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Abstract 

Background Multiple sclerosis (MS) is a chronic, inflammatory and neurodegenerative disease that leads to irrevers‑
ible damage to the brain and spinal cord. The goal of so‑called "immune reconstitution therapies" (IRTs) is to achieve 
long‑term disease remission by eliminating a pathogenic immune repertoire through intense short‑term immune cell 
depletion. B cells are major targets for effective immunotherapy in MS.

Objectives The aim of this study was to analyze the gene expression pattern of B cells before and during IRT (i.e., 
before B‑cell depletion and after B‑cell repopulation) to better understand the therapeutic effects and to identify 
biomarker candidates of the clinical response to therapy.

Methods B cells were obtained from blood samples of patients with relapsing–remitting MS (n = 50), patients 
with primary progressive MS (n = 13) as well as healthy controls (n = 28). The patients with relapsing MS received 
either monthly infusions of natalizumab (n = 29) or a pulsed IRT with alemtuzumab (n = 15) or cladribine (n = 6). B‑cell 
subpopulation frequencies were determined by flow cytometry, and transcriptome profiling was performed using 
Clariom D arrays. Differentially expressed genes (DEGs) between the patient groups and controls were examined 
with regard to their functions and interactions. We also tested for differences in gene expression between patients 
with and without relapse following alemtuzumab administration.

Results Patients treated with alemtuzumab or cladribine showed on average a > 20% lower proportion of memory 
B cells as compared to before IRT. This was paralleled by profound transcriptome shifts, with > 6000 significant DEGs 
after adjustment for multiple comparisons. The top DEGs were found to regulate apoptosis, cell adhesion and RNA 
processing, and the most highly connected nodes in the network of encoded proteins were ESR2, PHB and RC3H1. 
Higher mRNA levels of BCL2, IL13RA1 and SLC38A11 were seen in patients with relapse despite IRT, though these differ‑
ences did not pass the false discovery rate correction.

Conclusions We show that B cells circulating in the blood of patients with MS undergoing IRT present a distinct 
gene expression signature, and we delineated the associated biological processes and gene interactions. Moreover, 
we identified genes whose expression may be an indicator of relapse risk, but further studies are needed to verify 
their potential value as biomarkers.
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Background
Multiple sclerosis (MS) is a chronic immune-mediated 
central nervous system (CNS) disorder characterized 
by inflammatory demyelination, neuro-axonal degen-
eration and reactive astrogliosis [1]. MS affects approxi-
mately 2.8 million people worldwide, with a ~ 3 times 
higher prevalence in women compared to men [2]. The 
disease is typically diagnosed in adults aged 20–40 years. 
The diagnosis of MS relies on the integration of clinical, 
imaging and laboratory findings [3]. Disease activity and 
progression are defined by reversible episodes of new or 
worsening neurological deficits (also known as relapses), 
lesion activity in magnetic resonance imaging (MRI) and 
accumulation of disability over time. The spectrum of MS 
phenotypes is categorized into relapsing–remitting MS 
(RRMS), primary progressive MS (PPMS) and second-
ary progressive (SPMS) [4]. In most patients (~ 85–90%), 
acute relapses and periods of stability characterize the 
first years of the disease (RRMS) before a gradual wors-
ening of clinical disability becomes prominent (SPMS). 
A minority of patients (~ 10–15%) have a progressive 
disease course from onset (PPMS). The etiology of MS 
remains unclear, but various genetic, environmental and 
lifestyle factors are known to contribute to disease devel-
opment and severity [5, 6].

No curative treatment is yet available for MS. Dis-
ease-modifying therapies (DMTs) for MS, especially for 
RRMS, can favorably change the quality of life and long-
term outlook for many patients [7]. They act by suppres-
sion or modulation of immune function to reduce the 
rate and severity of relapses, prevent lesion formation 
and delay the accumulation of permanent disability [8, 9]. 
DMTs for MS can be categorized into ongoing or main-
tenance therapies that are continuously administered 
(e.g., fingolimod, glatiramer acetate and natalizumab) 
and newer so-called pulsed immune reconstitution ther-
apies (IRTs) that are administered in short courses and 
have the potential to induce long-term drug-free dis-
ease remission [10, 11]. The concept of IRTs is to elimi-
nate a pathogenic adaptive immune repertoire through 
intense short-term immune cell depletion and then allow 
the immune system to renew itself. Examples of pulsed 
IRTs for MS are alemtuzumab and cladribine. Alem-
tuzumab is a humanized monoclonal antibody against 
CD52, which is highly expressed on B and T cells [12–
14]. The therapy with alemtuzumab leads to a rapid and 
long-lasting depletion of  CD52+ cells, followed by a slow 
repopulation arising from hematopoietic precursor cells. 

Alemtuzumab is infused for 5 consecutive days in the 
first course and for 3  days in the second course 1 year 
later, though up to 2 additional treatment courses may 
be considered as needed. Cladribine is a chlorinated ana-
logue of deoxyadenosine that is activated through phos-
phorylation preferentially in lymphocytes. Activated 
cladribine interferes with DNA synthesis and repair and 
triggers apoptosis [15, 16]. Cladribine tablets are admin-
istered over 4–5 consecutive days at months 0 and 1 (first 
year of treatment) and at months 12 and 13 (second year 
of treatment). Ocrelizumab, an anti-CD20 monoclonal 
antibody, is currently the only approved DMT for PPMS 
[17, 18]. As the therapeutic options in PPMS are limited, 
repeated pulse therapy with corticosteroids has occasion-
ally been used [19, 20]. However, patient selection, risk 
stratification and therapy guidance are challenging in the 
context of IRTs. Thus, deeper insights into their mecha-
nisms of action and reliable markers to identify patients 
with suboptimal treatment response and to inform physi-
cians whether to retreat or to switch therapy are urgently 
needed.

B cells play a key role in the pathobiology of MS, 
which is underscored by the high efficacy of therapeu-
tic strategies that target these cells [7, 8] and the fact 
that they are a primary target of Epstein–Barr virus 
(EBV) infection, the leading risk factor for MS [21–23]. 
B cells are thought to contribute to MS through their 
antigen-presenting function and the formation of ter-
tiary lymphoid-like structures in the CNS, which are 
the likely source of an abnormal immunoglobulin pro-
duction detectable in the cerebrospinal fluid (CSF) [24, 
25]. Circulating B cells from individuals with MS are 
potent activators of autoreactive T cells as they exhibit 
an imbalance in the secretion of pro- and anti-inflam-
matory cytokines and express increased levels of co-
stimulatory molecules, such as CD80 [26, 27]. Within 
the B-cell population, memory B cells may be a driver 
subset in MS, as indicated by genetic studies [28] and 
studies of cell population shifts in the peripheral blood 
in response to DMTs [29]. The therapy with alemtu-
zumab leads to an effective depletion of circulating 
 CD19+ B cells by ~ 90%, which is followed by repopu-
lation, with total B-cell counts returning to baseline at 
3 months and then rising further to ~ 165% of baseline 
at 12 months after treatment [30]. However, the appar-
ent increase in the number of  CD19+ B cells is gener-
ated by newly produced immature (transitional) B cells 
and mature naive B cells, whereas  CD27+ memory 
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B-cell recovery is slow, reaching only ~ 25% of baseline 
by month 12 [30, 31]. Similarly, cladribine induces a 
70–90% depletion of B cells [32]. Within 1 year after the 
first administration of cladribine (i.e., until the second 
treatment course), the B cells repopulate to 70–80% of 
baseline, but the number of memory B cells remains 
persistently low for over 12  months (~ 80% reduc-
tion compared to baseline) [33–36]. These changes in 
the immune reconstitution phase are associated with 
a decrease in pro-inflammatory responses [11, 37]. 
However, previous studies could not detect significant 
differences in the recovery of any blood cell popula-
tion between patients with and without recurrent dis-
ease activity after treatment [32, 38–41]. Moreover, the 
effects of these IRTs for MS on the transcriptome pro-
file of B cells have not been investigated so far.

In this study, we analyzed B cells from the peripheral 
blood of MS patients and healthy controls at the cellular 
and transcriptome level. We show that the gene expres-
sion pattern of B cells is substantially altered in patients 
receiving alemtuzumab or cladribine, which reflects 
the shift in B-cell subsets in response to these IRTs and 
affects a wide variety of biological functions. We also 
compared the transcriptome data between patients 
remaining free of relapses and patients who developed 
a relapse in the year following alemtuzumab administra-
tion to find potential biomarkers of treatment outcome. 
For selected genes, the possible involvement in immune 
mechanisms related to MS will be discussed.

Methods
Study groups
The study population comprised 63 patients with MS and 
28 healthy controls aged over 18 years. In this cohort, we 
have already investigated the effects of MS-associated 
genetic variants on the processing of RNAs, as described 
in detail in our previous publications [42, 43]. Patient 
care and treatment followed routine clinical practice 
at the Rostock University Medical Center. In brief, the 
diagnosis of MS was confirmed based on the revised 
McDonald criteria [3]. The patients were monitored for 
the occurrence of relapses, and their degree of neuro-
logical disability was rated with the Expanded Disability 
Status Scale (EDSS) [44]. The therapeutic management of 
the patients was carried out according to the guidelines 
of the German Society of Neurology and the approved 
product labels. The study was conducted with approval 
by the local ethics committee of the University of Ros-
tock and in compliance with the principles of the current 
Declaration of Helsinki.

An overview on the treatment of the patients and the 
blood sampling is shown in Fig.  1. The patients with 
PPMS (n = 13) received intravenous methylprednisolone 

for 3–5 days every 3–6 months since at least 3 years. A 
subgroup of the patients with RRMS (n = 29) was treated 
with monthly infusions of natalizumab for a minimum 
of 1 year. From the patients in these two study groups, a 
single blood sample was collected just before an upcom-
ing infusion. The other patients with RRMS received an 
IRT with either intravenous alemtuzumab (n = 15) or oral 
cladribine (n = 6). From these patients, up to four blood 
samples were collected immediately before (B) and/or 
following (F) the 1st, 2nd, 3rd or 4th annual treatment 
course. The F samples were taken during a regular clini-
cal visit usually 6–9 months after the start of the previous 
treatment course. From alemtuzumab-treated patients, 
the B samples and F samples were always obtained in a 
paired manner (i.e., before B-cell depletion and after 
B-cell repopulation). This was not the case for the clad-
ribine-treated patients. From 7 patients, a blood sample 
was also taken before the initiation of the IRT. These B1 
samples are hereinafter referred to as the "before IRT" 
group.

Blood sample processing
In total, 121 peripheral blood samples were collected 
with prior written informed consent from each par-
ticipant. The blood (~ 20 ml) was drawn into tubes with 
ethylenediaminetetraacetic acid (EDTA). Immediately 
following the blood withdrawal, peripheral blood mono-
nuclear cells (PBMC) were isolated using Ficoll density 
gradient separation (Histopaque-1077, Sigma-Aldrich). 
Untouched B  cells were then enriched from the PBMC 
by negative selection using the Pan B Cell Isolation Kit 
(Miltenyi Biotec). The number of freshly isolated cells 
was counted under a microscope, and the purity of B cells 
was assessed as described previously [42]. From each 
sample, 200,000 B cells were cryopreserved in freezing 
medium (Biofreeze, Biochrom) in the vapor phase of liq-
uid nitrogen at below − 140 °C until performing the flow 
cytometry analysis. The remaining B cells were lysed in 
QIAzol Lysis Reagent (Qiagen) and stored at − 80  °C. 
Total RNA was later isolated using the miRNeasy Mini 
Kit (Qiagen) with the RNase-free DNase set (Qiagen). 
RNA concentrations were quantified using a NanoDrop 
ND-1000 Spectrophotometer (Thermo Fisher Scientific). 
The integrity of the RNA samples was checked using an 
Agilent 2100 Bioanalyzer with RNA 6000 Pico kits (Agi-
lent Technologies).

Flow cytometry
The frequencies of B-cell subpopulations were analyzed 
using a BD FACSAria IIIu system following the guide-
lines for the use of flow cytometry in immunological 
studies [45]. As described earlier [42], all the cryopre-
served B cells were quickly thawed in a 37  °C water 
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bath, washed with phosphate-buffered saline and then 
stained with the fluorochrome-conjugated antibodies 
CD19-PerCP, CD23-BV421, CD27-PE, CD38-PE/Daz-
zle594 (all from BioLegend), CD21-APC, CD24-APC-
Vio770 (Miltenyi Biotec) and IgD-BV750 (BD). Zombie 
Green dye was used for live/dead staining of the cells 
(BioLegend). FcR blocking reagent (Miltenyi Biotec) 
was used to block unspecific binding of antibodies to Fc 
receptors. Data acquisition and compensation calcula-
tions were performed using the BD FACSDiva software 
version 8.0.2.

The obtained data were processed in the FlowJo soft-
ware version 10 (BD) for determining the percentages 
of B-cell subsets [45–48] with slight modifications com-
pared to our previous study [42]. First, outlier events 

were removed using the FlowAI plugin version 2.1 [49]. 
Live single  CD19+ cells were then identified based on 
their forward and side scatter properties and the signals 
for the live/dead and CD19 markers. Finally, we gated 
on  CD27−IgD+ naive B cells,  CD27+IgD+ non-switched 
memory B cells,  CD27+IgD− switched memory B cells, 
 CD27−IgD− memory B cells,  CD27++CD38++ plasmab-
lasts,  CD24++CD38++ transitional B cells [46],  CD21−/

lowCD38−/low B cells [47] and  CD23high B cells [48] 
(Additional file 1: Fig. S1).

