1B, C). Overall, both ThT assay and 
TEM results indicate that TC-5RW has prevented Aβ 
fibril formation.

Further, to examine the effect of TC-5RW (10  µg/ml) 
on Aβ fibrils, we incubated preformed Aβ fibrils in the 
absence and presence of TC-5RW (10  µg/ml) with the 
same conditions used for TEM analysis for 72 h followed 
by dot blot analysis, using a membrane with 0.45 µm pore 
size that most efficiently binds proteins with a molecu-
lar weight of > 20  kDa. The dot blot results showed sig-
nificantly lower immunoreactivity of Aβ (6E10) antibody 
for the co-incubation of Aβ fibrils with TC-5RW (10 µg/
ml) as compared to control Aβ fibrils (Fig. 1D). Further 
to assess the effect of TC-5RW on high molecular weight 
fibrils and lower molecular weight Aβ oligomeric/mon-
omeric species, we performed immunoblotting under 
non-denaturing conditions according to a previously 
published protocol [60]. The immunoblotting results 
indicated that at 37 °C for 72 h less Aβ fibrils formed in 
the presence of TC-5RW (10 µg/ml) as compared to the 
Aβ fibrils formed in the absence of TC-5RW (Additional 
file 1: Fig. S2; ***p < 0.001). Most importantly, under these 
non-denaturing conditions we were not able to detect 
oligomeric/monomeric species of Aβ (Additional file  1: 
Fig. S2).

To assess whether TC-5RW has detrimental effects 
on cells, we performed MTT assay using mouse 

Fig. 1 TC‑5RW inhibits Aβ aggregation in vitro. A Histogram represents the % of ThT fluorescence, revealing that Aβ aggregation is reduced 
by TC‑5RW. Significance = ***p < 0.001. B TEM images of Aβ fibrils after incubation at 37 °C for 24 h with and without TC‑5RW (10 µg/ml). C 
TEM images of Aβ fibrils after incubation at 37 °C for 72 h with and without TC‑5RW (10 µg/ml). D Dot blotting of Aβ fibrils (using mAb 6E10) 
after incubation at 37°C for 72 h with and without TC‑5RW (10 µg/ml). Dots in lanes 1, 2, and 3 represent quadruplet from three different tubes 
for each group. Histogram represents the means ± SEM from three independent experiments. Significance = **p < 0.0001
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neuroblastoma N2a cells. We found that both doses 
of TC-5RW (10  µg/ml and 25  µg/ml) have no adverse 
effect on neuronal cells (Additional file 1: Fig. S3). Next, 
we aimed to determine whether Aβ fibrils formed in 
the presence of TC-5RW (10  µg/ml and 25  µg/ml) are 
less neurotoxic as compared to the Aβ fibrils formed in 
the absence of TC-5RW (10 µg/ml and 25 µg/ml). MTT 
results showed that Aβ fibrils in presence of both doses of 
TC-5RW significantly reduced Aβ toxicity and increased 
the cell viability as compared to Aβ fibrils formed in the 
absence of TC-5RW (Additional file 1: Fig. S3; *p < 0.05).

Next, we treated the human neuroblastoma SH-SY5Y 
cells and N2a cells with AβO (2.5–5  µM) and TC-5RW 
(10  µg/ml) and performed immunocytochemical stain-
ing using Aβ (6E10). The confocal results showed that 
TC-5RW treatment significantly reduces the immuno-
reactivity of Aβ detected with Aβ (6E10) as compared 
to controls without TC-5RW in both SH-SY5Y cells and 
N2a cells (Fig. 2A, B).

