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Abstract 

Background Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevel‑
opmental impairment after birth. Despite a growing preclinical evidence base, anti‑inflammatory interventions have 
not been established in clinical practice, partly because of the range of potential targets. We therefore systemati‑
cally reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain 
and assessed their therapeutic potential.

Methods We reviewed relevant studies published from January 2012 to July 2023 using PubMed, Medline (OvidSP) 
and EMBASE databases. Studies were assessed for risk of bias using the SYRCLE risk of bias assessment tool (PROS‑
PERO; registration number CRD42023395690).

Results Forty preclinical publications using 12 models of perinatal neuroinflammation were identified and divided 
into 59 individual studies. Twenty‑seven anti‑inflammatory agents in 19 categories were investigated. Forty‑five (76%) 
of 59 studies reported neuroprotection, from all 19 categories of therapeutics. Notably, 10/10 (100%) studies investi‑
gating anti‑interleukin (IL)‑1 therapies reported improved outcome, whereas half of the studies using corticosteroids 
(5/10; 50%) reported no improvement or worse outcomes with treatment. Most studies (49/59, 83%) did not control 
core body temperature (a known potential confounder), and 25 of 59 studies (42%) did not report the sex of subjects. 
Many studies did not clearly state whether they controlled for potential study bias.

Conclusion Anti‑inflammatory therapies are promising candidates for treatment or even prevention of perinatal 
brain injury. Our analysis highlights key knowledge gaps and opportunities to improve preclinical study design 
that must be addressed to support clinical translation.
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Introduction
Perinatal inflammation is highly associated with neo-
natal mortality and morbidity, including neurode-
velopmental disorders such as vision and hearing 
impairments, learning difficulties, autism spectrum 
disorder, behavioural hyperactivity, schizophrenia and 
cerebral palsy (CP) [1–3]. Of particular concern, the 
risk of CP is increased several-fold in both preterm and 
term infants exposed to perinatal inflammation (odds 
ratio: 2.5–9.3) [4–6]. The cumulative lifetime economic 
cost of CP in the USA was estimated to be over USD 
11.5 billion in 2003 [3]. More recent evidence indi-
cates that the cost of disability associated with perina-
tal brain injury continues to rise, and that prevention 
of such injury would substantially reduce the socio-
economic burden on affected individuals, their families 
and society [7].

The only commonly used treatment for targeting 
inflammation, namely corticosteroids (glucocorticoids), 
may exacerbate brain injury and increase the risk of cer-
ebral palsy [8]. Magnesium sulphate for preterm neu-
roprotection, currently recommended for maternal 
administration when preterm labour is expected before 
30 weeks of gestation, may in part act through inhibition 
of the NF-κB inflammatory pathway [9, 10]. However, 
recent follow-up studies to school age suggest it does not 
significantly improve longer-term neurodevelopmental 
outcomes compared to placebo [11, 12], although these 
studies are relatively small due to incomplete follow-up. 
Conversely, both small and large animal studies sug-
gest that therapeutic hypothermia is not neuroprotec-
tive after exposure to perinatal infection/inflammation 
at term [13–16]. Collectively, these data suggest that 
current therapeutics aimed at improving neurodevelop-
mental outcomes in preterm and term infants are at best 
partially effective, and that development of targeted anti-
inflammatory treatments is an important area of unmet 
medical need [17, 18].

There is strong evidence that chronic inflammation 
related to perinatal infection and hypoxia–ischaemia 
can independently or synergistically cause inflammation 
in the fetus and neonate [19, 20]. In recent cohort stud-
ies, long-term neurodevelopmental disturbances were 
associated with chronic systemic inflammation and dif-
fuse injury in the white matter tracts in both term and 
preterm infants [2, 6, 21–24]. As previously described, 
both systemic and central nervous system inflammation 
are strongly associated with cell death, dysmaturation 
and disturbed neuronal and oligodendrocyte develop-
ment and reductions in brain growth [25–28]. These dis-
turbances in white and grey matter development at the 
cellular level likely underpin altered brain microstruc-
ture, reduced white and grey matter volumes [29, 30] and 

long-term behavioural and intellectual disabilities after 
exposure to perinatal inflammation.