The data were visualized in box/beeswarm plots using 
the R package beeswarm. Pairwise comparisons between 
the study groups were performed with Tukey post hoc 
tests for linear mixed-effects models (LMM) using the 
R package multcomp [50]. The subjects were treated as 

Fig. 1 Overview of the study. Peripheral blood was taken from healthy controls, patients with primary progressive MS (PPMS) and patients 
with relapsing–remitting multiple sclerosis (RRMS). The patients with RRMS received either monthly infusions of natalizumab (n = 29) or a pulsed 
immune reconstitution therapy (IRT) with alemtuzumab (n = 15) or cladribine (n = 6). The timelines of drug administration are shown in blue. 
For the study groups healthy, PPMS and natalizumab, we collected one sample per individual, whereas in the case of IRTs, up to four samples 
were collected per patient before (B) and/or following (F) an annual treatment course. In total, we collected 121 blood samples from 91 subjects. 
We then isolated peripheral blood mononuclear cells (PBMC) before isolating untouched B cells by magnetic separation. A fraction of the B cells 
was cryopreserved and later used for B‑cell phenotyping by multicolor flow cytometry. From the remaining B cells, total RNA was extracted, labeled 
and hybridized to high‑density Clariom D arrays to obtain transcriptome profiles
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a random effect in the LMMs to consider for repeated 
measurements.

Transcriptome profiling
The gene expression levels in B cells were measured by 
high-density Clariom D arrays for human (Applied Bio-
systems), which contain > 6.7 million 25mer oligonu-
cleotide probes. For this purpose, amplified, fragmented 
and biotinylated single-stranded sense strand DNA was 
generated from 100 ng of total RNA per sample using the 
GeneChip WT PLUS Reagent Kit (Applied Biosystems). 
The hybridization of the arrays was conducted for 16  h 
at 45  °C in a GeneChip Hybridization Oven 645 (Affy-
metrix). After washing and staining in a GeneChip Flu-
idics Station 450 (Affymetrix), the arrays were scanned 
using a GeneChip Scanner 3000 7G (Affymetrix). The 
scans were processed with the Affymetrix GeneChip 
Command Console version 4.0 to extract signal intensi-
ties. Data normalization, probe set summarization and 
log2 transformation were finally performed with the 
Transcriptome Analysis Console version 4.0.2 (Applied 
Biosystems) by applying the signal space transformation 
robust multi-array average algorithm.

Identification of differentially expressed genes
We screened for differentially expressed genes (DEGs) 
between the 6 study groups (healthy, PPMS, before IRT, 
alemtuzumab, cladribine and natalizumab) in the R soft-
ware environment for statistical computing. This was 
done by fitting LMMs with a random effect for each sub-
ject to the data for each gene level probe set (also referred 
to as transcript cluster or simply "gene" in the following) 
using the R package lme4 [51]. Type II Wald χ2 tests were 
then calculated for the models with the R package car 
[52] to obtain p values, which were adjusted for multi-
ple testing using the false discovery rate (FDR) approach 
[53]. The significance level was generally set to 5%.

For the subgroup of patients who received alem-
tuzumab, we have also specifically analyzed the gene 
expression changes in response to each annual treatment 
course. For this purpose, the respective data for B sam-
ples and F samples were compared with paired t tests 
and used to calculate log2 fold changes (log2FC). Genes 
with strong changes in expression in the enriched B cells 
were filtered by requesting a p value < 0.05 and a log2FC 
of <  − 1 or > 1, which means that the transcript level is on 
average reduced by > 50% or increased by > 100% at the 
follow-up timepoint as compared to before the treat-
ment course. A log2FC of even <  − 3 or > 3 (i.e., a mean 
decrease by > 87.5% or a mean increase by > 700%) was 
regarded as an extreme shift in expression.

We restricted the transcriptome analyses to transcript 
clusters with annotated Entrez Gene identifier. Moreover, 

we excluded genes that were not expressed in the B cells 
by eliminating probe sets with a log2 signal intensity < 4 
in all samples.

Clustering of genes
A hierarchical clustering of the top 500 DEGs across the 
6 study groups (according to the Wald test p values) was 
performed on the basis of the complete linkage method 
and Pearson’s correlation coefficient as a measure of simi-
larity. Based on this, the DEGs were grouped into clusters 
with distinct gene expression patterns. The signal inten-
sities for each gene were centered and scaled (yielding 
z-scores) for visualization in a heatmap. Moreover, a line 
chart was drawn for each cluster by connecting for each 
gene the average standardized expression level of the 
healthy controls and each subgroup of patients with MS.

Analysis of gene expression in B‑cell subsets
Differences in the B-cell transcriptome signature 
between the study groups are presumably related to 
differences in the composition of B-cell subpopula-
tions. We have, therefore, taken a closer look on the 
expression of the top 500 DEGs in B-cell subsets using 
the RNA sequencing data set from Monaco et  al. [54]. 
These data provide median transcripts per million val-
ues for 29 sorted human immune cell types, including 
 CD27−IgD+ naive B cells,  CD27+IgD+ non-switched 
memory B cells,  CD27+IgD−CD38low switched mem-
ory B cells,  CD27−IgD− exhausted memory B cells and 
 CD27+IgD−CD38high plasmablasts of healthy donors. We 
used the data to derive z-scores, which were averaged 
over all genes in a cluster as a measure of its cell type 
specificity.

Mapping of genes to biological processes
To assign the top 500 DEGs to functional categories, we 
utilized the biological process terms of the Gene Ontol-
ogy (GO) annotation. Overrepresented GO terms were 
identified for each gene cluster using the R packages org.
Hs.eg.db and GOstats [55]. Accordingly, hypergeomet-
ric tests were performed to filter GO terms that are sig-
nificantly enriched with p < 0.05 in the cluster gene sets 
as compared to the reference gene set (defined as all 
expressed genes with Entrez Gene identifier). The results 
were further narrowed down by excluding GO terms that 
contain > 5000 genes of the reference set or < 20% of the 
genes of a cluster set. Further information on individual 
genes were derived from PubMed and the GeneCards 
database [56].

Gene interaction network analysis
We explored interactions between the genes with dif-
ferential expression across the 6 study groups using the 
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GeneMANIA plugin (version 3.5.2) [57] for the network 
visualization software Cytoscape (version 3.9.0) [58]. 
This was done by entering the gene symbols of the top 
500 DEGs to search for interactions in the data set for 
homo sapiens with the default configuration. This yielded 
a network of (pairwise) physical interactions, which were 
retrieved from protein–protein interaction studies. The 
color and size of the network nodes (i.e., the gene prod-
ucts) were used to indicate the cluster membership and 
the number of adjacent edges (i.e., the interactions), 
respectively.

Search for potential markers of relapse
We examined whether the transcript levels in the B cells 
were associated with the clinical response to the IRT 
with alemtuzumab. For this purpose, we compared the 
data between patients with relapse and patients with-
out relapse in the 12 months after a course of infusions. 
This comparison was made for all transcript clusters and 
for the timepoints B1, F1, B2 and F2. In addition to the 
mean difference (MD) in expression between the patient 
groups at each timepoint, significance values were cal-
culated by Welch t tests. Genes whose expression might 
be related to relapse risk were then filtered by selecting 
expressed genes with Entrez Gene identifier with p < 0.05 
and MD <  − 1 or > 1. The latter means that the expres-
sion is at least twice as high in one of the two groups 
than in the other group, as the processed data are in log2 
scale. For a more stringent selection, we demanded an 
MD <  − 1 or > 1 for both B1 and B2 or for both F1 and F2. 
Clinicodemographic data were tested for association with 
relapses using Welch’s t test, Mann–Whitney U test and 
Fisher’s exact test.

Results
Characterization of the study cohort
The study population comprised 91 subjects in total 
[42, 43]. The patients with PPMS were on average older 
(mean age ± standard deviation: 58.7 ± 9.8 years) than the 
patients with RRMS (36.1 ± 10.6  years) and the healthy 
controls (28.0 ± 8.9 years) at the timepoint of blood col-
lection. There were also differences in the proportion of 
women (PPMS: 38.5%, RRMS: 66.0%, healthy: 60.7%). The 
MS patients had a mean disease duration of 8.2 ± 6.6 years 
and a mean EDSS score of 3.0 ± 1.6 (10 patients with 
missing value). Four RRMS subgroups were defined by 
the current treatment (natalizumab, alemtuzumab, clad-
ribine or before IRT), resulting in 6 study groups in total. 
The 7 patients in the before IRT group were previously 
treated with fingolimod (n = 3), glatiramer acetate (n = 3) 
or interferon-β-1b (n = 1). Blood samples were taken 
from these patients immediately before they received 
the first treatment course of alemtuzumab (n = 4) or 

cladribine (n = 3), called B1 samples, as well as during 
therapy. Detailed clinicodemographic information are 
provided in Additional file 2.

Differences in the proportions of B‑cell subpopulations
The enrichment of B cells from PBMC yielded an average 
number of 4.3 million cells at an average B-cell purity of 
85.2% (3 samples with missing value) [42]. The samples 
were used to perform the B-cell phenotyping and the 
RNA analyses. With regard to the results from the flow 
cytometric measurements, the percentages of the differ-
ent B-cell subsets across the 6 study groups are shown in 
Fig. 2 and tabulated in Additional file 3. Over all 121 sam-
ples, naive B cells constituted the most abundant sub-
population (45.1% of  CD19+ cells on average), whereas 
transitional B cells and  CD21−/lowCD38−/low B cells were 
relatively rare (2.9% and 3.1% on average, respectively). 
A mean proportion of 5.7% of the cells was identified as 
plasmablasts.

With the exception of  CD23high B cells, significant dif-
ferences in the relative proportions were seen for all sub-
populations when comparing the 6 study groups (Wald 
test p < 0.05). Particularly substantial shifts, remarkably in 
the opposite direction, were seen for the two IRT groups 
compared to the natalizumab group. For natalizumab-
treated patients, we observed, on average, the highest 
percentages for non-switched memory B cells (39.7%) 
and  CD21−/lowCD38−/low B cells (6.0%) but the lowest 
percentages for plasmablasts (2.3%) and transitional B 
cells (1.5%). In contrast, the samples obtained during IRT 
showed the lowest mean percentages for non-switched 
memory B  cells (6.9% in the alemtuzumab group) and 
 CD21−/lowCD38−/low B cells (1.3% in the cladribine group) 
but the highest mean percentages for plasmablasts (8.4% 
in the alemtuzumab group) and transitional B cells (8.6% 
in the cladribine group). These alterations at the cellu-
lar level are reflective of the very different mechanisms 
of actions of these treatments for RRMS. For a more 
detailed view, the changes in the composition of B cells 
during the course of therapy with alemtuzumab are visu-
alized in Additional file 1: Fig. S2.

Differences in the B‑cell transcriptome profiles
We next explored the differences at the transcriptome 
level between the study groups. The profiling with 
Clariom D arrays was based on a total of 135,750 gene 
level probe sets. The raw and processed data have been 
deposited in the Gene Expression Omnibus (GEO) 
database under accession number GSE190847 [43]. 
The assignment of the 121 samples to these data is 
given in Additional file 2. A subset of 21,587 transcript 
clusters were annotated with Entrez Gene identifiers 
and considered to be expressed in the B cells from the 
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peripheral blood of the MS patients and/or healthy con-
trols. The analysis for differential expression between 
the 6 study groups revealed strong transcriptome shifts. 
We could determine 6,280 DEGs using the threshold 
FDR = 0.05 (Additional file 4). The scaled signal intensi-
ties of the top 500 DEGs are visualized in Fig. 3.

The top 500 DEGs could be grouped into 8 clusters 
(Figs.  3, 4 and Additional file  4). Cluster 1 and clus-
ter 2 comprised the largest numbers of genes (n = 155 
and n = 122, respectively). The genes from these two 
clusters, as well as from clusters 3 and 4, were signifi-
cantly higher expressed in the group of natalizumab-
treated patients, whereas they were lower expressed in 
the cladribine group and, at least in the case of cluster 
2 and cluster 4 genes, also the alemtuzumab group. 
Conversely, the clusters 7 and 8 contained genes that 
were expressed at low levels in the natalizumab group 
but at relatively high levels in the alemtuzumab group 
and the cladribine group. The expression profiles of the 
healthy subjects, the PPMS patients and the before IRT 
group were fairly similar. Only a few genes were gen-
erally decreased (n = 5, cluster 5) or increased (n = 7, 
cluster  6) in expression in the enriched B cells of the 
patients with MS as compared to those of the healthy 
controls.

For a closer look, we investigated the expression 
changes in RRMS patients treated with alemtuzumab by 
analyzing the data of the 21 paired samples separately. By 
this means, we identified 225, 86 and 44 genes with sig-
nificantly altered expression in response to the first, sec-
ond and third treatment course, respectively (Additional 
file 1: Fig. S3, Additional file 4). Of the top 500 DEGs, a 
subset of 105 genes were significantly downregulated 
(n = 79) or upregulated (n = 26) from B1 to F1 according 
to the filtering criteria (t test p < 0.05 and log2FC <  − 1 
or > 1).