Additionally, using dot blot analysis we measured the 
amount of Aβ in the conditioned media of SHSY-5Y and 
N2a cells incubated with AβO (2.5–5 µM) in the presence 
or absence of TC-5RW (10 µg/ml) for 24 h. We found that 
TC-5RW significantly reduced the immunoreactivity of 

Aβ in the media using Aβ6E10 (Fig. 2C, D) and Aβ (4G8) 
and Aβ (B4) antibodies (Additional file  1: Fig. S4A–D). 
These results suggest that TC-5RW prevented Aβ con-
tent and reduced Aβ-induced neurotoxicity in neuronal 
cells. Further studies will need to clarify whether TC-
5RW enhances degradation of AβO, or forms complexes 
with AβO that result in reduced toxicity and potentially 
alterations in immunoreactivity.

Effect of TC‑5RW treatment on Aβ levels and Aβ plaques 
in 5XFAD mouse model
To investigate the beneficial and therapeutic effect of TC-
5RW on Aβ pathologies, we chose to use 5XFAD mice, 
a mouse model of familial AD characterized by rapid Aβ 
generation and aggregation in the brain [61]. We used 
two groups of 5XFAD mice. One group was treated with 
only a single dose of TC-5RW (4 g/kg/SC) at the age of 
6  weeks, while the other group was left untreated and 
served control. Mice of both groups were euthanized at 
10 months and brains were collected for biochemical and 
immunohistochemical analyses (Fig. 3A). We performed 
immunoblotting using the Aβ6E10 antibody. The immu-
noblotting results indicated that TC-5RW reduced the 
AβM and AβO levels as compared to non-treated 5XFAD 

Fig. 2 TC‑5RW reduces intracellular Aβ immunoreactivity and extracellular levels of Aβ in vitro. A Human neuroblastoma SH‑SY5Y cells were 
incubated with amyloid beta oligomer (AβO) (5 µM) in the presence or absence of TC‑5RW (10 µg/ml). Aβ (6E10) (red) and DAPI (blue). B Murine 
neuroblastoma N2a cells were incubated with AβO (5 µM) in the presence or absence of TC‑5RW (10 µg/ml). Aβ (6E10) (green) and DAPI (blue). 
For both (A, B), magnification: 63X. Scale bar = 20 μm. Histogram represents the means ± SEM for the representative groups (n = 3) and the number 
of independent confocal microscopy experiments = 3. Significance = **p < 0.01. C, D Dot blotting and quantification of immunoreactivity of Aβ 
(6E10) in conditioned media of SH‑SY5Y and N2a cells that were incubated with AβO (2.5–5 µM) in the presence or absence of TC‑5RW (10 µg/
ml). Dots in each groups represent duplicates from the conditioned media of three independent in vitro experiments. Histograms represent 
as the means ± SEM for the representative media of three independent experiments
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mice. We quantified AβO and AβM level, which showed 
that TC-5RW significantly reduced AβO levels as com-
pared to non-treated 5XFAD mice (Fig. 3B; ***p < 0.001). 
5XFAD mice present with extracellular Aβ plaques, 
which are a primary hallmark of AD pathologies [61]. 
Thus, to examine the effect of TC-5RW on Aβ plaques we 
performed immunofluorescence staining using Aβ6E10 
antibody. Results showed that TC-5RW significantly 
reduced the Aβ plaque burden and Aβ immunoreactiv-
ity in the cortical and hippocampal regions of 5XFAD 
mouse brains as compared to brains from non-treated 
5XFAD mice (Fig.  3C; ***p < 0.001). Dot blot analysis of 
brain homogenates and its quantification confirmed that 
TC-5RW remarkably reduced the Aβ (6E10), Aβ (4G8) 
and Aβ (B4) immunoreactivity as compared to non-
treated 5XFAD mice (Fig. 3D). Next, we used 10% brain 
homogenates of both groups of mice to measure the 
overall content of soluble and insoluble Aβ42 by ELISA. 
The ELISA results were very consistent and showed sig-
nificantly reduced concentrations (pg/ml) of both soluble 
and insoluble Aβ42 in TC-5RW treated mice as com-
pared to non-treated 5XFAD mice (Fig. 3E, F; **p < 0.01). 
In summary, these in vivo results recapitulate the in vitro 
results and suggest that TC-5RW treatment of 5XFAD 
mice significantly reduces AβM, AβO and plaque load 
in the brains as well as the soluble and insoluble form of 
Aβ42.