Despite this strong preclinical evidence that exposure 
to inflammation does trigger brain injury, and encourag-
ing preclinical studies, no anti-inflammatory interven-
tions have been shown to prevent clinical perinatal brain 
injury. In part this reflects confusion about the most 
appropriate drug targets and lack of clarity on the most 
appropriate preclinical studies to provide a foundation 
for safety and efficacy trials in humans. In this systemic 
review we aimed to evaluate the rigour of preclinical 
studies undertaken in the last 10 years that investigated 
potential immunomodulatory therapeutics to reduce 
perinatal inflammation-induced brain injury. A second-
ary aim was to determine the current knowledge gaps for 
clinical translation of the identified therapeutics.

Analysis strategy
Search method
This systematic review was conducted according to the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analysis (PRISMA) guidelines [31] (Additional 
file 1: Table S1 and Additional file 2: Table S2). The pro-
tocol was developed and registered with the International 
Prospective Register of Systematic Reviews (PROSPERO; 
registration number CRD42023395690).

Searches were conducted using Pubmed, Medline 
(OvidSP) and EMBASE databases for publications 
between January 2012 and July 2023. The following search 
terms: (preterm brain injury OR perinatal encephalopa-
thy OR neonatal encephalopathy) AND (anti-inflamma-
tory) were utilised. Other sources used to identify studies 
included relevant manuscripts and reviews. Reviews, 
conference abstracts, and articles written in a language 
other than English or for which no translation was availa-
ble were excluded. Search results for both databases were 
collated, and duplicate articles were manually removed. 
Abstracts were identified and screened by an unbiased 
investigator (SBK) and duplicated by another investigator 
(NTT).

Selection criteria
Studies were deemed eligible if they met the following 
criteria: (1) conducted in an in  vivo model of preterm/
term equivalent age; (2) intervention possesses immu-
nomodulatory or antimicrobial effects, or exclusively 
impacts immune activation (Table 3); (3) clear histologi-
cal (based on the assessment of tissue inflammation and 
injury) and/or functional outcomes are reported; and (4) 
comparison to a vehicle control group is made. Studies 
were excluded if they: (1) were conducted in vitro; (2) did 
not meet the age criteria (i.e. were conducted in adult/
paediatric equivalent subjects); (3) tested drugs reported 
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to have therapeutic impacts beyond immunomodulation; 
(4) did not report outcomes relating to neuroinflamma-
tion and related brain injury, or (5) did not include appro-
priate control groups. In  vitro studies were excluded 
from this analysis due to their limited ability to capture 
complex interactions between systemic immune activa-
tion and brain pathophysiology.

Data extraction
Studies were grouped by therapeutic agent and then fur-
ther subdivided by species, age, type of insult to induce 
inflammation/injury, treatment and dosing regimen, 
extent of temperature monitoring, subject sex and main 
study outcomes (pathological/functional) and outcome 
(protection/no protection). The (SYstematic Review Cen-
tre for Laboratory animal Experimentation) SYRCLE risk 
of bias tool, described below, was used to evaluate the 
potential for individual study bias.

Studies were assessed according to the extent of tem-
perature control, whether the insult and treatment were 
randomised, whether investigators were blinded to the 
intervention during histological and or functional assess-
ments, and whether males and females were included in 
the analysis.

Studies were defined as being neuroprotective if there 
was a statistically significant improvement (P < 0.05) in 
brain histopathology and/or functional outcomes in the 
insult group that received treatment compared to the 
insult group that received vehicle/placebo.

Risk of bias
A risk of bias assessment for the selected studies was 
conducted using the SYRCLE Risk of Bias (RoB) tool 
[32]. The SYRCLE’s RoB tool assesses the quality of ani-
mal studies (e.g. randomisation and blinding procedures 
in study design) to critically appraise the preclinical 
research methodology. The 10 RoB assessment domains 
were scored as either “yes” for low risk of bias, “no” for 
high risk of bias, or “unclear” if the experimental meth-
ods did not explicitly address the domain assessment 
(Table 3).