Gene functions and cell type specificity
To gain insights into the modulated biological processes, 
we tested for each of the 8 clusters whether the DEGs 
were significantly overrepresented in GO categories. 
The most significant enrichment was seen for the GO 
term "RNA processing". A total of 74 genes from cluster 
1 belonged to this category, e.g., BCAS2, RMRP, RPPH1 
as well as genes encoding ribosomal proteins and small 
nuclear/nucleolar RNAs (Fig.  4 and Additional file  5). 
Cluster 2 genes were significantly related to "transport" 
(e.g., ADRB2, ANKH and IL10RA) and "positive regula-
tion of metabolic process" (e.g., CALM2, PARP3 and 
RIPK2). Other GO terms that were associated with the 

Fig. 2 Frequencies of B‑cell subpopulations across the study groups. Eight subsets of  CD19+ cells were measured by flow cytometry as shown 
in Additional file 1: Fig. S1. In addition to the individual data points, the medians and interquartile ranges per group are depicted by box plots. 
The brackets indicate statistical significance in pairwise comparisons based on Tukey post hoc tests for linear mixed‑effects models. The average 
percentages per group are given in Additional file 3. IRT = immune reconstitution therapy, PPMS = primary progressive multiple sclerosis, * p < 0.05, 
** p < 0.01, *** p < 0.001
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top DEGs were "apoptotic process" (cluster 3, e.g., BCL2, 
IGF1R and NFKBIA), "regulation of signal transduction" 
(cluster 4, e.g., CD80, FCGR2B and RGS7), "cell adhesion" 
(cluster 6, PCDH9, PDLIM1 and PTPRK) and "immune 
system process" (cluster 8, e.g., CD1A, CR2 and IL21R).

Expression data for B-cell subsets were available for 
454 of the top 500 DEGs in the data set from Monaco 
et  al. [54] (Additional file  4). We used these informa-
tion to examine the cell type specificity for each cluster. 
As can be seen in Fig. 4, the genes from clusters 2 and 
4, which were reduced in expression in RRMS patients 
treated with alemtuzumab or cladribine, are predomi-
nantly expressed by memory B cells. On the other 
hand, the genes from cluster 8, which were increased 
in expression in those patients who were treated with 
an IRT, are primarily expressed by naive B cells. Cluster 
7, which contains genes that were expressed at much 
lower levels in patients receiving natalizumab infusions, 

showed an association to the expression signature of 
plasmablasts. These data agree well with the differences 
in the composition of circulating B-cell subpopulations 
between the study groups that we have measured by 
flow cytometry.

Interaction network of differentially expressed genes
We next explored protein–protein interactions between 
the gene products of the top 500 DEGs using the Gene-
MANIA plugin for Cytoscape [57, 58]. The analysis 
yielded a total of 428 physical interactions between 173 
of the top DEGs (Fig. 5). The most connected proteins in 
the network were ESR2 (45 edges), PHB (29 edges) and 
RC3H1 (29 edges). Between small and large ribosomal 
subunit proteins (n = 10 and n = 8, respectively) from 
cluster 1, there was a particularly high number of pair-
wise interactions (129 edges in the network).

Fig. 3 Heatmap of the top 500 differentially expressed genes. Differentially expressed genes (DEGs) between the 6 study groups were 
determined using linear mixed‑effects models treating subjects as a random effect. For the top 500 DEGs (all with false discovery rate < 0.05), 
the scaled signal intensities (z‑scores) are visualized, with blue indicating low expression and red indicating high expression. The genes (rows) 
were ordered by hierarchical clustering, and 8 gene clusters could be defined (shown by the colored bars on the left). The light and dark purple 
bars at the bottom indicate whether the blood samples were taken before or following the administration of alemtuzumab or cladribine. Paired 
B samples and F samples of an annual treatment course (represented by the green bars at the bottom) are always arranged in the same order. 
The samples and genes in the columns and rows are specified in Additional files 2 and 4, respectively. IRT = immune reconstitution therapy, 
PPMS = primary progressive multiple sclerosis
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Relapse‑associated gene expression variation
Finally, we searched for genes whose transcript levels in 
B cells might have a predictive value with regard to dis-
ease activity despite IRT with alemtuzumab. Two of the 
4 patients for whom samples were available before and 
after the first treatment course had a relapse in the year 
after the B1 timepoint, 4 of the 13 patients with B2–F2 
sample pairs experienced a relapse in the year after the 
administration of the second treatment course, and all 
three patients with B3–F3 sample pairs had a relapse in 
the year following B3 (Additional file 2). The average time 
to relapse was 8.4 ± 3.0 months. Age (t test p = 0.597), sex 
(Fisher’s exact test p = 1.000), disease duration (U test 
p = 0.776), EDSS score (t test p = 0.689) and the number 
of relapses in the preceding year (t test p = 0.457) were 
not significantly associated with the occurrence of clini-
cal relapses in the follow-up year.

We first evaluated whether genes with extreme shifts 
in expression after alemtuzumab infusions were differ-
entially expressed when comparing patients with and 
without relapse. There were 5  genes (AIM2, BHLHE41, 
NETO1, PLAG1 and TFEC) that were expressed at 
extremely lower levels after the first treatment course 
(t test p < 0.05 and log2FC <  − 3) and 5 genes (CX3CR1, 
GNLY, LYZ, S100A8 and S100A9) that were expressed at 

extremely higher levels after the second treatment course 
(t test p < 0.05 and log2FC > 3). The gene expression 
dynamics are shown in Fig.  6a–f and Additional file  1: 
Fig. S4a–d. However, the mRNA levels of these 10 genes 
were not found to be associated with relapse risk. Despite 
MD of up to 8.51 in the log2 signal intensities, the signifi-
cance level could not be reached at any timepoint (t test 
p > 0.05) (Additional file 4). There was also no significant 
difference in the expression changes of these genes from 
B1 to F1 and from B2 to F2 between patients with relapse 
and patients without relapse.

After we extended the analysis to all transcript clusters, 
we found a differential expression of 242 genes (p < 0.05 
and MD <  − 1 or > 1 at B1, F1, B2 or F2), with the more 
stringent selection criteria being met by 17 of these 
genes, but none remained after FDR correction. Six of 
the 17 genes (DMXL2, GSN, MIR4435-2HG, RARRES3, 
RNU12 and TIMP1) had a lower expression in the B cells 
from the patients with relapse event in the year follow-
ing an alemtuzumab treatment course. The other 11 
genes were expressed at higher levels at two timepoints 
(MD > 1), while reaching the significance level at one 
timepoint (p < 0.05), when comparing alemtuzumab-
treated patients with and without a relapse. Figure  6g-
–i shows the data for 3 of the 11 genes (BCL2, IL13RA1 

Fig. 4 Gene expression patterns of the different clusters. B‑cell transcriptome profiles were compared between healthy controls and subgroups 
of patients with multiple sclerosis. The top 500 differentially expressed genes (DEGs) were grouped in 8 clusters. In this plot, a line is drawn 
for each DEG by connecting the average standardized expression value of each study group. The cluster color code is as shown in Fig. 3. The thick 
line in each subpanel shows the mean of the means over all genes in the cluster. For each cluster, the most overrepresented gene functional 
term that is characteristic of the respective gene set is given. In addition, the dot plots on the right of each subpanel visualize the average 
expression of the genes in different B‑cell subsets according to the data set by Monaco et al. [54]. The gene names are given in Additional file 4. 
B ex = exhausted memory B cells, B n = naive B cells, B nsm = non‑switched memory B cells, B sm = switched memory B cells, IRT = immune 
reconstitution therapy, pb = plasmablasts, PPMS = primary progressive multiple sclerosis
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and SLC38A11). The data for the other filtered genes are 
shown in Additional file  1: Fig. S4e–r. The mean differ-
ences and p values are provided for all genes in Addi-
tional file 4.

Discussion
Over the past years, evidence has accumulated that B 
cells and their interplay with T cells are central in the 
pathogenesis of MS [25]. Our understanding of this 
complex disease has considerably advanced with the 
success of therapies that mediate the depletion or func-
tional inhibition of immune cells [29]. Previous stud-
ies have characterized the shifts at the cellular level 
that occur during the treatment with pulsed IRTs and 

anti-CD20 agents [59]. Both alemtuzumab and clad-
ribine induce a rapid depletion of lymphocytes, after 
which memory B cells repopulate only slowly and thus 
are persistently depleted in the blood of patients with 
MS [30, 31, 33–36]. This is thought to reduce B-cell 
trafficking from the periphery to the CNS, antigen 
presentation to T cells, pro-inflammatory cytokine pro-
duction and the generation of antibody-secreting cells 
[8]. Here, we utilized a transcriptomics approach to 
obtain more detailed insights on the therapeutic effects 
at the molecular level. We explored the biological pro-
cesses that are influenced as a consequence of the gene 
expression alterations following the administration of 
IRTs and filtered biomarker candidates of the effective-
ness of alemtuzumab treatment in preventing relapses.

Fig. 5 Protein–protein interaction network of differentially expressed genes. The gene symbols of the top 500 differentially expressed genes 
(DEGs) were entered in the GeneMANIA Cytoscape plugin [57, 58]. The search identified 428 physical interactions (blue edges) between 173 gene 
products (nodes colored by cluster membership). The other top DEGs were not linked by protein–protein interactions and are thus not shown 
in the network. The size of the nodes corresponds to the number of edges
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Our analysis was based on 121 blood samples that 
were collected from 91 subjects and divided into 6 
study groups. We included a healthy group, a PPMS 
group and four RRMS subgroups (before IRT, alem-
tuzumab, cladribine and natalizumab). The patient 
cohort was typical for this disease in terms of age, sex 
and degree of disability [42], but we did not include 
patients with SPMS, patients who were therapy-naive 
and patients treated with other DMTs, such as ocreli-
zumab. Moreover, older individuals were underrepre-
sented in the healthy group, which may have impacted 
the results. However, age-related changes in the pro-
portions of B-cell subsets are most pronounced in the 
first 5  years of life [46], whereas in adults, two refer-
ence studies generally found no statistically significant 

change with age, even though a marked decrease in 
 CD27+IgD+ B cells and plasmablasts was observed [60, 
61]. Of note, the patients who received alemtuzumab 
would have met the inclusion criteria of the respec-
tive phase III clinical trials in terms of age, EDSS score, 
course of MS and number of relapses in the pre-treat-
ment phase. The patients from whom we obtained a 
B1 sample before starting cladribine therapy, however, 
would not have met the criterion of having at least one 
relapse in the previous 12  months. This resembles the 
finding that the number of relapses before treatment 
is the most frequent clinical trial criterion that is not 
fulfilled in routine clinical care [62]. The therapies with 
alemtuzumab and cladribine are referred to as pulsed 
IRTs as they induce a partial immune reset to achieve 

Fig. 6 Expression dynamics during alemtuzumab therapy for selected genes. Shown are mRNA levels in B cells immediately before (B) as well 
as ~ 7 months following (F) the 1st, 2nd, 3rd or 4th alemtuzumab treatment course. Lines connect the data for the B sample and the F sample 
from the same patient (n = 21 sample pairs). Blue dots/lines indicate that the patient experienced a relapse in the 12 months after drug 
administration (n = 2 for the first treatment course and n = 4 for the second treatment course), while black dots/lines indicate that the patient 
was free of relapses in the follow‑up period. a–c Genes expressed at an extremely lower level (log2 fold change <  − 3 and p < 0.05) 
following the start of alemtuzumab therapy. d–f Genes expressed at an extremely higher level (log2 fold change > 3 and p < 0.05) after the second 
treatment course. g–i Genes differentially expressed between patients with and without relapse (mean difference > 1 at F1 and F2 and p < 0.05 
at one timepoint). Negative values are displayed in red. The data for further interesting genes are shown in Additional file 1: Fig. S4. * p < 0.05
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long-term drug-free remission of disease activity, which 
is a different concept compared to therapies that need 
to be given continuously to maintain their therapeutic 
efficacy [10]. However, despite the high efficacy of IRTs 
in the relative reduction in relapse risk [63], relapses 
still occur in some patients following treatment with 
alemtuzumab [64] or cladribine [65]. Some patients 
thus require retreatment with alemtuzumab. In our col-
lection, we had samples from 4 patients who received 
a  3rd or  4th course of alemtuzumab, because they had 1 
or 2 relapses in the past year. For practical reasons, we 
included patients before and after different treatment 
courses of alemtuzumab and cladribine. A longitudinal 
blood collection for each patient from the beginning of 
IRT and across multiple timepoints in the subsequent 
years would have been more appropriate but difficult to 
implement.

Our study focused on B cells as they are major con-
tributors to the immune responses involved in MS [25]. 
In addition to the transcriptome profiling, we used flow 
cytometry to characterize the B cells from the peripheral 
blood. When we compared the healthy controls with the 
RRMS patients before IRT, we could find no difference 
in the frequencies of the distinct B-cell subsets (Tukey 
test p > 0.05). However, substantial B-cell subpopula-
tion shifts were apparent in the treatment groups. The 
patients who received a pulsed IRT showed significantly 
higher proportions of transitional and naive B cells and 
much lower proportions of memory B cells, which is con-
sistent with earlier studies on the effects of alemtuzumab 
[30, 31] and cladribine [33–36]. In contrast, the therapy 
with natalizumab, an antibody to α4 integrins, leads 
to a preferential expansion of the memory B-cell pool, 
which is attributable to a decreased retention of these 
cells within secondary lymphoid tissues [66–68]. At the 
same time, the proportion of  CD21−/lowCD38−/low B cells, 
which have been shown to be enriched with autoreac-
tive unresponsive clones in some autoimmune diseases 
[47, 69], was significantly lower in patients on IRTs but 
significantly higher in patients on natalizumab therapy. 
Further research on CNS-resident and antigen-specific 
B cells may provide deeper insights into the therapeutic 
mechanisms of action. Besides, IRTs for MS also have 
effects on T cells and to a lesser extent on circulating cells 
of the innate immune system [9, 30–34, 70], which also 
deserve to be explored in more detail at the cellular and 
transcriptome level.