TC‑5RW attenuates proinflammatory marker GMFβ 
and glial activation in vivo and in vitro
It is well established that inflammation significantly con-
tributes to the onset and progression of neuroinflam-
matory and neurodegenerative diseases including AD 
[41, 62–64]. With regard to proinflammatory mediators, 
GMFβ is an emerging marker in AD pathologies. Several 
studies reported the upregulation of GMFβ expression in 
glial cells associated with misfolded Aβ and tau protein in 
the cortex and hippocampus of AD brains [40, 65]. Ter-
uya et al. reported that CE’s effective response is affected 

by GMFβ and its proximity genes [36]. Therefore, we 
assessed the effect of TC-5RW on the level of GMFβ in 
in vivo and in vitro AD models. We examined GMFβ by 
immunoblot and confocal microscopy analysis of 5XFAD 
mouse brains. The immunoblotting results revealed that 
TC-5RW treatment significantly ameliorated elevated 
level of GMFβ in 5XFAD mice as compared to non-
treated 5XFAD mice (Fig. 4A; **p < 0.01). These findings 
were supported by confocal microscopy results, which 
demonstrated that TC-5RW significantly reduced the 
GMFβ immunoreactivity in both cortical and hippocam-
pal (CA1, CA3 and DG) tissues of 5XFAD mice as com-
pared to non-treated 5XFAD mice (Fig. 4B; **p < 0.01). Of 
note, Ahmed et al. also found an elevated level of GMFβ 
in activated glial cells in the cortical and hippocampal 
region of the brain in early AD (5XFAD) mouse model, 
which supported the hypothesis that increased levels of 
AβO species trigger the activation of the proinflamma-
tory marker GMFβ. Thus, we designed in  vitro experi-
ment where astrocytic C8D1A cells were treated with 
AβO in the absence and presence of TC-5RW (10  µg/
ml). After 24-h incubation, the cells were processed for 
immunocytochemical staining of GMFβ and confocal 
microscopy was performed. The results and quantifica-
tions shown in Fig. 4C indicated that TC-5RW (10 µg/ml) 
treatment significantly attenuates GMFβ immunoreactiv-
ity as compared to AβO-only treated cells (***p < 0.001). 
Further, we performed immunoblot analysis of 5XFAD 
brain homogenates using GFAP, a marker for activated 
astrocytes, and Iba-1, a marker for activated microglia, 
respectively, to determine glial activation with and with-
out TC-5RW treatment. We found that TC-5RW treat-
ment significantly reduced the elevated level of GFAP 
and Iba-1 in 5XFAD mice as compared to non-treated 
5XFAD mice (Fig.  5A; **p < 0.01). We also performed 
confocal microscopy to affirm morphologically the acti-
vation of astrocytes and microglia using GFAP and Iba-1, 
respectively, revealing that TC-5RW reduces the immu-
noreactivity of GFAP and Iba-1 in both cortical and 