Results
We identified 808 relevant records. After excluding 
reviews, duplicates, and records for which the full text 
was not available, we screened a total of 764 records and 
excluded 724 for one or more of the following reasons: 
ex  vivo studies, inappropriate developmental age, brain 
histology and functional outcomes were not examined, 
or the therapeutic under investigation did not explic-
itly affect the immune system. A total of 40 publications 
investigating 19 categories of therapeutic were included 
in this analysis (Figs.  1 and 2). Publications that used 

more than one model of injury or showed different out-
comes based on different treatment regimens (e.g. differ-
ent drug dose and timing of drug delivery) were further 
subdivided into individual studies. The original 40 publi-
cations were thereby subdivided into 59 individual stud-
ies, which are summarised in Table 1.

Preclinical models of neuroinflammation
Fetal or neonatal rodents (rats or mice) were the predom-
inant species used (n = 47 studies). Eight studies used 
fetal rodents from embryonic days 15–20, broadly cor-
responding to the neural development of human infants 
at < 22  weeks of gestation [33, 34]. The 35 postnatal 
rodent studies ranged from postnatal days (P) 0–11. Eight 
studies used rodents between P 0–6, which is broadly 
comparable to human brain development at 22–32 weeks 
of gestation. Fifteen studies used rodents at P7, which is 
comparable to the preterm human brain at approximately 
30–34  weeks. Sixteen studies used rodents at P 9–11, 
which is broadly comparable to human brain develop-
ment at term [33, 34]. There were 12 large animal studies: 
six studies used fetal sheep at 0.7 of gestation, which is 
comparable to the preterm human brain at approximately 
30  weeks of gestation [35, 36]. One used term neonatal 
piglets (postnatal day 1) and 5 used fetal sheep at 0.8–0.9 
of term gestation; these ages are comparable to neural 
maturation in the term human brain [35, 36].

Fourteen individual methods of causing inflammatory 
injury were identified (Fig.  3A). Studies were divided 
into three categories: inflammation initiated by path-
ogen-associated molecular patterns (infection-related 
inflammation, n = 17), inflammation initiated without 
pathogen-associated molecular patterns (non-infection 
related inflammation, n = 35), and combined infection- 
and not infection-related inflammation (n = 7). Twenty-
three studies provoked neuroinflammation using the 
Rice–Vannucci model of carotid artery ligation followed 
by a period of moderate hypoxia. One study used neo-
natal hypoxia [37], and two studies used bilateral carotid 
artery occlusion [38, 39]. Five studies used umbilical cord 
occlusion in fetal sheep [40–44], one study used spon-
taneous fetal growth restriction in neonatal piglets [45] 
and 2 studies induced fetal inflammation by injecting 
IL-1β between the fetal membranes [46]. Eleven studies 
induced inflammation using the Gram-negative bacte-
rial cell wall component lipopolysaccharide (LPS); four 
administered LPS maternally (using either intrauterine 
or intraperitoneal injection) [46–50] and seven infused 
LPS directly to the fetus or newborn using either single 
intracerebral, intracisternal or intraperitoneal injection 
to the neonate [51–54] or repeated fetal i.v. LPS infu-
sions [55, 56]. Five studies used intracisternal injec-
tion of live S. pneumoniae to the newborn [57]. Seven 
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studies combined either intraperitoneal injection of live 
S. epidermidis (n = 2) [58] or LPS (n = 5) with neonatal 
hypoxia–ischaemia [50, 59–61].

Therapeutic doses, regimens, outcomes, and survival times
Twenty anti-inflammatory/immunomodulatory thera-
pies in 17 categories were investigated. A description of 
each therapy, a summary of the number of studies that 

reported neuroprotection vs. no protection for each ther-
apy are outlined in Table 2 and Fig. 3B, respectively.