To our knowledge, the B-cell transcriptomes of MS 
patients undergoing IRTs were measured for the first 
time in our study. This was done using Clariom D arrays, 
which were introduced in 2016 as successor of previous 
high-density microarray solutions [71]. These arrays are 
highly reproducible in estimating gene and exon levels, 

and they allow to detect even small variations in expres-
sion, especially for low-abundant transcripts [72]. How-
ever, as a limitation, they offer a lower dynamic range 
than RNA sequencing and cannot provide insights into 
the expression of single cells. In comparison of the 6 
study groups, a total of 6,280 DEGs resulted after FDR 
correction, and we took a closer look at the top 500 
DEGs. Remarkably, except for the few genes in cluster 5 
and cluster 6, the expression profiles were relatively simi-
lar between healthy subjects, PPMS patients (who were 
treated) and RRMS patients before IRT (who just dis-
continued another DMT). However, strong and oppo-
site transcriptome alterations were observed for the IRT 
groups and the natalizumab group. These gene expres-
sion differences are essentially a consequence of the 
treatment-related shifts in B-cell subsets. Following IRT 
(i.e., after B-cell depletion and B-cell repopulation), the 
majority of the DEGs were reduced in expression, while 
cluster 8 genes were expressed at much higher levels 
and clearly related to the expression signature of naive B 
cells. Differences between the alemtuzumab group and 
the cladribine group were rather confined to the expres-
sion of cluster 1 and cluster 3 genes. The analysis of the 
paired samples revealed that the transcriptome changes 
in response to alemtuzumab primarily occurred after the 
first treatment course, whereas there were smaller effects 
on gene expression after the second and third annual 
course. We suspect that the response to cladribine is also 
strongest after the first course, but we could not verify 
this because of the variable timing of blood withdrawals 
and the small number of samples in this group.

Our data show that the B-cell composition that recon-
stitutes following IRT is functionally different from 
that before IRT and from that of MS patients on other 
therapies. Among the top 500 DEGs, there were sev-
eral genes that are involved in the activation of lympho-
cytes. For instance, CR2 (from cluster 8), which encodes 
CD21, a cell surface receptor for complement C3 and 
for EBV on human B cells [73], was significantly higher 
expressed in patients treated with alemtuzumab or clad-
ribine. In these patients, we also measured lower mRNA 
levels of FCGR2B (cluster 4), which encodes a receptor 
for the Fc region of immunoglobulin gamma complexes 
that inhibits B-cell receptor (BCR) signaling and anti-
body production [74]. Moreover, in those patients who 
received an IRT, we observed an increased expression 
of CD1A (cluster 8) and a reduced expression of CD80 
(cluster 4), which encode membrane proteins that play 
a role in T-cell activation by B cells and other immune 
cells [75, 76]. Transcripts for the cytokine receptors 
IL10RA (cluster 2) and IL21R (cluster 8) were also found 
to be differentially expressed between the study groups. 
IL10RA, which appeared to be expressed at lower levels 
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in B cells of MS patients compared to healthy controls 
as previously reported [77], mediates the immunosup-
pressive signal of IL10 by inhibiting the expression of 
pro-inflammatory genes [78]. IL21R, which is predomi-
nantly expressed by naive B cells and was thus increased 
in expression in patients treated with an IRT, transduces 
the signal of IL21, which is produced by T-cell subsets 
and regulates the proliferation and differentiation of B 
cells and antibody responses [79]. Serum levels of IL21 
have been proposed as biomarker for the risk of devel-
oping secondary autoimmunity following alemtuzumab 
treatment [80]. However, we could not study this issue on 
the basis of our data. Other DEGs were found to regulate 
apoptotic processes. For instance, CALM2 (from cluster 
2) is an intracellular calcium-binding protein involved 
in cell death upon BCR stimulation [81], RIPK2 (clus-
ter 2) is a serine/threonine protein kinase suppressing 
apoptosis by regulating nuclear factor κB signaling [82], 
and IGF1R (cluster 3) is a receptor with tyrosine kinase 
activity that is known to mediate anti-apoptotic effects 
via the PI3K/AKT pathway [83]. We observed the low-
est average mRNA expression of these genes in the clad-
ribine group (CALM2 and RIPK2) and the alemtuzumab 
group (IGF1R), respectively. Cluster 1, in turn, was sig-
nificantly associated with the GO term "RNA process-
ing", because it contains protein-coding and non-coding 
genes that promote the splicing of pre-mRNAs (e.g., 
BCAS2 and RNU6-1) [84] and the biogenesis of trans-
fer RNAs and ribosomal RNAs (e.g., RMRP, RPPH1 and 
small nucleolar RNAs) [85–87]. In addition, genes encod-
ing ribosomal proteins belong to this cluster. In the MS 
patient subgroups, we also detected an increased expres-
sion of genes regulating cell contact and adhesion (e.g., 
PCDH9, PDLIM1 and PTPRK from cluster 6) [88–90]. 
Among the most highly connected genes in the interac-
tion network were ESR2 and PHB (cluster 3, low in clad-
ribine group) and RC3H1 (cluster 8, low in natalizumab 
group). The estrogen receptor ESR2 and the ubiquitously 
expressed protein PHB are regulators of transcription 
[91, 92]. Furthermore, PHB is involved in CD86 signaling 
in B cells [93] and in the correct folding of mitochondrial 
proteins [94]. RC3H1 is a post-transcriptional repres-
sor of mRNAs (e.g., IL6 mRNA) [95] and also regulates 
the decay of microRNAs (e.g., miR-146a) [96]. Of note, 
we have focused here on the top 500 DEGs, even though 
the expression shifts under IRT were much broader. In a 
recent study, Moser et al. reported reduced proportions 
of  CD19+ B cells with CD44, ITGA4, ITGAL, ITGB1 and 
HLA-DR surface expression at 24  months after the ini-
tiation of cladribine therapy [97]. In our analysis, those 
genes were not among the top 500 DEGs, but they were 
differentially expressed with FDR < 0.05 and all of them 
had the lowest average expression in the cladribine group. 

Thus, our data confirm their results from flow cytometry 
measurements at the transcript level.

We used the B-cell transcriptome profiles to search 
biomarkers for identifying patients with active disease 
following the administration of alemtuzumab. Although 
no gene remained significant after adjustment for mul-
tiple testing, our stringent selection resulted in 17 genes 
whose expression differed substantially when comparing 
patients with relapse and patients without relapse in the 
year after the 1st or 2nd alemtuzumab treatment course. 
This analysis was limited by the small number of patients 
per group. Nevertheless, we consider the genes to be 
reasonable candidates for further confirmatory studies 
at the RNA or protein level. For instance, in relapse-free 
patients, BCL2 was in most cases decreased in expres-
sion at the follow-up timepoints, whereas in patients 
with relapse, its expression was usually increased, which 
resulted in a more than twofold higher average expression 
in these patients at F1 and F2, respectively. BCL2 encodes 
a key anti-apoptotic protein that controls mitochondrial 
outer membrane permeability [98]. The apoptosis path-
way that is regulated by the Bcl-2 protein family is critical 
for lymphocyte development, maintenance of peripheral 
tolerance and prevention of autoimmunity [99], and Bcl-2 
family antagonism has been demonstrated to be a poten-
tial approach for the treatment of autoimmune diseases 
[100]. It is thus possible that lower mRNA levels of BCL2 
in response to IRT may correlate with reduced disease 
activity in patients with MS. Another interesting gene 
is IL13RA1, which was also expressed at higher levels in 
patients who relapsed. IL13RA1 encodes a receptor sub-
unit that mediates the signaling events induced by IL13 
[101]. Previous studies reported significantly higher per-
centages of IL13-producing T cells in the blood and CSF 
of patients in relapse compared to patients in remission 
[102, 103]. Similarly, higher levels of the receptor might, 
therefore, be related to a higher risk of clinical relapse 
due to a suboptimal disease control. We also observed 
higher levels of SLC38A11 in alemtuzumab-treated 
patients experiencing a relapse, while the average expres-
sion decreased after each treatment course. SLC38A11 
is a member of the SLC38 family of transmembrane 
sodium-coupled amino acid transporters, which are 
particularly expressed in cells that carry out significant 
amino acid metabolism [104, 105]. However, its role in B 
cells and MS is still unclear. In the interpretation of our 
results, it should be noted that early disease activity after 
initiation of IRT does not necessarily implicate treatment 
failure and that it is usually appropriate to continue the 
therapy. For example, one of our patients had 3 relapses 
in the year before IRT and another relapse in the first 
year of alemtuzumab therapy but was relapse-free in the 
second year. This patient received a pre-treatment with 



Page 14 of 18Hecker et al. Journal of Neuroinflammation          (2023) 20:181 

fingolimod, which has been reported to be a risk factor 
of relapses following alemtuzumab infusion [106]. Fur-
ther research is needed to study the relationship of gene 
expression signatures in the blood and specific treatment 
sequences with the individual course of disease. This 
should help to translate potential candidates into clini-
cally useful molecular biomarkers and to guide more per-
sonalized therapeutic decisions in the near future.

A hallmark but also a limitation of the present study 
is the sole focus on B cells. Furthermore, the source of 
RNA for the transcriptome analysis was a mixture of 
B-cell subsets. Meanwhile, the recent rise of single-cell 
multi-omics technologies has enabled researchers not 
only to study gene expression patterns at the single-cell 
level but also to obtain information on the (epi)genetics 
and proteomics of individual cells at the same time [107]. 
Others used RNA sequencing to investigate the tempo-
ral dynamics in B-cell immunoglobulin heavy chain rep-
ertoires during IRT [108, 109]. Through integration of 
such different types of data, together with metabolomic 
profiles, it should be possible to better define pertur-
bations in the immune signature of patients with MS. 
Further advances in our understanding of the disease 
processes will ultimately drive the development of even 
more selective, effective and safe therapeutics for MS. 
This may bring us closer to the goal of preventing neuro-
logical deterioration and inducing long-lasting drug-free 
disease stability. Another limitation of our study is the 
rather small number of patients per therapy timepoint. 
Therefore, the identification of potential gene expres-
sion markers of relapse activity in alemtuzumab-treated 
patients was exploratory in nature. Moreover, we did not 
analyze other treatment outcomes, such as MRI findings 
and the development of secondary autoimmune disor-
ders, because the available data were too sparse and het-
erogeneous. Additional studies are required to confirm 
that therapeutic efficacy correlates with the expression of 
genes that we have nominated as biomarker candidates. 
If they prove to be useful for prognosis and monitoring of 
disease activity, they may allow to select patients who will 
benefit most from an IRT and/or patients who need an 
additional treatment course.

Conclusions
We demonstrate that the B-cell transcriptome is sub-
stantially reorganized already after the first course of an 
IRT. Similar effects were seen under therapy with alem-
tuzumab and cladribine, although some genes were 
reduced in expression most markedly in the cladribine 
group (cluster 1 and cluster 3). Opposite gene expres-
sion alterations were found for RRMS patients who 
received natalizumab. These expression patterns are 
largely explained by the therapy-induced shifts in the 

proportions of naive and memory B-cell subpopulations 
and implicate a functionally different adaptive immune 
profile. More specifically, the top 500 DEGs were found 
to participate in, for example, lymphocyte activation, 
apoptotic signaling, RNA processing and cellular adhe-
sion. We could also relate the occurrence of relapses fol-
lowing alemtuzumab infusions with the transcript levels 
of 17 genes, which qualifies them as potential indica-
tors of the clinical response to therapy. Our study may 
inform further research toward gaining deeper insights 
into MS-associated immune mechanisms and developing 
improved treatment approaches that are tailored to the 
pathobiologic phenotype of individual patients.

Abbreviations
APC  Allophycocyanin
B  Before
B ex  Exhausted memory B cells
B n  Naive B cells
B nsm  Non‑switched memory B cells
B sm  Switched memory B cells
BCR  B‑cell receptor
BV  Brilliant violet
CNS  Central nervous system
CSF  Cerebrospinal fluid
DEG  Differentially expressed gene
DMT  Disease‑modifying therapy
EBV  Epstein–Barr virus
EDSS  Expanded Disability Status Scale
EDTA  Ethylenediaminetetraacetic acid
F  Following
FC  Fold change
FDR  False discovery rate
GEO  Gene Expression Omnibus
GO  Gene Ontology
IRT  Immune reconstitution therapy
LMM  Linear mixed‑effects model
MD  Mean difference
MRI  Magnetic resonance imaging
mRNA  Messenger RNA
MS  Multiple sclerosis
pb  Plasmablasts
PBMC  Peripheral blood mononuclear cells
PE  Phycoerythrin
PerCP  Peridinin–chlorophyll
PPMS  Primary progressive multiple sclerosis
RRMS  Relapsing–remitting multiple sclerosis
SD  Standard deviation
SPMS  Secondary progressive multiple sclerosis

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12974‑ 023‑ 02859‑x.

Additional file 1.  Gating strategy for the B‑cell phenotyping as well as 
cell population shifts and expression dynamics during alemtuzumab 
therapy.

Additional file 2.  Information about the 121 blood samples with clinical‑
demographic data of the patients and assignments to the GEO data set 
GSE190847.

Additional file 3.  Comparison of  CD19+ B‑cell subpopulation frequen‑
cies between the 6 study groups.

https://doi.org/10.1186/s12974-023-02859-x
https://doi.org/10.1186/s12974-023-02859-x


Page 15 of 18Hecker et al. Journal of Neuroinflammation          (2023) 20:181  

Additional file 4.  The transcriptome data for B cells of patients with MS 
and healthy controls with average expression levels per group, results of 
the differential gene expression analyses and cluster memberships.

Additional file 5.  Enrichment of Gene Ontology terms for each gene 
cluster.