(See figure on next page.)
Fig. 3 Treatment of TC‑5RW significantly reduce AβO levels, Aβ plaques and its associated pathologies. A Schematic representation of grouping 
and treatment of mice for cohort 1 experiment. B Immunoblotting and quantification of AβO and AβM in the brains of 5XFAD mice treated 
or not with a single dose of TC‑5RW. β‑actin served as a loading control and was obtained after stripping of the same membrane of combined AβO. 
For obtaining the amyloid monomer with clear separation, we performed immunoblotting using 16% tris–tricine gel with 2.5 µm PVDF membrane. 
Histograms represent the means ± SEM for the representative proteins (n = 3 mice/group) and the number of independent immunoblotting 
experiments = 3. Uncropped immunoblotting images shown in Additional file 1: Fig. S8A, B. We used the representative cropped AβM in Additional 
file 1: Fig. SB for quantification. C Confocal microscopy images of Aβ (6E10) (green) and DAPI (blue) in the cortices and hippocampi of 5XFAD mice 
treated or not with TC‑5RW. Histogram represents as the means ± SEM for n = 3 mice/group, and the number of independent confocal microscopy 
experiments = 3. Magnified 10×. Scale bar = 100 μm. D Dot blotting and quantification of Aβ (6E10), Aβ (4G8) and Aβ (B4) and in the brain 
homogenates of non‑treated 5XFAD and TC‑5RW‑treated 5XFAD mice. β‑actin served as a loading control. Histogram represents as the means ± SEM 
for the representative proteins (n = 3 mice/group) and the number of independent dot blotting experiments = 3. Uncropped dot blotting images 
shown in Additional file 1: Fig. S8C. E, F Analyses of relative soluble Aβ42 and relative insoluble Aβ42 levels in the brain hemisphere homogenates 
of the 5XFAD mice treated or not with TC‑5RW using commercially available ELISA. Histograms represent as the means ± SEM for the indicated 
proteins (n = 5 mice/group). Significance = *p < 0.05; **p < 0.01; ***p < 0.001. Panel A image was prepared using Biorender.com
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hippocampal (CA1, CA3 and DG) as compared to non-
treated 5XFAD mice (Additional file 1: Fig. S5; **p < 0.01). 
Next, we performed double-immunofluorescence to ana-
lyze GMFβ levels in the activated astrocytes. The dou-
ble-immunofluorescence results showed that TC-5RW 

treatment significantly reduced the immunoreactiv-
ity of GMFβ and GFAP in both cortical and hippocam-
pal (CA1, CA3 and DG) as compared to non-treated 
5XFAD mice (Fig. 5B; **p < 0.01; Additional file 1: Fig. S6; 
**p < 0.01).

Fig. 3 (See legend on previous page.)
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In order to determine whether the reduction of glial 
activation and neuroinflammatory markers are a conse-
quence of reduced Aβ accumulation or directly affected 
by TC-5RW, we tested the anti-inflammatory effect of 
TC-5RW on LPS-mediated glial activation. The murine 
microglial cell line BV2 was incubated with LPS (1  µg/
ml) in the absence or presence of TC-5RW (10 µg/ml) for 
24 h and performed confocal microscopy, which showed 
that TC-5RW reduced immunoreactivity of GMFβ and 
Iba-1 in LPS activated BV2 cells (Fig. 5C; **p < 0.01). Next, 
the murine astrocytic C8D1A cells were incubated with 
LPS (1  µg/ml) in the absence or presence of TC-5RW 
(10 µg/ml) for 24 h and performed confocal microscopy 

for double-immunofluorescence for GFAP and GMFβ in 
astrocyte cell line C8D1A. The double-immunofluores-
cence results indicated that TC-5RW reduced immuno-
reactivity of GMFβ and GFAP in LPS activated C8D1A 
cells (Additional file  1: Fig. S7). Taken together, these 
results suggest that TC-5RW can prevent neuroinflam-
mation independent of Aβ pathologies as well as neuro-
inflammation associated with Aβ in familial AD.

Single and chronic administration of TC‑5RW treatment 
significantly improve cognitive functions of 5XFAD mice
To further validate our biochemical and immunohis-
tochemical results and to assess for the first time the 