Nine studies started the intervention before the insult 
(Fig.  4A), and 50 studies administered the intervention 
after the insult. For the latter approach, most studies 
started treatment either within the first hour (n = 20/50, 
40%) or between 1 and 6  h after the insult (n = 21/50, 
42%) (Fig. 4B). Only 4 studies started treatment between 
1 and 3 d after the insult, of which 3 reported neuropro-
tection and 1 reported increased injury after treatment 

Fig. 1 Flowchart illustrating the number of papers identified through database searching and other relevant sources, the number of full text 
articles screened, assessed, and excluded, and the final number of original papers surveyed. Publications that used more than one paradigm 
of encephalopathy or multiple treatment regimens were further subdivided if outcomes differed according to experimental paradigm or treatment 
regimen. After subdividing these publications there was a total of 59 individual studies. The studies are summarised in Table 1
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(Fig. 4B). The treatment dose, regimen and survival times 
(Fig.  4C) varied markedly. The main outcomes for each 
therapy are described below and in Table  1, in order of 
least-to-most effective, according to the proportion of 
studies that reported no improvement or deleterious out-
comes vs. those that showed improved outcomes, as indi-
cated by brain histopathology or behavioural assessment.

One study administered the anti-fungal treatment flu-
conazole (Table  2) to the fetus 2  days after exposure to 
intra-amniotic Candida albicans and showed increased 
neuroinflammation and oligodendrocyte loss (P < 0.05, 
Kruskal–Wallis with Dunnett’s post hoc test) [61] 
Table 1).

Ten studies tested corticosteroids (hydrocortisone, 
dexamethasone or betamethasone, Table  2). The less 
potent corticosteroid, hydrocortisone, in a dose of 10 µg 
given intracerebroventricularly 2  h after HI was associ-
ated with reduced infarct size at 2 days (P < 0.05, one-way 
ANOVA with Newman–Keuls post hoc) [62]. Similarly, 
reduced infarct size after 2  days was seen with 300  µg 
given intranasally 2  h after HI. However, protective or 
injurious effects were not seen with lower or higher intra-
nasal doses (50–1000  µg) (P < 0.05, one-way ANOVA 
with Newman–Keuls post hoc) [62] (Table 1). Repeated 

i.p. doses of dexamethasone (range: 0.1–0.5 mg/kg) given 
4 days before HI were associated with increased neuronal 
cell death after 1  day recovery (P < 0.05) [63]. A single 
intracerebral injection of dexamethasone or betametha-
sone given 1 h before LPS was associated with improved 
histological and behavioural outcomes (P < 0.05, one-way 
ANOVA with Tukey’s post hoc) [54]. However, a single 
intranasal dose of dexamethasone (0.1 µg) given 2 h after 
HI was not associated with improved outcomes after 
2 days [62].

In preterm fetal sheep, a single 12  mg i.m. dose of 
maternal dexamethasone given either 4  h before or 
15 min after global HI was associated with increased elec-
trographic seizures (P < 0.05, repeated measures ANOVA 
with Fisher’s LSD post hoc) and increased white and grey 
matter injury after 7  days (P < 0.05, three-way ANOVA) 
[43, 44] (Table  1). Similarly, maternal betamethasone 
(11.2 mg at 48 and 24 h before preterm birth) was asso-
ciated with increased inflammation, oxidative stress and 
vascular extravasation in neonatal lambs exposed to high 
tidal volume ventilation (P < 0.05, two-way ANOVA with 
Holm–Sidak post hoc test) [64] (Table 1).

Four studies investigated giving repeated doses of inter-
alpha inhibitor proteins (a serine protease inhibitor; 

Fig. 2 Outline of systemic and central nervous system inflammatory responses targeted by the immune‑based therapeutics identified in this 
systematic review. Created with BioRender.com
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Fig. 3 A Number of studies (n) which promoted inflammation using infection related, non‑infection related and combined infection 
and non‑infection related techniques and whether they showed the intervention to be neuroprotective (white) or not neuroprotective (black). B 
The number of studies (n) that showed neuroprotective outcomes (white) versus the number of studies that were not protective (black) for each 
therapy
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Table 2 List of immunomodulatory therapies analysed in this review, their Therapeutic Goods Administration (TGA)/Food and Drug 
Administration (FDA) approval status and their mechanism of action