Acknowledgements
We thank Antje Bombor and Ina Schröder for coordinating the clinical visits 
and blood draws, respectively. We are grateful to Nele Retzlaff and Deborah 
Sonnenberg for reviewing the medical records. We thank Ildikó Tóth for 
laboratory support.

Author contributions
MH, BF and UKZ conceptualized the study. MH, NB, EP and UKZ secured the 
research funding. MS, AW, SM and AD coordinated the blood sampling and 
collected clinical information. NB, EP and BF processed the blood samples. 
NB, BF, RE, WB and MM were involved in the flow cytometry analyses. DK 
performed the microarray experiments. MH analyzed and interpreted the data 
and prepared the figures and tables. IL‑P provided expertise and feedback on 
the project. UKZ supervised the research. MH drafted the original manuscript, 
and all authors critically reviewed the manuscript for important intellectual 
content and commented on drafts. MH, BF and DK have verified the underly‑
ing data and take responsibility for the accuracy of the data analysis. All 
authors have read and approved the final manuscript as submitted.

Funding
Open Access funding enabled and organized by Projekt DEAL. This study was 
funded by Sanofi Genzyme (grant: GZ‑2016‑11560) and Merck Healthcare 
Germany GmbH (Darmstadt, Germany, an affiliate of Merck KGaA, CrossRef 
Funder ID: 10. 13039/100009945, grant: 4501860307). NB was supported by 
the Stiftung der Deutschen Wirtschaft (sdw). EP was supported by the Landes‑
graduiertenförderung Mecklenburg‑Vorpommern.

Availability of data and materials
The data supporting the findings of this study are available in the article and/
or supplementary materials. The B‑cell transcriptome data are publicly avail‑
able from the GEO database (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. 
cgi? acc= GSE19 0847).

Declarations

Ethics approval and consent to participate
This study was conducted with approvals by the local ethics committee of the 
University of Rostock (permit numbers A 2014‑0112 and A 2016‑0188) and in 
compliance with the principles of the Declaration of Helsinki. All subjects gave 
prior written informed consent for the scientific use of their biosamples.

Consent for publication
Not applicable.

Competing interests
MH received speaking fees and travel funds from Bayer HealthCare, Biogen, 
Merck, Novartis and Teva. NB received travel funds from Novartis. IL‑P is an 
employee of Miltenyi Biotec. AW received speaking fees and travel funds 
from Biogen, GlaxoSmithKline, Merck Serono, Novartis and Sanofi Genzyme. 
UKZ received research support as well as speaking fees and travel funds from 
Alexion, Almirall, Bayer HealthCare, Biogen, Bristol Myers Squibb, Janssen, 
Merck Serono, Novartis, Roche, Sanofi Genzyme, Teva as well as EU, BMBF, 
BMWi and DFG. BF, EP, RE, WB, MM, MS, SM, AD and DK declare that they have 
no competing interests.

Author details
1 Division of Neuroimmunology, Department of Neurology, Rostock 
University Medical Center, Gehlsheimer Str. 20, 18147 Rostock, Germany. 
2 Clinic III (Hematology, Oncology and Palliative Medicine), Special Hematol‑
ogy Laboratory, Rostock University Medical Center, Ernst‑Heydemann‑Str. 
6, 18057 Rostock, Germany. 3 Core Facility for Cell Sorting and Cell Analysis, 
Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany. 

4 Miltenyi Biotec B.V. & Co. KG, Robert‑Koch‑Str. 1, 17166 Teterow, Germany. 
5 Institute of Immunology, Rostock University Medical Center, Schillingallee 70, 
18057 Rostock, Germany. 

Received: 12 October 2022   Accepted: 25 July 2023

References
 1. Filippi M, Bar‑Or A, Piehl F, Preziosa P, Solari A, Vukusic S, Rocca MA. 

Multiple sclerosis. Nat Rev Dis Primers. 2018;4(1):43. https:// doi. org/ 10. 
1038/ s41572‑ 018‑ 0041‑4.

 2. Walton C, King R, Rechtman L, Kaye W, Leray E, Marrie RA, Robertson 
N, La Rocca N, Uitdehaag B, van der Mei I, Wallin M, Helme A, Angood 
Napier C, Rijke N, Baneke P. Rising prevalence of multiple sclerosis 
worldwide: insights from the Atlas of MS, third edition. Mult Scler. 
2020;26(14):1816–21. https:// doi. org/ 10. 1177/ 13524 58520 970841.

 3. Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, 
Correale J, Fazekas F, Filippi M, Freedman MS, Fujihara K, Galetta SL, 
Hartung HP, Kappos L, Lublin FD, Marrie RA, Miller AE, Miller DH, Mon‑
talban X, Mowry EM, Sorensen PS, Tintoré M, Traboulsee AL, Trojano M, 
Uitdehaag BMJ, Vukusic S, Waubant E, Weinshenker BG, Reingold SC, 
Cohen JA. Diagnosis of multiple sclerosis: 2017 revisions of the McDon‑
ald criteria. Lancet Neurol. 2018;17(2):162–73. https:// doi. org/ 10. 1016/ 
S1474‑ 4422(17) 30470‑2.

 4. Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sørensen PS, Thompson 
AJ, Wolinsky JS, Balcer LJ, Banwell B, Barkhof F, Bebo B Jr, Calabresi 
PA, Clanet M, Comi G, Fox RJ, Freedman MS, Goodman AD, Inglese 
M, Kappos L, Kieseier BC, Lincoln JA, Lubetzki C, Miller AE, Montalban 
X, O’Connor PW, Petkau J, Pozzilli C, Rudick RA, Sormani MP, Stüve O, 
Waubant E, Polman CH. Defining the clinical course of multiple sclero‑
sis: the 2013 revisions. Neurology. 2014;83(3):278–86. https:// doi. org/ 10. 
1212/ WNL. 00000 00000 000560.

 5. Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, 
lifestyle and environmental risk factors for multiple sclerosis. Nat Rev 
Neurol. 2017;13(1):25–36. https:// doi. org/ 10. 1038/ nrneu rol. 2016. 187.

 6. Hecker M, Bühring J, Fitzner B, Rommer PS, Zettl UK. Genetic, environ‑
mental and lifestyle determinants of accelerated telomere attrition as 
contributors to risk and severity of multiple sclerosis. Biomolecules. 
2021;11(10):1510. https:// doi. org/ 10. 3390/ biom1 11015 10.

 7. McGinley MP, Goldschmidt CH, Rae‑Grant AD. Diagnosis and treatment 
of multiple sclerosis: a review. JAMA. 2021;325(8):765–79. https:// doi. 
org/ 10. 1001/ jama. 2020. 26858.

 8. Hauser SL, Cree BAC. Treatment of multiple sclerosis: a review. Am J 
Med. 2020;133(12):1380–1390.e2. https:// doi. org/ 10. 1016/j. amjmed. 
2020. 05. 049.

 9. Rommer PS, Milo R, Han MH, Satyanarayan S, Sellner J, Hauer L, Illes 
Z, Warnke C, Laurent S, Weber MS, Zhang Y, Stuve O. Immunological 
aspects of approved MS therapeutics. Front Immunol. 2019;10:1564. 
https:// doi. org/ 10. 3389/ fimmu. 2019. 01564.

 10. Sorensen PS, Sellebjerg F. Pulsed immune reconstitution therapy in 
multiple sclerosis. Ther Adv Neurol Disord. 2019;12:1756286419836913. 
https:// doi. org/ 10. 1177/ 17562 86419 836913.

 11. Lünemann JD, Ruck T, Muraro PA, Bar‑Or A, Wiendl H. Immune 
reconstitution therapies: concepts for durable remission in multiple 
sclerosis. Nat Rev Neurol. 2020;16(1):56–62. https:// doi. org/ 10. 1038/ 
s41582‑ 019‑ 0268‑z.

 12. Coles AJ, Twyman CL, Arnold DL, Cohen JA, Confavreux C, Fox EJ, Har‑
tung HP, Havrdova E, Selmaj KW, Weiner HL, Miller T, Fisher E, Sandbrink 
R, Lake SL, Margolin DH, Oyuela P, Panzara MA, Compston DA, CARE‑MS 
II investigators. Alemtuzumab for patients with relapsing multiple 
sclerosis after disease‑modifying therapy: a randomised controlled 
phase 3 trial. Lancet. 2012;380(9856):1829–39. https:// doi. org/ 10. 1016/ 
S0140‑ 6736(12) 61768‑1.

 13. Berger T, Elovaara I, Fredrikson S, McGuigan C, Moiola L, Myhr KM, Oreja‑
Guevara C, Stoliarov I, Zettl UK. Alemtuzumab use in clinical practice: 
recommendations from european multiple sclerosis experts. CNS 
Drugs. 2017;31(1):33–50. https:// doi. org/ 10. 1007/ s40263‑ 016‑ 0394‑8.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE190847
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE190847
https://doi.org/10.1038/s41572-018-0041-4
https://doi.org/10.1038/s41572-018-0041-4
https://doi.org/10.1177/1352458520970841
https://doi.org/10.1016/S1474-4422(17)30470-2
https://doi.org/10.1016/S1474-4422(17)30470-2
https://doi.org/10.1212/WNL.0000000000000560
https://doi.org/10.1212/WNL.0000000000000560
https://doi.org/10.1038/nrneurol.2016.187
https://doi.org/10.3390/biom11101510
https://doi.org/10.1001/jama.2020.26858
https://doi.org/10.1001/jama.2020.26858
https://doi.org/10.1016/j.amjmed.2020.05.049
https://doi.org/10.1016/j.amjmed.2020.05.049
https://doi.org/10.3389/fimmu.2019.01564
https://doi.org/10.1177/1756286419836913
https://doi.org/10.1038/s41582-019-0268-z
https://doi.org/10.1038/s41582-019-0268-z
https://doi.org/10.1016/S0140-6736(12)61768-1
https://doi.org/10.1016/S0140-6736(12)61768-1
https://doi.org/10.1007/s40263-016-0394-8


Page 16 of 18Hecker et al. Journal of Neuroinflammation          (2023) 20:181 

 14. Ruck T, Bittner S, Wiendl H, Meuth SG. Alemtuzumab in multiple sclero‑
sis: mechanism of action and beyond. Int J Mol Sci. 2015;16(7):16414–
39. https:// doi. org/ 10. 3390/ ijms1 60716 414.

 15. Giovannoni G, Comi G, Cook S, Rammohan K, Rieckmann P, Soelberg‑
Sørensen P, Vermersch P, Chang P, Hamlett A, Musch B, Greenberg SJ, 
CLARITY Study Group. A placebo‑controlled trial of oral cladribine for 
relapsing multiple sclerosis. N Engl J Med. 2010;362(5):416–26. https:// 
doi. org/ 10. 1056/ NEJMo a0902 533.

 16. Wiendl H. Cladribine—an old newcomer for pulsed immune recon‑
stitution in MS. Nat Rev Neurol. 2017;13(10):573–4. https:// doi. org/ 10. 
1038/ nrneu rol. 2017. 119.

 17. Montalban X, Hauser SL, Kappos L, Arnold DL, Bar‑Or A, Comi G, de 
Seze J, Giovannoni G, Hartung HP, Hemmer B, Lublin F, Rammohan KW, 
Selmaj K, Traboulsee A, Sauter A, Masterman D, Fontoura P, Belachew S, 
Garren H, Mairon N, Chin P, Wolinsky JS, ORATORIO Clinical Investigators. 
Ocrelizumab versus placebo in primary progressive multiple sclerosis. N 
Engl J Med. 2017;376(3):209–20. https:// doi. org/ 10. 1056/ NEJMo a1606 
468.

 18. Lamb YN. Ocrelizumab: a review in multiple sclerosis. Drugs. 
2022;82(3):323–34. https:// doi. org/ 10. 1007/ s40265‑ 022‑ 01672‑9.

 19. Winkelmann A, Loebermann M, Reisinger EC, Hartung HP, Zettl UK. 
Disease‑modifying therapies and infectious risks in multiple sclerosis. 
Nat Rev Neurol. 2016;12(4):217–33. https:// doi. org/ 10. 1038/ nrneu rol. 
2016. 21.

 20. Wiendl H, Gold R, Berger T, Derfuss T, Linker R, Mäurer M, Aktas O, Baum 
K, Berghoff M, Bittner S, Chan A, Czaplinski A, Deisenhammer F, Di Pauli 
F, Du Pasquier R, Enzinger C, Fertl E, Gass A, Gehring K, Gobbi C, Goebels 
N, Guger M, Haghikia A, Hartung HP, Heidenreich F, Hoffmann O, 
Kallmann B, Kleinschnitz C, Klotz L, Leussink VI, Leutmezer F, Limmroth 
V, Lünemann JD, Lutterotti A, Meuth SG, Meyding‑Lamadé U, Platten 
M, Rieckmann P, Schmidt S, Tumani H, et al. Multiple sclerosis therapy 
consensus group (MSTCG): position statement on disease‑modifying 
therapies for multiple sclerosis (white paper). Ther Adv Neurol Disord. 
2021;14:17562864211039648. https:// doi. org/ 10. 1177/ 17562 86421 
10396 48.

 21. Soldan SS, Lieberman PM. Epstein–Barr virus and multiple sclero‑
sis. Nat Rev Microbiol. 2023;21(1):51–64. https:// doi. org/ 10. 1038/ 
s41579‑ 022‑ 00770‑5.

 22. Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, Elledge SJ, 
Niebuhr DW, Scher AI, Munger KL, Ascherio A. Longitudinal analysis 
reveals high prevalence of Epstein–Barr virus associated with multiple 
sclerosis. Science. 2022;375(6578):296–301. https:// doi. org/ 10. 1126/ 
scien ce. abj82 22.