Fig. 4 TC‑5RW reduces activated GMFβ in the brains of 5XFAD mice. A Immunoblotting and quantification of proinflammatory GMFβ in the brains 
of untreated and treated 5XFAD mice. β‑actin served as a loading control. Histogram represents the means ± SEM for the representative 
proteins (n = 3 mice/group) and the number of independent immunoblotting experiments = 3. Uncropped immunoblotting images shown 
in Additional file 1: Fig. S9. B Confocal images of GMFβ (red) (DAPI, blue) staining in the cortices and hippocampus regions (CA1, CA3 and DG) 
in brains of untreated and treated 5XFAD mice. Histogram represents the means ± SEM for n = 3 mice/group, and the number of independent 
confocal microscopy experiments = 3. Magnification: 63×. Scale bar = 50 μm. Magnification: 63×. C Confocal images of GMFβ (Red) (DAPI, Blue) 
of C8D1A astrocytic cells incubated with AβO (5 µM) and treated or untreated with TC‑5RW (10 μg/ml). Magnification: 63×. Scale bar = 20 μm. 
Histogram represents as the means ± SEM for n = 3 /group, and the number of independent in vitro and confocal microscopy experiments = 3. 
Significance = *p < 0.05; **p < 0.01; ***p < 0.001
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memory improving effect of TC-5RW in 5XFAD mice, 
we designed another study using WT mice and three 
groups of 5XFAD mice, including groups with single or 
weekly treatment with TC-5RW (Fig. 6A).

We initially performed the NOR test to evaluate the 
learning and recognition memory functions of rodents 
[66–69]. This task is based on the natural tendency of 
rodents to investigate novelty. A mouse is allowed to 
explore two identical objects kept in a context, and after 
an inter-trial interval is re-exposed to the context hav-
ing one familiar object, and a novel object. Mice having 

normal memory functions investigate the novel object 
preferentially. In NOR test, on the test day we observed 
that non-treated 5XFAD mice spent less time for explo-
ration of novel object and % of relative recognition indi-
ces as compared to WT mice. Most importantly, we 
found a time increase of exploration for novel object and 
% of recognition index for both single and chronic treat-
ment with TC-5RW of 5XFAD mice as compared to non-
treated mice (Fig. 6B–D; *p < 0.05).

Following NOR test, we performed Y-maze test to 
assess the short-term spatial learning and memory 

Fig. 5 TC‑5RW reduces the activated gliosis in the brain of 5XFAD mice. A Immunoblotting and quantification of GFAP, Iba‑1 and β‑Actin 
in the brain homogenates of non‑treated 5XFAD and TC‑5RW‑treated 5XFAD mice. β‑Actin was used as a loading control. Histograms represent 
the means ± SEM for the representative proteins (n = 3 mice/group) and the number of independent immunoblotting experiments = 3. 
Significance = *p < 0.05. Uncropped immunoblotting images shown in Additional file 1: Fig. S10A, B. B Confocal images of GFAP (green) and GMFβ 
(red) in the cortex and hippocampus (CA1) region in brains of non‑treated and TC‑5RW‑treated 5XFAD mice. Histogram represents the means ± SEM 
for n = 3 mice /group, and the number of independent confocal microscopy experiments = 3. Magnification: 63×. Scale bar = 50 μm. 
Significance = ***p < 0.001. C Double immunocytochemistry results of GMFβ (green) and Iba‑1 (red) in microglial BV2 cells, which were incubated 
with LPS (1 µg/ml) in the absence and presence of TC‑5RW (10 µg/ml) for 24 h. Magnification: 63×. Scale bar = 20 μm. Histogram represents 
as the means ± SEM for n = 3/group, and the number of independent in vitro and confocal microscopy experiments = 3. Significance = ***p < 0.001
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function of mice. The Y-maze test results demonstrated 
that WT mice have the ability to visit each arm but also 
have the tendency to not visit the same arm repeat-
edly. Similarly, the 5XFAD mice treated with single and 
chronic treatment of TC-5RW showed increased alterna-
tion behavior to visit each arm and avoid the previously 
visited arm. Overall, WT and 5XFAD mice treated with 
TC-5RW showed significantly higher percentage of alter-
nation as compared to non-treated 5XFAD mice (Fig. 6E, 
F; *p < 0.05).