Reference(s) Therapeutic TGA/FDA approval Mechanism

Antifungals

[61] Fluconazole Yes/yes Selective inhibitor of fungal cell wall synthesis

Corticosteroids

[43, 44, 54, 62, 63] Dexamethasone Yes/yes A corticosteroid that acts on glucocorticoid receptors 
which suppresses neutrophil migration, macrophage 
activation and lymphocyte proliferation and decreases 
permeability of capillaries. More rapid onset 
and shorter duration of action than betamethasone

[62] Hydrocortisone Yes/yes A corticosteroid that acts on glucocorticoid receptors 
which suppresses neutrophil migration, macrophage 
activation and lymphocyte proliferation and decreases 
permeability of capillaries. Less potent and shorter 
acting than dexamethasone

[54, 64] Betamethasone Yes/yes A corticosteroid that acts on glucocorticoid receptors 
which suppresses neutrophil migration, macrophage 
activation and lymphocyte proliferation and decreases 
permeability of capillaries. More potent and longer 
lasting than dexamethasone and hydrocortisone

Inter-alpha inhibitor proteins

[65, 66] Human plasma derived inter‑alpha inhibitor proteins No/no Endogenous human plasma proteins that block 
the release of serine proteases protecting cells 
from cytotoxicity

Complement inhibitors

[67] RLS‑0071 No/no An amino acid peptide that binds to the C1q compli‑
ment protein preventing downstream signalling 
of the compliment pathway

TLR7 agonist

[41, 42] (Gardiquimod) GDQ No/no An imidazoquinoline analogue that induces the activa‑
tion of NF‑κB in cells expressing human or mouse TLR7

Antibiotics

[57] Ceftriaxone Yes/yes A broad‑spectrum cephalosporin antibiotic that inhib‑
its the mucopeptide synthesis in the bacterial cell wall

[57] Daptomycin Yes/yes A broad‑spectrum cyclic lipopeptide antibiotic 
against Gram‑positive bacteria. Disrupts bacterial cell 
membrane function

[58] Vancomycin Yes/yes A glycopeptide antibiotic against Gram‑positive bacte‑
ria. Inhibits cell wall biosynthesis

[68] Doxycycline Yes/yes A tetracycline antibiotic that inhibits bacterial protein 
synthesis

Methylxanthines

[58] Pentoxifylline Yes/yes A methylxanthine derivative that lowers blood 
viscosity by increasing erythrocyte flexibility, reducing 
plasma fibrinogen, inhibiting neutrophil activation, 
and suppressing erythrocyte/platelet aggregation

NF-kB inhibitors

[59] Tat‑NBD peptide No/no A 22 amino acid peptide that inhibits NF‑κB signal‑
ling by penetrating the cell and blocking the NF‑κB 
essential modifier (NEMO)

Fingolimod

[37, 47, 48, 70] Fingolimod (FTY720) Yes/yes A sphingosine 1‑phosphate (S1P) receptor agonist that 
causes lymphocytes to be sequestered to the lymph 
nodes

GSK3β inhibitor

[71] SB216763 No/no Selectively inhibits the activity of GSK‑3α and GSK‑3β, 
preventing PI3‑kinase induced cell death
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Table 2) (30 mg/kg i.p.) to the neonate. Two showed no 
improvement in histology (at 3  days) and behavioural 
outcomes (at ~ 16  weeks), respectively, with treatment 
started from one to six hours after HI (P < 0.05, one-
way ANOVA) [65, 66]. In contrast, two studies showed 
reduced tissue loss (P < 0.05, one-way ANOVA with 
Fisher’s LSD post hoc) and improved memory at 3 days 
and ~ 13  weeks (P < 0.05, repeated measures ANOVA 

with Tukey’s post hoc), respectively, when treatment was 
started within the first hour after HI, although improved 
outcomes were only seen in male offspring [65, 66] 
(Table 1).