 23. Abrahamyan S, Eberspächer B, Hoshi MM, Aly L, Luessi F, Groppa S, Klotz 
L, Meuth SG, Schroeder C, Grüter T, Tackenberg B, Paul F, Then‑Bergh F, 
Kümpfel T, Weber F, Stangel M, Bayas A, Wildemann B, Heesen C, Zettl U, 
Warnke C, Antony G, Hessler N, Wiendl H, Bittner S, Hemmer B, Gold R, 
Salmen A, Ruprecht K, German Competence Network Multiple Sclerosis 
(KKNMS); Other members of the KKNMS that acted as collaborators in 
this study. Complete Epstein–Barr virus seropositivity in a large cohort 
of patients with early multiple sclerosis. J Neurol Neurosurg Psychiatry. 
2020;91(7):681–6. https:// doi. org/ 10. 1136/ jnnp‑ 2020‑ 322941.

 24. Cencioni MT, Mattoscio M, Magliozzi R, Bar‑Or A, Muraro PA. B cells in 
multiple sclerosis—from targeted depletion to immune reconstitution 
therapies. Nat Rev Neurol. 2021;17(7):399–414. https:// doi. org/ 10. 1038/ 
s41582‑ 021‑ 00498‑5.

 25. Comi G, Bar‑Or A, Lassmann H, Uccelli A, Hartung HP, Montalban X, 
Sørensen PS, Hohlfeld R, Hauser SL, Expert Panel of the 27th Annual 
Meeting of the European Charcot Foundation. Role of B cells in multiple 
sclerosis and related disorders. Ann Neurol. 2021;89(1):13–23. https:// 
doi. org/ 10. 1002/ ana. 25927.

 26. Jelcic I, Al Nimer F, Wang J, Lentsch V, Planas R, Jelcic I, Madjovski A, 
Ruhrmann S, Faigle W, Frauenknecht K, Pinilla C, Santos R, Hammer C, 
Ortiz Y, Opitz L, Grönlund H, Rogler G, Boyman O, Reynolds R, Lutterotti 
A, Khademi M, Olsson T, Piehl F, Sospedra M, Martin R. Memory B cells 
activate brain‑homing, autoreactive  CD4+ T cells in multiple sclerosis. 
Cell. 2018;175(1):85–100.e23. https:// doi. org/ 10. 1016/j. cell. 2018. 08. 011.

 27. Fraussen J, Claes N, Van Wijmeersch B, van Horssen J, Stinissen P, Hup‑
perts R, Somers V. B cells of multiple sclerosis patients induce autoreac‑
tive proinflammatory T cell responses. Clin Immunol. 2016;173:124–32. 
https:// doi. org/ 10. 1016/j. clim. 2016. 10. 001.

 28. Guo MH, Sama P, LaBarre BA, Lokhande H, Balibalos J, Chu C, Du X, 
Kheradpour P, Kim CC, Oniskey T, Snyder T, Soghoian DZ, Weiner HL, 
Chitnis T, Patsopoulos NA. Dissection of multiple sclerosis genet‑
ics identifies B and CD4+ T cells as driver cell subsets. Genome Biol. 
2022;23(1):127. https:// doi. org/ 10. 1186/ s13059‑ 022‑ 02694‑y.

 29. Baker D, Marta M, Pryce G, Giovannoni G, Schmierer K. Memory B cells 
are major targets for effective immunotherapy in relapsing multiple 
sclerosis. EBioMedicine. 2017;16:41–50. https:// doi. org/ 10. 1016/j. ebiom. 
2017. 01. 042.

 30. Thompson SA, Jones JL, Cox AL, Compston DA, Coles AJ. B‑cell recon‑
stitution and BAFF after alemtuzumab (Campath‑1H) treatment of 
multiple sclerosis. J Clin Immunol. 2010;30(1):99–105. https:// doi. org/ 
10. 1007/ s10875‑ 009‑ 9327‑3.

 31. Baker D, Herrod SS, Alvarez‑Gonzalez C, Giovannoni G, Schmierer K. 
Interpreting lymphocyte reconstitution data from the pivotal Phase 3 
trials of alemtuzumab. JAMA Neurol. 2017;74(8):961–9. https:// doi. org/ 
10. 1001/ jaman eurol. 2017. 0676.

 32. Rolfes L, Pfeuffer S, Huntemann N, Schmidt M, Su C, Skuljec J, Aslan D, 
Hackert J, Kleinschnitz K, Hagenacker T, Pawlitzki M, Ruck T, Kleinschnitz 
C, Meuth SG, Pul R. Immunological consequences of cladribine treat‑
ment in multiple sclerosis: a real‑world study. Mult Scler Relat Disord. 
2022;64: 103931. https:// doi. org/ 10. 1016/j. msard. 2022. 103931.

 33. Moser T, Schwenker K, Seiberl M, Feige J, Akgün K, Haschke‑Becher 
E, Ziemssen T, Sellner J. Long‑term peripheral immune cell profiling 
reveals further targets of oral cladribine in MS. Ann Clin Transl Neurol. 
2020;7(11):2199–212. https:// doi. org/ 10. 1002/ acn3. 51206.

 34. Baker D, Pryce G, Herrod SS, Schmierer K. Potential mechanisms of 
action related to the efficacy and safety of cladribine. Mult Scler Relat 
Disord. 2019;30:176–86. https:// doi. org/ 10. 1016/j. msard. 2019. 02. 018.

 35. Wiendl H, Schmierer K, Hodgkinson S, Derfuss T, Chan A, Sellebjerg 
F, Achiron A, Montalban X, Prat A, De Stefano N, Barkhof F, Leocani L, 
Vermersch P, Chudecka A, Mwape C, Holmberg KH, Boschert U, Roy S. 
Specific patterns of immune cell dynamics may explain the early onset 
and prolonged efficacy of cladribine tablets: a MAGNIFY‑MS substudy. 
Neurol Neuroimmunol Neuroinflamm. 2023;10(1): e200048. https:// doi. 
org/ 10. 1212/ NXI. 00000 00000 200048.

 36. Ceronie B, Jacobs BM, Baker D, Dubuisson N, Mao Z, Ammoscato F, Lock 
H, Longhurst HJ, Giovannoni G, Schmierer K. Cladribine treatment of 
multiple sclerosis is associated with depletion of memory B cells. J Neu‑
rol. 2018;265(5):1199–209. https:// doi. org/ 10. 1007/ s00415‑ 018‑ 8830‑y.

 37. Duddy M, Niino M, Adatia F, Hebert S, Freedman M, Atkins H, Kim 
HJ, Bar‑Or A. Distinct effector cytokine profiles of memory and naive 
human B cell subsets and implication in multiple sclerosis. J Immunol. 
2007;178(10):6092–9. https:// doi. org/ 10. 4049/ jimmu nol. 178. 10. 6092.

 38. Baker D, Herrod SS, Alvarez‑Gonzalez C, Zalewski L, Albor C, Schmierer 
K. Both cladribine and alemtuzumab may effect MS via B‑cell depletion. 
Neurol Neuroimmunol Neuroinflamm. 2017;4(4): e360. https:// doi. org/ 
10. 1212/ NXI. 00000 00000 000360.

 39. Kousin‑Ezewu O, Azzopardi L, Parker RA, Tuohy O, Compston A, Coles 
A, Jones J. Accelerated lymphocyte recovery after alemtuzumab does 
not predict multiple sclerosis activity. Neurology. 2014;82(24):2158–64. 
https:// doi. org/ 10. 1212/ WNL. 00000 00000 000520.

 40. Gilmore W, Lund BT, Li P, Levy AM, Kelland EE, Akbari O, Groshen S, Cen 
SY, Pelletier D, Weiner LP, Javed A, Dunn JE, Traboulsee AL. Repopulation 
of T, B, and NK cells following alemtuzumab treatment in relapsing‑
remitting multiple sclerosis. J Neuroinflamm. 2020;17(1):189. https:// doi. 
org/ 10. 1186/ s12974‑ 020‑ 01847‑9.

 41. Wiendl H, Carraro M, Comi G, Izquierdo G, Kim HJ, Sharrack B, Tornatore 
C, Daizadeh N, Chung L, Jacobs AK, Hogan RJ, Wychowski LV, Van 
Wijmeersch B, CARE‑MS I, CARE‑MS II, and CAMMS03409 Investigators. 
Lymphocyte pharmacodynamics are not associated with autoimmunity 
or efficacy after alemtuzumab. Neurol Neuroimmunol Neuroinflamm. 
2019;7(1): e635. https:// doi. org/ 10. 1212/ NXI. 00000 00000 000635.

 42. Hecker M, Fitzner B, Putscher E, Schwartz M, Winkelmann A, Meister 
S, Dudesek A, Koczan D, Lorenz P, Boxberger N, Zettl UK. Implication 
of genetic variants in primary microRNA processing sites in the risk of 
multiple sclerosis. EBioMedicine. 2022;80: 104052. https:// doi. org/ 10. 
1016/j. ebiom. 2022. 104052.

 43. Putscher E, Hecker M, Fitzner B, Boxberger N, Schwartz M, Koczan 
D, Lorenz P, Zettl UK. Genetic risk variants for multiple sclerosis are 

https://doi.org/10.3390/ijms160716414
https://doi.org/10.1056/NEJMoa0902533
https://doi.org/10.1056/NEJMoa0902533
https://doi.org/10.1038/nrneurol.2017.119
https://doi.org/10.1038/nrneurol.2017.119
https://doi.org/10.1056/NEJMoa1606468
https://doi.org/10.1056/NEJMoa1606468
https://doi.org/10.1007/s40265-022-01672-9
https://doi.org/10.1038/nrneurol.2016.21
https://doi.org/10.1038/nrneurol.2016.21
https://doi.org/10.1177/17562864211039648
https://doi.org/10.1177/17562864211039648
https://doi.org/10.1038/s41579-022-00770-5
https://doi.org/10.1038/s41579-022-00770-5
https://doi.org/10.1126/science.abj8222
https://doi.org/10.1126/science.abj8222
https://doi.org/10.1136/jnnp-2020-322941
https://doi.org/10.1038/s41582-021-00498-5
https://doi.org/10.1038/s41582-021-00498-5
https://doi.org/10.1002/ana.25927
https://doi.org/10.1002/ana.25927
https://doi.org/10.1016/j.cell.2018.08.011
https://doi.org/10.1016/j.clim.2016.10.001
https://doi.org/10.1186/s13059-022-02694-y
https://doi.org/10.1016/j.ebiom.2017.01.042
https://doi.org/10.1016/j.ebiom.2017.01.042
https://doi.org/10.1007/s10875-009-9327-3
https://doi.org/10.1007/s10875-009-9327-3
https://doi.org/10.1001/jamaneurol.2017.0676
https://doi.org/10.1001/jamaneurol.2017.0676
https://doi.org/10.1016/j.msard.2022.103931
https://doi.org/10.1002/acn3.51206
https://doi.org/10.1016/j.msard.2019.02.018
https://doi.org/10.1212/NXI.0000000000200048
https://doi.org/10.1212/NXI.0000000000200048
https://doi.org/10.1007/s00415-018-8830-y
https://doi.org/10.4049/jimmunol.178.10.6092
https://doi.org/10.1212/NXI.0000000000000360
https://doi.org/10.1212/NXI.0000000000000360
https://doi.org/10.1212/WNL.0000000000000520
https://doi.org/10.1186/s12974-020-01847-9
https://doi.org/10.1186/s12974-020-01847-9
https://doi.org/10.1212/NXI.0000000000000635
https://doi.org/10.1016/j.ebiom.2022.104052
https://doi.org/10.1016/j.ebiom.2022.104052


Page 17 of 18Hecker et al. Journal of Neuroinflammation          (2023) 20:181  

linked to differences in alternative pre‑mRNA splicing. Front Immunol. 
2022;13: 931831. https:// doi. org/ 10. 3389/ fimmu. 2022. 931831.

 44. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an 
expanded disability status scale (EDSS). Neurology. 1983;33(11):1444–
52. https:// doi. org/ 10. 1212/ wnl. 33. 11. 1444.

 45. Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, 
Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, 
Barros‑Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman 
DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, 
Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin‑Šain 
L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De 
Simone G, Del Zotto G, Delacher M, Di Rosa F, et al. Guidelines for the 
use of flow cytometry and cell sorting in immunological studies (third 
edition). Eur J Immunol. 2021;51(12):2708–3145. https:// doi. org/ 10. 
1002/ eji. 20217 0126.

 46. Morbach H, Eichhorn EM, Liese JG, Girschick HJ. Reference values for 
B cell subpopulations from infancy to adulthood. Clin Exp Immunol. 
2010;162(2):271–9. https:// doi. org/ 10. 1111/j. 1365‑ 2249. 2010. 04206.x.

 47. Thorarinsdottir K, Camponeschi A, Gjertsson I, Mårtensson IL. CD21 ‑/
low B cells: a snapshot of a unique B cell subset in health and disease. 
Scand J Immunol. 2015;82(3):254–61. https:// doi. org/ 10. 1111/ sji. 12339.

 48. Megyola C, Ye J, Bhaduri‑McIntosh S. Identification of a sub‑population 
of B cells that proliferates after infection with Epstein–Barr virus. Virol J. 
2011;8:84. https:// doi. org/ 10. 1186/ 1743‑ 422X‑8‑ 84.