Next, in order to examine the effect of TC-5RW treat-
ment on consolidated learning and memory function, we 
performed FC test. The results of FC test showed that 
non-treated 5XFAD mice have less % of freezing and 
total time of freezing as compared with WT mice, while 

both single and chronic treatment with TC-5RW resulted 
in a significant increase in % of freezing and total time 
of freezing as compared to non-treated 5XFAD mice 
(Fig. 6G, H; *p < 0.05).

In conclusion, our intriguing findings indicate that TC-
5RW induced beneficial and therapeutic effects via inhib-
iting Aβ aggregation and neuroinflammation, as well as 
improved learning and memory functions in transgenic 
5XFAD mouse model of AD.

Discussion
Protein misfolding neurodegenerative diseases are dev-
astating and incurable brain disorders, including AD. 
AD poses a huge socio-economic burden on the health 
care system with the prospect of case numbers tripling 

Fig. 6 Single and chronic administration of TC‑5RW treatment significantly improve cognitive functions of 5XFAD mice. A Schematic 
representation of grouping and treatment of mice for cohort 2 experiment. To third and fourth groups TC‑5RW was infused very slowly and carefully 
subcutaneously (SC) at the neck of mice. B, C Schematic representation of training and test phase for the NOR test. D Histogram represents the % 
index in testing session of NOR test. E Schematic representations of Y‑maze with three arms A, B and C. F Histogram represents the spontaneous 
alteration behavior percentage of mice during Y‑maze test. G Schematic representations of chamber used for FC test. H Histograms represent 
the % of freezing during the FC test. The histograms data represent the average for the mice (WT = 10 male mice/group, all other groups 15 male 
mice/group). Significance = *p < 0.05, **p < 0.01. WI: Weekly injection of TC‑5RW to 5XFAD mice; SI: single injection of TC‑5RW to 5XFAD mice. Most 
of the images of panels A–C, E and G were prepared using Biorender.com
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over the next 30 years. Hence, treatments are needed to 
address the growing prevalence of AD. However, drug 
development for AD and related neurodegenerative 
diseases has proven to be a very challenging and oner-
ous task for researchers, clinicians, and pharmaceutical 
industries. Development of new therapeutics is extremely 
costly and time consuming and leaves uncertainty 
about their safety. Alternatively, testing repurposed, 
FDA-approved drugs is an attractive avenue of research 
because these drugs are relatively economical, safe and 
accessible as well as have a high potential to expedite 
translation into clinical trials [70, 71]. It is worthwhile to 
use innovative and rationale approaches to investigate 
FDA-approved compounds for repurposing to expedite 
the development of novel and safe therapeutics to treat 
AD. Recently, we and other groups tested FDA-approved 
CEs in prion diseases and found that CEs have therapeu-
tic effects by inhibiting propagation of prions, infectious 
agents generated upon misfolding of the host’s cellular 
prion protein and prototypic for other misfolded proteins 
associated with neurodegenerative diseases, and extend 
the survival of prion-infected mice [30–35]. Herein, we 
tested and validated for the first time FDA-approved CE 
(HPMC) representative TC-5RW (Type E (Hypromellose 
2910 classified by the United States Pharmacopeia)) as a 
potential, emerging and effective compound to halt and 
treat familial AD. We demonstrated that both single and 
chronic treatment with TC-5RW significantly enhanced 
cognitive functions of 5XFAD mice. TC-5RW has the 
ability to prevent Aβ aggregation and accumulation both 
in in vitro and in vivo models. TC-5RW acts as a potent 
protective agent to rescue Aβ-mediated neuroinflamma-
tion via regulating proinflammatory mediators and glial 
activation.