Two studies used the complement inhibitor RLS0071 
(Table  2). Both studies gave single or repeated doses 
of 10  mg/kg i.p., starting 1  h after HI. One showed no 
improvement in histological outcomes after 2  days 

Table 2 (continued)

Reference(s) Therapeutic TGA/FDA approval Mechanism

Innate defence regulator proteins

[60] IDR‑1018 No/no A synthetic 12 amino acid antibiofilm peptide 
that selectively binds to the nucleotide (p)ppGpp 
inhibiting bacterial function

Lipoxin A4

[72] LXA4 No/no A metabolite of arachidonic acid that stimulates 
the bacteria‑killing capacity of leukocytes, inhibit 
neutrophil infiltration and pro‑inflammatory cytokine 
and chemokine production via inhibition of NF‑κB 
and activator protein 1

Cytokine IL-35 targeted therapies

[73] Recombinant human IL‑35 No/no An anti‑inflammatory cytokine that induces regulatory 
T and B lymphocytes

Melanocortin 1 receptor agonists

[74] BMS‑470539 No/no A small molecule that acts as a selective agonist 
of the melanocortin 1 receptor promoting down‑
stream signalling

COX2 inhibitors

[45, 75] Ibuprofen Yes/yes A non‑steroidal anti‑inflammatory that non selectively 
inhibits COX1 and COX2 to reduce prostaglandin 
synthesis

[53] Celecoxib Yes/yes A non‑steroidal anti‑inflammatory drug (NSAID) 
that selectively inhibits COX2 and decreases prosta‑
glandin synthesis

Granulocyte colony-stimulating factor

[76] Human G‑CSF produced by recombinant DNA 
technology

No/no An endogenous lipoxygenase‑derived eicosanoid 
mediator that suppresses leukocytes and inhibits 
production of pro‑inflammatory cytokines

Colony stimulating factor 1

[77] Rh‑CSF1 No/no Recombinant human growth factor of CSF1 that leads 
to the recruitment of CSF1R expressing cells includ‑
ing macrophages, monocytes and dendritic cells

Cytokine TNF targeted therapies

[40, 52, 56] Etanercept Yes/yes A soluble TNF receptor that sequesters TNF to prevent 
it from interacting with endogenous TNF receptors

Cytokine IL-1 targeted therapies

[38, 39] Mouse anti‑ ovine‑IL‑1β, monoclonal antibodies No/no A mouse‑anti‑ovine IL‑1β monoclonal antibody 
that binds to ovine IL‑1β and neutralises inflamma‑
tion by blocking IL‑1β from interacting with the IL‑1β 
receptors

[46, 49–51, 55] Anakinra Yes/yes A recombinant human IL‑1 receptor antagonist 
that competitively binds to the IL‑1 receptor inhibiting 
the activity of IL‑1α and IL‑1β

[46] 101.10 (Rytvela) No/no An allosteric IL‑1 receptor peptide antagonist 
that selectively binds to the IL‑1 receptor inhibiting 
the activity of IL‑1α and IL‑1β
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(P < 0.05, paired T-test and ANOVA) [67]. One showed 
reduced cortical infarct area 2 days after HI when com-
plement inhibitor was combined with therapeutic hypo-
thermia (compared to hypothermia alone) (P < 0.05, 
paired T test and ANOVA) [67] (Table 1).

Two studies used a toll-like receptor 7 (TLR7) ago-
nist (gardiquimod (GDQ), Table 2) at a dose of 1.8 mg/
kg via fetal intracerebroventricular infusion from 1  h 
after global HI. Improved neuronal and oligodendrocyte 
survival were seen 3 days after treatment (P < 0.05, two-
way ANOVA with Fisher’s LSD post hoc) [41], whereas 
there was delayed onset of epileptiform discharges and 
no overall histological improvement after 7 days recovery 
(*P < 0.05, repeated measures ANOVA with Fisher’s LSD 
post hoc) [42] (Table 1).