 49. Monaco G, Chen H, Poidinger M, Chen J, de Magalhães JP, Larbi A. 
flowAI: automatic and interactive anomaly discerning tools for flow 
cytometry data. Bioinformatics. 2016;32(16):2473–80. https:// doi. org/ 10. 
1093/ bioin forma tics/ btw191.

 50. Bretz F, Hothorn T, Westfall P. Multiple comparisons using R. Boca Raton 
(FL): CRC Press; 2010.

 51. Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed‑effects 
models using lme4. J Stat Softw. 2015;67(1):1–48.

 52. Fox J, Weisberg S. An R companion to applied regression. 3rd ed. Thou‑
sand Oaks (CA): SAGE Publications; 2018.

 53. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical 
and powerful approach to multiple testing. J R Stat Soc Series B Stat 
Methodol. 1995;57(1):289–300.

 54. Monaco G, Lee B, Xu W, Mustafah S, Hwang YY, Carré C, Burdin N, Visan 
L, Ceccarelli M, Poidinger M, Zippelius A, de Magalhães JP, Larbi A. RNA‑
Seq signatures normalized by mRNA abundance allow absolute decon‑
volution of human immune cell types. Cell Rep. 2019;26(6):1627–1640.
e7. https:// doi. org/ 10. 1016/j. celrep. 2019. 01. 041.

 55. Falcon S, Gentleman R. Using GOstats to test gene lists for GO term 
association. Bioinformatics. 2007;23(2):257–8. https:// doi. org/ 10. 1093/ 
bioin forma tics/ btl567.

 56. Safran M, Rosen N, Twik M, BarShir R, Stein TI, Dahary D, Fishilevich S, 
Lancet D. The GeneCards Suite. In: Abugessaisa I, Kasukawa T (eds). 
Practical guide to life science databases. Springer, Singapore. 2021. 
https:// doi. org/ 10. 1007/ 978‑ 981‑ 16‑ 5812‑9_2.

 57. Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, Morris 
Q. GeneMANIA update 2018. Nucleic Acids Res. 2018;46(W1):W60–4. 
https:// doi. org/ 10. 1093/ nar/ gky311.

 58. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin 
N, Schwikowski B, Ideker T. Cytoscape: a software environment for 
integrated models of biomolecular interaction networks. Genome Res. 
2003;13(11):2498–504. https:// doi. org/ 10. 1101/ gr. 12393 03.

 59. Sellner J, Rommer PS. Immunological consequences of “immune recon‑
stitution therapy” in multiple sclerosis: a systematic review. Autoimmun 
Rev. 2020;19(4): 102492. https:// doi. org/ 10. 1016/j. autrev. 2020. 102492.

 60. Kverneland AH, Streitz M, Geissler E, Hutchinson J, Vogt K, Boës D, 
Niemann N, Pedersen AE, Schlickeiser S, Sawitzki B. Age and gender 
leucocytes variances and references values generated using the stand‑
ardized ONE‑Study protocol. Cytometry A. 2016;89(6):543–64. https:// 
doi. org/ 10. 1002/ cyto.a. 22855.

 61. Oras A, Quirant‑Sanchez B, Popadic D, Thunberg S, Winqvist O, Heck S, 
Cwikowski M, Riemann D, Seliger B, Martinez Caceres E, Uibo R, Giese 
T. Comprehensive flow cytometric reference intervals of leukocyte 
subsets from six study centers across Europe. Clin Exp Immunol. 
2020;202(3):363–78. https:// doi. org/ 10. 1111/ cei. 13491.

 62. Jalusic KO, Ellenberger D, Rommer P, Stahmann A, Zettl U, Berger K. 
Effect of applying inclusion and exclusion criteria of phase III clinical 

trials to multiple sclerosis patients in routine clinical care. Mult Scler. 
2021;27(12):1852–63. https:// doi. org/ 10. 1177/ 13524 58520 985118.

 63. Samjoo IA, Worthington E, Drudge C, Zhao M, Cameron C, Häring DA, 
Stoneman D, Klotz L, Adlard N. Efficacy classification of modern thera‑
pies in multiple sclerosis. J Comp Eff Res. 2021;10(6):495–507. https:// 
doi. org/ 10. 2217/ cer‑ 2020‑ 0267.

 64. Ziemssen T, Bass AD, Berkovich R, Comi G, Eichau S, Hobart J, Hunter 
SF, LaGanke C, Limmroth V, Pelletier D, Pozzilli C, Schippling S, Sousa L, 
Traboulsee A, Uitdehaag BMJ, Van Wijmeersch B, Choudhry Z, Daiza‑
deh N, Singer BA, CARE‑MS I, CARE‑MS II, CAMMS03409, and TOPAZ 
investigators. Efficacy and safety of alemtuzumab through 9 years of 
follow‑up in patients with highly active disease: post hoc analysis of 
CARE‑MS I and II patients in the TOPAZ extension study. CNS Drugs. 
2020;34(9):973–88. https:// doi. org/ 10. 1007/ s40263‑ 020‑ 00749‑x.

 65. De Stefano N, Sormani MP, Giovannoni G, Rammohan K, Leist T, Coyle 
PK, Dangond F, Keller B, Alexandri N, Galazka A. Analysis of frequency 
and severity of relapses in multiple sclerosis patients treated with 
cladribine tablets or placebo: the CLARITY and CLARITY extension stud‑
ies. Mult Scler. 2022;28(1):111–20. https:// doi. org/ 10. 1177/ 13524 58521 
10102 94.

 66. Planas R, Jelčić I, Schippling S, Martin R, Sospedra M. Natalizumab 
treatment perturbs memory‑ and marginal zone‑like B‑cell homing 
in secondary lymphoid organs in multiple sclerosis. Eur J Immunol. 
2012;42(3):790–8. https:// doi. org/ 10. 1002/ eji. 20114 2108.

 67. Traub JW, Pellkofer HL, Grondey K, Seeger I, Rowold C, Brück W, Husseini 
L, Häusser‑Kinzel S, Weber MS. Natalizumab promotes activation and 
pro‑inflammatory differentiation of peripheral B cells in multiple scle‑
rosis patients. J Neuroinflamm. 2019;16(1):228. https:// doi. org/ 10. 1186/ 
s12974‑ 019‑ 1593‑2.

 68. Cuculiza Henriksen A, Ammitzbøll C, Petersen ER, McWilliam O, Selleb‑
jerg F, von Essen MR, Romme Christensen J. Natalizumab differentially 
affects plasmablasts and B cells in multiple sclerosis. Mult Scler Relat 
Disord. 2021;52: 102987. https:// doi. org/ 10. 1016/j. msard. 2021. 102987.

 69. Gjertsson I, McGrath S, Grimstad K, Jonsson CA, Camponeschi A, Thorar‑
insdottir K, Mårtensson IL. A close‑up on the expanding landscape of 
CD21‑/low B cells in humans. Clin Exp Immunol. 2022;210(3):217–29. 
https:// doi. org/ 10. 1093/ cei/ uxac1 03.

 70. Bar‑Or A, Li R. Cellular immunology of relapsing multiple sclerosis: 
interactions, checks, and balances. Lancet Neurol. 2021;20(6):470–83. 
https:// doi. org/ 10. 1016/ S1474‑ 4422(21) 00063‑6.

 71. Xu W, Seok J, Mindrinos MN, Schweitzer AC, Jiang H, Wilhelmy J, Clark 
TA, Kapur K, Xing Y, Faham M, Storey JD, Moldawer LL, Maier RV, Tomp‑
kins RG, Wong WH, Davis RW, Xiao W, Inflammation and Host Response 
to Injury Large‑Scale Collaborative Research Program. Human transcrip‑
tome array for high‑throughput clinical studies. Proc Natl Acad Sci U S 
A. 2011;108(9):3707–12. https:// doi. org/ 10. 1073/ pnas. 10197 53108.

 72. Nazarov PV, Muller A, Kaoma T, Nicot N, Maximo C, Birembaut P, Tran NL, 
Dittmar G, Vallar L. RNA sequencing and transcriptome arrays analyses 
show opposing results for alternative splicing in patient derived 
samples. BMC Genomics. 2017;18(1):443. https:// doi. org/ 10. 1186/ 
s12864‑ 017‑ 3819‑y.

 73. Erdei A, Kovács KG, Nagy‑Baló Z, Lukácsi S, Mácsik‑Valent B, Kurucz 
I, Bajtay Z. New aspects in the regulation of human B cell functions 
by complement receptors CR1, CR2, CR3 and CR4. Immunol Lett. 
2021;237:42–57. https:// doi. org/ 10. 1016/j. imlet. 2021. 06. 006.

 74. Verbeek JS, Hirose S, Nishimura H. The complex association of FcγRIIb 
with autoimmune susceptibility. Front Immunol. 2019;10:2061. https:// 
doi. org/ 10. 3389/ fimmu. 2019. 02061.

 75. Cotton RN, Wegrecki M, Cheng TY, Chen YL, Veerapen N, Le Nours J, 
Orgill DP, Pomahac B, Talbot SG, Willis R, Altman JD, de Jong A, Van Rhijn 
I, Clark RA, Besra GS, Ogg G, Rossjohn J, Moody DB. CD1a selectively 
captures endogenous cellular lipids that broadly block T cell response. 
J Exp Med. 2021;218(7): e20202699. https:// doi. org/ 10. 1084/ jem. 20202 
699.

 76. Lim TS, Goh JK, Mortellaro A, Lim CT, Hämmerling GJ, Ricciardi‑Castag‑
noli P. CD80 and CD86 differentially regulate mechanical interactions 
of T‑cells with antigen‑presenting dendritic cells and B‑cells. PLoS ONE. 
2012;7(9): e45185. https:// doi. org/ 10. 1371/ journ al. pone. 00451 85.

 77. Marsh‑Wakefield F, Juillard P, Ashhurst TM, Juillard A, Shinko D, Putri GH, 
Read MN, McGuire HM, Byrne SN, Hawke S, Grau GE. Peripheral B‑cell 
dysregulation is associated with relapse after long‑term quiescence in 

https://doi.org/10.3389/fimmu.2022.931831
https://doi.org/10.1212/wnl.33.11.1444
https://doi.org/10.1002/eji.202170126
https://doi.org/10.1002/eji.202170126
https://doi.org/10.1111/j.1365-2249.2010.04206.x
https://doi.org/10.1111/sji.12339
https://doi.org/10.1186/1743-422X-8-84
https://doi.org/10.1093/bioinformatics/btw191
https://doi.org/10.1093/bioinformatics/btw191
https://doi.org/10.1016/j.celrep.2019.01.041
https://doi.org/10.1093/bioinformatics/btl567
https://doi.org/10.1093/bioinformatics/btl567
https://doi.org/10.1007/978-981-16-5812-9_2
https://doi.org/10.1093/nar/gky311
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1016/j.autrev.2020.102492
https://doi.org/10.1002/cyto.a.22855
https://doi.org/10.1002/cyto.a.22855
https://doi.org/10.1111/cei.13491
https://doi.org/10.1177/1352458520985118
https://doi.org/10.2217/cer-2020-0267
https://doi.org/10.2217/cer-2020-0267
https://doi.org/10.1007/s40263-020-00749-x
https://doi.org/10.1177/13524585211010294
https://doi.org/10.1177/13524585211010294
https://doi.org/10.1002/eji.201142108
https://doi.org/10.1186/s12974-019-1593-2
https://doi.org/10.1186/s12974-019-1593-2
https://doi.org/10.1016/j.msard.2021.102987
https://doi.org/10.1093/cei/uxac103
https://doi.org/10.1016/S1474-4422(21)00063-6
https://doi.org/10.1073/pnas.1019753108
https://doi.org/10.1186/s12864-017-3819-y
https://doi.org/10.1186/s12864-017-3819-y
https://doi.org/10.1016/j.imlet.2021.06.006
https://doi.org/10.3389/fimmu.2019.02061
https://doi.org/10.3389/fimmu.2019.02061
https://doi.org/10.1084/jem.20202699
https://doi.org/10.1084/jem.20202699
https://doi.org/10.1371/journal.pone.0045185


Page 18 of 18Hecker et al. Journal of Neuroinflammation          (2023) 20:181 

patients with multiple sclerosis. Immunol Cell Biol. 2022;100(6):453–67. 
https:// doi. org/ 10. 1111/ imcb. 12552.

 78. Walter MR. The molecular basis of IL‑10 function: from receptor 
structure to the onset of signaling. Curr Top Microbiol Immunol. 
2014;380:191–212. https:// doi. org/ 10. 1007/ 978‑3‑ 662‑ 43492‑5_9.

 79. Ghalamfarsa G, Mahmoudi M, Mohammadnia‑Afrouzi M, Yazdani Y, 
Anvari E, Hadinia A, Ghanbari A, Setayesh M, Yousefi M, Jadidi‑Niaragh 
F. IL‑21 and IL‑21 receptor in the immunopathogenesis of multiple 
sclerosis. J Immunotoxicol. 2016;13(3):274–85. https:// doi. org/ 10. 3109/ 
15476 91X. 2015. 10893 43.

 80. Jones JL, Phuah CL, Cox AL, Thompson SA, Ban M, Shawcross J, Walton 
A, Sawcer SJ, Compston A, Coles AJ. IL‑21 drives secondary autoim‑
munity in patients with multiple sclerosis, following therapeutic 
lymphocyte depletion with alemtuzumab (Campath‑1H). J Clin Invest. 
2009;119(7):2052–61. https:// doi. org/ 10. 1172/ JCI37 878.

 81. Berchtold MW, Villalobo A. The many faces of calmodulin in cell 
proliferation, programmed cell death, autophagy, and cancer. Biochim 
Biophys Acta. 2014;1843(2):398–435. https:// doi. org/ 10. 1016/j. bbamcr. 
2013. 10. 021.