Numerous research findings and literature reviews 
reported that the amyloidogenic pathway is a primary 
and the most significant pathological signature in AD 
pathologies. The oligomerization of Aβ monomers is a 
vital step of AβO-induced neurotoxicity and amyloid 
fibril formation which subsequently produce insoluble 
deposits of Aβ plaques [72, 73]. The accumulation of Aβ 
aggregates has been shown in human post-mortem brain 
and various transgenic mouse models of AD, including 
the 5XFAD mouse model of familial AD. The presence 
of Aβ fibrils and AβO is neurotoxic and triggers neuro-
inflammation, which subsequently leads to neurodegen-
eration and memory dysfunction [42, 74]. Numerous 
studies reported that soluble AβO species spread among 
cells and neuropil and therefore, were considered as a 
main mediator of synaptic and apoptotic neurodegenera-
tion, which subsequently lead to memory impairment in 
AD. Therefore, preventing and inhibiting formation of 

neurotoxic Aβ aggregates is one of the primary concerns 
to be targeted in early AD.

Several natural and synthetic compounds were tested 
to modulate the amyloidogenic pathway and aggrega-
tion. Numerous compounds have the potential to inter-
fere with Aβ aggregation via restricting the conversion 
of Aβ monomers into AβOs, inhibiting amyloid fibrils 
formation and disrupting amyloid fibrils, as well as by 
activation of the non-amyloidogenic pathway and stimu-
lation of other neuroprotective signalling pathways that 
rescue Aβ pathologies [75–77]. Notably, in the last two 
decades several clinical trials were conducted with dif-
ferent therapeutic approaches especially with active 
and passive immunotherapy to target the Aβ, unfortu-
nately most have failed their endpoints. Importantly, the 
recent results of the phase-3 clinical trial of immuno-
therapy using lecanemab (a humanized IgG1 monoclo-
nal antibody that binds with high affinity to Aβ soluble 
protofibrils) showed the reduction of Aβ burden in early 
AD patients and to some extent improved the cognitive 
functions of AD patients; however, lecanemab adminis-
tration produced some adverse effects in a few patients 
[78]. Despite this, the evidence of clinical studies suggest 
that anti-amyloid therapy may not be the most effective 
approach to treat AD [75]. Several other factors contrib-
ute to the AD pathologies, in which inflammation has a 
key role and connects other pathological mediators with 
the main hallmarks of AD. Therefore, it is important to 
not only focus on the Aβ aspect of AD pathologies, but 
we have to consider multiple aspects, mainly inflam-
mation to halt and treat AD. One strategy for combina-
tion therapy is to target the Aβ and other factors but the 
combination therapy may induce some detrimental side 
effects. Therefore, another possible approach is to iden-
tify effective and safe medication that not only inhibits 
the Aβ, but also could rescue other pathological media-
tors and improve memory functions. Our efforts are in 
line with this approach, using CE-derived FDA-approved 
TC-5RW to target Aβ aggregation and its mediated cas-
cades which together cause learning and memory deficit. 
We confirmed in in vitro studies that TC-5RW prevents 
Aβ aggregation and Aβ-induced neurotoxicity. These 
results were further supported by several studies, which 
reported that macromolecules and polymers have the 
potential to halt misfolded protein aggregation. Our 
group recently showed that TC-5RW inhibit the propaga-
tion of prions, an infectious agent consisting of misfolded 
protein. TC-5RW was also beneficial in animal models of 
prion diseases, which is consistent with our findings that 
TC-5RW significantly reduces AβO levels, Aβ plaques 
and insoluble and soluble Aβ42 contents in the brains of 
5XFAD mouse model of AD.