Eight, studies tested antibiotics for induced bacterial 
infection. One study used a single i.p. dose of 15 mg/kg 
vancomycin (Table 2) given 2 min after neonatal S. epi-
dermidis inoculation combined with HI. Treatment was 

associated with attenuated brain tissue loss 9  days later 
(P < 0.05, Kruskal–Wallis test with Dunn’s post hoc) 
[58]. In the same animal model, combining pentoxifyl-
line (40  mg/kg i.p.) with vancomycin did not augment 
vancomycin-induced protection (P > 0.05, Kruskal–Wallis 
test with Dunn’s post hoc) [58] (Table 1). One study used 
10 mg/kg doxycycline i.p. given 1 h after HI and showed 
reduced lesion size and neuronal loss after 42  days 
(P < 0.05, Mann–Whitney U test) [68]. One study admin-
istered ceftriaxone (Table 2) at a dose of 100 mg/kg i.p. 
18 h after intracisternal S. pneumonia inoculation. Treat-
ment was associated with increased neuronal loss after 
42 h (P < 0.05, Mann–Whitney test), and reduced learning 
and memory after 3  weeks (P < 0.05, two-way ANOVA) 
[57] (Table 1). One study used 100 mg/kg ceftriaxone i.p. 
combined with the non-bacteriolytic antibiotic daptomy-
cin 10 mg/kg s.c. given 18 h after intracisternal S. pneu-
monia inoculation and showed reduced cortical necrosis 
after 42  h (P < 0.05, Mann–Whitney test) [57] (Table 1). 

Fig. 4 A The number of studies (n) that showed neuroprotection (white) or no protection (black) after administering the treatment at ≤ 1 h, 4 h, 
14 h, 2 d or 3 d before the insult. B The number of studies (n) that showed neuroprotection (white) or no protection (black) after administering 
the treatment at < 1 h, 1–6 h, 18 h, 1 d, 2 d, or 3 d after the insult. C The number of studies (n) that showed neuroprotection (white) or no protection 
(black) stratified by survival time after the insult
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Three studies combined ceftriaxone i.p. with daptomycin 
10 mg/kg s.c. and 2 doses of the matrix metalloprotease 
inhibitor trocade (75  mg/kg) given 24  h apart starting 
at 18  h after intracisternal S. pneumonia inoculation. 
This treatment regimen was associated with reduced 
hippocampal apoptosis and cortical necrosis after 42  h 
(P < 0.05, Mann–Whitney test), and improved hear-
ing, learning and memory at 3 weeks (P < 0.05, two-way 
ANOVA) [57] (Table 1).

Three studies used a single dose of a nuclear factor 
kappa B (NF-κB) inhibitor (Tat-NBD, Table 2) delivered 
intranasally to the neonate at a dose of 1.4 mg/kg 10 min 
after the insult. Two showed reduced tissue loss after 
7  days in rat pups exposed to a combination of HI and 
LPS and one showed no improvement in histological out-
comes in pups exposed to HI alone (P < 0.05, unpaired 
t-test or one-way ANOVA with Newman–Keuls post 
hoc) [59] (Table 1).

Four studies tested fingolimod (FTY720, Table  2), a 
sphingosine-1-phosphate receptor modulator [69]. Of 
these, two gave it antenatally to the mother, as a single 
dose of 1 mg/kg i.p. immediately or 30 min after mater-
nal LPS-exposure and showed improved histological out-
comes (reduced markers of inflammation in the white 
matter and cortex) after 6- and 4-h recovery, respec-
tively (P < 0.05, Mann–Whitney test) [47, 48]. Two stud-
ies gave fingolimod to the neonate via single or repeated 
doses (0.3–1 mg/kg, i.p.). The 1 mg/kg dose was associ-
ated with worse histological outcomes (increased cortical 
tissue loss) compared to vehicle 7 days after HI (P < 0.05, 
unpaired t-test.), whereas 0.3 mg/kg was associated with 
reduced total seizure duration and improved behavioural 
outcomes at 7 weeks after HI (P < 0.05, two-way ANOVA 
with Tukey’s post hoc) [37, 70] (Table 1).

One study used repeated doses of a glycogen syn-
thase kinase 3 β (GSK3β) inhibitor (SB216763, Table  2) 
at 10  mg/kg i.p. to the neonate from 14  h before the 
insult and showed reduced tissue loss at 7 days after HI 
(P < 0.05, one-way ANOVA with Holm–Sidak’s post hoc) 
[71] (Table 1).