 82. Yang Q, Tian S, Liu Z, Dong W. Knockdown of RIPK2 inhibits proliferation 
and migration, and induces apoptosis via the NF‑κB signaling pathway 
in gastric cancer. Front Genet. 2021;12: 627464. https:// doi. org/ 10. 3389/ 
fgene. 2021. 627464.

 83. Zhang M, Liu J, Li M, Zhang S, Lu Y, Liang Y, Zhao K, Li Y. Insulin‑like 
growth factor 1/insulin‑like growth factor 1 receptor signaling protects 
against cell apoptosis through the PI3K/AKT pathway in glioblastoma 
cells. Exp Ther Med. 2018;16(2):1477–82. https:// doi. org/ 10. 3892/ etm. 
2018. 6336.

 84. Zhang X, Yan C, Zhan X, Li L, Lei J, Shi Y. Structure of the human 
activated spliceosome in three conformational states. Cell Res. 
2018;28(3):307–22. https:// doi. org/ 10. 1038/ cr. 2018. 14.

 85. Goldfarb KC, Cech TR. Targeted CRISPR disruption reveals a role for 
RNase MRP RNA in human preribosomal RNA processing. Genes Dev. 
2017;31(1):59–71. https:// doi. org/ 10. 1101/ gad. 286963. 116.

 86. Jarrous N, Mani D, Ramanathan A. Coordination of transcription and 
processing of tRNA. FEBS J. 2022;289(13):3630–41. https:// doi. org/ 10. 
1111/ febs. 15904.

 87. Bratkovič T, Božič J, Rogelj B. Functional diversity of small nucleolar 
RNAs. Nucleic Acids Res. 2020;48(4):1627–51. https:// doi. org/ 10. 1093/ 
nar/ gkz11 40.

 88. Pancho A, Aerts T, Mitsogiannis MD, Seuntjens E. Protocadherins at 
the crossroad of signaling pathways. Front Mol Neurosci. 2020;13:117. 
https:// doi. org/ 10. 3389/ fnmol. 2020. 00117.

 89. Tamura N, Ohno K, Katayama T, Kanayama N, Sato K. The PDZ‑LIM 
protein CLP36 is required for actin stress fiber formation and focal 
adhesion assembly in BeWo cells. Biochem Biophys Res Commun. 
2007;364(3):589–94. https:// doi. org/ 10. 1016/j. bbrc. 2007. 10. 064.

 90. Fearnley GW, Young KA, Edgar JR, Antrobus R, Hay IM, Liang WC, 
Martinez‑Martin N, Lin W, Deane JE, Sharpe HJ. The homophilic receptor 
PTPRK selectively dephosphorylates multiple junctional regulators to 
promote cell‑cell adhesion. Elife. 2019;8: e44597. https:// doi. org/ 10. 
7554/ eLife. 44597.

 91. Mal R, Magner A, David J, Datta J, Vallabhaneni M, Kassem M, Man‑
ouchehri J, Willingham N, Stover D, Vandeusen J, Sardesai S, Williams N, 
Wesolowski R, Lustberg M, Ganju RK, Ramaswamy B, Cherian MA. Estro‑
gen receptor beta (ERβ): a ligand activated tumor suppressor. Front 
Oncol. 2020;10: 587386. https:// doi. org/ 10. 3389/ fonc. 2020. 587386.

 92. Mishra S, Murphy LC, Murphy LJ. The Prohibitins: emerging roles in 
diverse functions. J Cell Mol Med. 2006;10(2):353–63. https:// doi. org/ 10. 
1111/j. 1582‑ 4934. 2006. tb004 04.x.

 93. Lucas CR, Cordero‑Nieves HM, Erbe RS, McAlees JW, Bhatia S, Hodes RJ, 
Campbell KS, Sanders VM. Prohibitins and the cytoplasmic domain of 
CD86 cooperate to mediate CD86 signaling in B lymphocytes. J Immu‑
nol. 2013;190(2):723–36. https:// doi. org/ 10. 4049/ jimmu nol. 12016 46.

 94. Jiang T, Wang J, Li C, Cao G, Wang X. Prohibitins: a key link between 
mitochondria and nervous system diseases. Oxid Med Cell Longev. 
2022;2022:7494863. https:// doi. org/ 10. 1155/ 2022/ 74948 63.

 95. Tan D, Zhou M, Kiledjian M, Tong L. The ROQ domain of Roquin recog‑
nizes mRNA constitutive‑decay element and double‑stranded RNA. Nat 
Struct Mol Biol. 2014;21(8):679–85. https:// doi. org/ 10. 1038/ nsmb. 2857.

 96. Srivastava M, Duan G, Kershaw NJ, Athanasopoulos V, Yeo JH, Ose T, Hu 
D, Brown SH, Jergic S, Patel HR, Pratama A, Richards S, Verma A, Jones 
EY, Heissmeyer V, Preiss T, Dixon NE, Chong MM, Babon JJ, Vinuesa CG. 
Roquin binds microRNA‑146a and Argonaute2 to regulate microRNA 
homeostasis. Nat Commun. 2015;6:6253. https:// doi. org/ 10. 1038/ 
ncomm s7253.

 97. Moser T, Hoepner L, Schwenker K, Seiberl M, Feige J, Akgün K, Haschke‑
Becher E, Ziemssen T, Sellner J. Cladribine alters immune cell surface 
molecules for adhesion and costimulation: further insights to the mode 
of action in multiple sclerosis. Cells. 2021;10(11):3116. https:// doi. org/ 
10. 3390/ cells 10113 116.

 98. Green DR. The mitochondrial pathway of apoptosis part II: The BCL‑2 
protein family. Cold Spring Harb Perspect Biol. 2022;14(6): a041046. 
https:// doi. org/ 10. 1101/ cshpe rspect. a0410 46.

 99. Tischner D, Woess C, Ottina E, Villunger A. Bcl‑2‑regulated cell death 
signalling in the prevention of autoimmunity. Cell Death Dis. 2010;1(6): 
e48. https:// doi. org/ 10. 1038/ cddis. 2010. 27.

 100. Bardwell PD, Gu J, McCarthy D, Wallace C, Bryant S, Goess C, Mathieu 
S, Grinnell C, Erickson J, Rosenberg SH, Schwartz AJ, Hugunin M, Tarcsa 
E, Elmore SW, McRae B, Murtaza A, Wang LC, Ghayur T. The Bcl‑2 family 
antagonist ABT‑737 significantly inhibits multiple animal models of 
autoimmunity. J Immunol. 2009;182(12):7482–9. https:// doi. org/ 10. 
4049/ jimmu nol. 08028 13.

 101. Junttila IS. Tuning the cytokine responses: an update on interleukin 
(IL)‑4 and IL‑13 receptor complexes. Front Immunol. 2018;9:888. https:// 
doi. org/ 10. 3389/ fimmu. 2018. 00888.

 102. Ochi H, Osoegawa M, Wu XM, Minohara M, Horiuchi I, Murai H, Furuya 
H, Kira J. Increased IL‑13 but not IL‑5 production by CD4‑positive T cells 
and CD8‑positive T cells in multiple sclerosis during relapse phase. 
J Neurol Sci. 2002;201(1–2):45–51. https:// doi. org/ 10. 1016/ s0022‑ 
510x(02) 00189‑2.

 103. Ghezzi L, Cantoni C, Cignarella F, Bollman B, Cross AH, Salter A, 
Galimberti D, Cella M, Piccio L. T cells producing GM‑CSF and IL‑13 are 
enriched in the cerebrospinal fluid of relapsing MS patients. Mult Scler. 
2020;26(10):1172–86. https:// doi. org/ 10. 1177/ 13524 58519 852092.

 104. Bröer S. The SLC38 family of sodium‑amino acid co‑transporters. 
Pflugers Arch. 2014;466(1):155–72. https:// doi. org/ 10. 1007/ 
s00424‑ 013‑ 1393‑y.

 105. Aggarwal T, Patil S, Ceder M, Hayder M, Fredriksson R. Knockdown of 
SLC38 transporter ortholog—CG13743 reveals a metabolic relevance in 
drosophila. Front Physiol. 2020;10:1592. https:// doi. org/ 10. 3389/ fphys. 
2019. 01592.

 106. Pfeuffer S, Ruck T, Pul R, Rolfes L, Korsukewitz C, Pawlitzki M, Wildemann 
B, Klotz L, Kleinschnitz C, Scalfari A, Wiendl H, Meuth SG. Impact of 
previous disease‑modifying treatment on effectiveness and safety 
outcomes, among patients with multiple sclerosis treated with alemtu‑
zumab. J Neurol Neurosurg Psychiatry. 2021;92(9):1007–13. https:// doi. 
org/ 10. 1136/ jnnp‑ 2020‑ 325304.

 107. Lee J, Hyeon DY, Hwang D. Single‑cell multiomics: technologies and 
data analysis methods. Exp Mol Med. 2020;52(9):1428–42. https:// doi. 
org/ 10. 1038/ s12276‑ 020‑ 0420‑2.

 108. Ruck T, Barman S, Schulte‑Mecklenbeck A, Pfeuffer S, Steffen F, Nelke C, 
Schroeter CB, Willison A, Heming M, Müntefering T, Melzer N, Krämer 
J, Lindner M, Riepenhausen M, Gross CC, Klotz L, Bittner S, Muraro PA, 
Schneider‑Hohendorf T, Schwab N, Meyer Zu Hörste G, Goebels N, 
Meuth SG, Wiendl H. Alemtuzumab‑induced immune phenotype and 
repertoire changes: implications for secondary autoimmunity. Brain. 
2022;145(5):1711–25. https:// doi. org/ 10. 1093/ brain/ awac0 64.

 109. Ruschil C, Gabernet G, Kemmerer CL, Jarboui MA, Klose F, Poli S, 
Ziemann U, Nahnsen S, Kowarik MC. Cladribine treatment specifically 
affects peripheral blood memory B cell clones and clonal expansion in 
multiple sclerosis patients. Front Immunol. 2023;14:1133967. https:// 
doi. org/ 10. 3389/ fimmu. 2023. 11339 67.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

https://doi.org/10.1111/imcb.12552
https://doi.org/10.1007/978-3-662-43492-5_9
https://doi.org/10.3109/1547691X.2015.1089343
https://doi.org/10.3109/1547691X.2015.1089343
https://doi.org/10.1172/JCI37878
https://doi.org/10.1016/j.bbamcr.2013.10.021
https://doi.org/10.1016/j.bbamcr.2013.10.021
https://doi.org/10.3389/fgene.2021.627464
https://doi.org/10.3389/fgene.2021.627464
https://doi.org/10.3892/etm.2018.6336
https://doi.org/10.3892/etm.2018.6336
https://doi.org/10.1038/cr.2018.14
https://doi.org/10.1101/gad.286963.116
https://doi.org/10.1111/febs.15904
https://doi.org/10.1111/febs.15904
https://doi.org/10.1093/nar/gkz1140
https://doi.org/10.1093/nar/gkz1140
https://doi.org/10.3389/fnmol.2020.00117
https://doi.org/10.1016/j.bbrc.2007.10.064
https://doi.org/10.7554/eLife.44597
https://doi.org/10.7554/eLife.44597
https://doi.org/10.3389/fonc.2020.587386
https://doi.org/10.1111/j.1582-4934.2006.tb00404.x
https://doi.org/10.1111/j.1582-4934.2006.tb00404.x
https://doi.org/10.4049/jimmunol.1201646
https://doi.org/10.1155/2022/7494863
https://doi.org/10.1038/nsmb.2857
https://doi.org/10.1038/ncomms7253
https://doi.org/10.1038/ncomms7253
https://doi.org/10.3390/cells10113116
https://doi.org/10.3390/cells10113116
https://doi.org/10.1101/cshperspect.a041046
https://doi.org/10.1038/cddis.2010.27
https://doi.org/10.4049/jimmunol.0802813
https://doi.org/10.4049/jimmunol.0802813
https://doi.org/10.3389/fimmu.2018.00888
https://doi.org/10.3389/fimmu.2018.00888
https://doi.org/10.1016/s0022-510x(02)00189-2
https://doi.org/10.1016/s0022-510x(02)00189-2
https://doi.org/10.1177/1352458519852092
https://doi.org/10.1007/s00424-013-1393-y
https://doi.org/10.1007/s00424-013-1393-y
https://doi.org/10.3389/fphys.2019.01592
https://doi.org/10.3389/fphys.2019.01592
https://doi.org/10.1136/jnnp-2020-325304
https://doi.org/10.1136/jnnp-2020-325304
https://doi.org/10.1038/s12276-020-0420-2
https://doi.org/10.1038/s12276-020-0420-2
https://doi.org/10.1093/brain/awac064
https://doi.org/10.3389/fimmu.2023.1133967
https://doi.org/10.3389/fimmu.2023.1133967

	Transcriptome alterations in peripheral blood B cells of patients with multiple sclerosis receiving immune reconstitution therapy
	Abstract 
	Background 
	Objectives 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study groups
	Blood sample processing
	Flow cytometry
	Transcriptome profiling
	Identification of differentially expressed genes
	Clustering of genes
	Analysis of gene expression in B-cell subsets
	Mapping of genes to biological processes
	Gene interaction network analysis
	Search for potential markers of relapse

	Results
	Characterization of the study cohort
	Differences in the proportions of B-cell subpopulations
	Differences in the B-cell transcriptome profiles
	Gene functions and cell type specificity
	Interaction network of differentially expressed genes
	Relapse-associated gene expression variation

	Discussion
	Conclusions
	Anchor 29
	Acknowledgements
	References