Page 15 of 18Ali et al. Journal of Neuroinflammation          (2023) 20:177  

Mounting studies reported the significant role of neu-
roinflammation and the innate immune system in protein 
misfolding neurodegenerative diseases [79, 80]. At physi-
ological conditions brain glial cells such as astrocytes 
play a key role in the development and function of neu-
ronal cells. Neuroinflammation is triggered by glial cells 
in the central nervous system in response to the accumu-
lation of misfolded proteins, infection, toxicity, or auto-
immunity. It was shown that intracerebral administration 
of human Aβ1-42 in mouse brains caused glial activation, 
enhanced levels of proinflammatory GMFβ, and trig-
gered the activation of various inflammatory cytokines 
and chemokines, which have roles in neuroinflammation 
[81]. Brain-specific GMFβ overexpression in astrocytes 
is responsible for the stimulation of granulocyte–mac-
rophage colony-stimulating factor. It was further con-
firmed that secreted GMFβ in astrocytic conditioned 
media further instigate the production and secretion of 
other proinflammatory mediators such as tumor necro-
sis factor alpha, interleukin-1 beta, and interleukin-6 in 
microglia [38, 39]. It was shown that neuronal SH-SY5Y 
cells exposed to Aβ1-42 and GMFβ trigger mitochon-
drial apoptotic neurodegeneration via elevated Bax/Bcl2 
expression and release of cytochrome-c, which subse-
quently leads to apoptosis. These studies suggest that 
GMFβ synergistically increases the detrimental effects of 
Aβ on the cellular homeostasis of neurons. This evidence 
indicated that proinflammatory GMFβ and glial activa-
tion in the presence of Aβ exacerbate AD pathologies 
[43]. Of note, in addition to the inhibitory effect of TC-
5RW on Aβ aggregation, we found that TC-5RW acted as 
anti-inflammatory agent and reduced the elevated level 
of proinflammatory GMFβ and glial activation in in vitro 
and in  vivo studies. Most importantly, both the single 
and chronic dosage regimen for TC-5RW treatment sig-
nificantly improved the learning and memory functions 
of 5XFAD mice (Fig.  6A–C). Along with improving the 
memory functions of mice, our findings show that TC-
5RW not only inhibits Aβ aggregation and reduces Aβ 
burden, but also acts as a potent anti-inflammatory and 
rescues neuroinflammation. Therefore, it is suggested 
that CEs or its derived compounds would be advanta-
geous to those drugs which only have the ability to inhibit 
Aβ aggregation or neuroinflammation.

Conclusions
In summary, our in vitro and in vivo results showed that 
TC-5RW inhibits AβO and Aβ fibril formation as well 
as prevents neuroinflammation and improves cognitive 
functions in a mouse model of familial AD. Neverthe-
less, besides these intriguing beneficial and therapeutic 
effects of CEs, we further recommend future studies to 
answer the following points and questions raised from 

our findings: (1) What is the exact underlying mechanism 
of CEs in inhibition of misfolded proteins and particu-
larly inhibition of Aβ aggregation? Do CEs act like other 
macromolecules and their hydrophobic region binds to 
Aβ [82] and consequently prevent the fibrillation of Aβ 
and its neurotoxicity? Or do CEs inhibit the seeding of 
AβO in the same manner as inhibiting the propagation 
of prions [33, 35]. (2) It was reported that in prion dis-
ease the CEs’ effect was modulated via immune cells as 
well as the CEs therapeutic efficiency was also affected 
by the strain of mouse models in prion diseases [31, 36, 
37], hence it will be important to decipher the role of 
CEs in the periphery and their effect in the brain. (3) Is 
there a beneficial and therapeutic effect of CEs in mod-
els of sporadic AD, particularly in ApoE4-related AD? 
(4) Strong evidence was provided that CE treatment 
extended the life span of prion-infected animals [30–35]. 
Therefore, it is also worth exploring whether CE adminis-
tration improves the phenotypic signatures of aging and 
frailty of mice. (5) The dosage of CE is another point to 
be considered, as this and other studies used a CE dose 
of 4 g/kg/SC, which is a very high dose and not applica-
ble to humans, considering an average body weight 70 kg. 
Therefore, another goal is to improve the bioavailability 
in the brain through nanoformulation of CEs and deter-
mine an applicable dose and route of administration for 
translational and clinical studies. Once answers to these 
questions are found, CEs or its modified derivatives can 
be tested and validated. Potentially, it could then also be 
of interest as a treatment of other neurodegenerative dis-
orders such as Parkinson’s disease, Huntington’s disease, 
and tauopathies, as well as in brain disorders associated 
with systemic inflammation and neuroinflammation.
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