One study gave an innate defence regulator protein 
1018 (IDR-1018, Table 2) in a single dose (8 µg/g i.p.) to 
the neonate at 3  h after LPS + HI and showed reduced 
white and grey matter tissue loss 7 days after treatment 
(P < 0.05, t test) [60] (Table 1).

One study used single intracisternal infusion of lipoxin 
A4 (Table 2) at a dose of 10 mg/kg starting 1 h after HI 
and showed reduced infarct area and improved motor 
function and cognition at 24 h and 3 weeks, respectively 
(P < 0.05, one-way ANOVA with Tukey’s post hoc) [72] 
(Table 1).

Recombinant human IL-35 was administered i.v. to the 
neonate at the time of HI and 1 day later, reduced infarct 

volume was shown 2 days after treatment (P < 0.05, one-
way ANOVA with Tukey’s post hoc) [73] (Table 1).

Two studies administered a single dose of a melano-
cortin receptor 1 agonist (BMS-470539, Table 2) intra-
nasally at 1  h after HI [74]. The concentrations tested 
ranged from 50  µg/kg to 500  µg/kg, with survival 
times between 2  days and 4  weeks. Outcomes were 
dose dependent; 50  µg/kg did not improve outcomes, 
whereas 500 µg/kg and 160 µg/kg reduced infarct area 
and improved sensorimotor function at 2  days and 
4  weeks, respectively (P < 0.05, one-way ANOVA or 
Student t-test with Tukey’s post hoc) (Table 1).

Three studies used cyclooxygenase 2 (COX2) inhibi-
tors (ibuprofen and celecoxib; Table 2) administered to 
the neonate via single or repeated doses of 10–20 mg/
kg from 5 min to 2 h (i.p.) after LPS exposure, or 1 day 
(oral) after delivery in a model of spontaneous growth 
restriction. One showed improved histological out-
comes (reduced inflammation and improved white and 
grey matter integrity) and motor function after one day 
(P < 0.05 one-way ANOVA with Student–Newman–
Keuls post hoc) [53], one showed reduced inflamma-
tion in the frontal cortex after 10 days (P < 0.05, t-test) 
[75], and one showed reduced white matter gliosis, 
improved myelination and neuronal survival after three 
days (P < 0.05, two-way ANOVA with Holm–Sidak post 
hoc) [45] (Table 1).

Three studies used either granulocyte (G-CSF, 
Table  2) or colony stimulating factor 1 (CSF-1/M-CSF, 
Table  2). When G-CSF was given as a single i.p. 50  µg/
kg dose intraperitoneally at 1  h after HI, improved 
blood brain barrier integrity and reduced inflammation 
were reported after 2  days recovery (P < 0.05, one-way 
ANOVA with Tukey’s post hoc) [76]. CSF-1 was given via 
repeated doses of 80 µg/kg intranasally at 1 and 24 h after 
HI. Reduced and sensorimotor and cognitive function 
were shown after 2  days and 4  weeks recovery, respec-
tively (P < 0.05, one-way ANOVA with Tukey’s post hoc) 
[77] (Table 1).

Etanercept, a soluble TNF receptor (Table  2) that 
inhibits TNF activity, was administered directly to the 
fetus or neonate in three studies. A single i.p. dose (5 mg/
kg) was associated with improved white matter integrity 
1  day after hypoxia–ischaemia (HI) (P < 0.05, ANOVA 
with Bonferroni post hoc) [52]. One study gave repeated 
doses of etanercept i.v. to fetal sheep (5 mg/kg) starting 
immediately after LPS exposure and one study admin-
istered it to the fetal sheep brain via repeated intracer-
ebroventricular infusions (1  mg) starting from 3  days 
after HI. Both showed improved reduced neuroinflam-
mation and reduced white matter injury (*P < 0.05, two-
way ANOVA with Fisher’s LSD post hoc) and or reduced 
suppression of electroencephalogram power (repeated 
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measures ANOVA with Fisher’s LSD post hoc) at 10 days 
and 3 weeks [40, 56] (Table 1).

For studies targeting IL-1, eight studies gave IL-1 
receptor antagonists (anakinra or 101.10, Table  2) at 
doses of 1 to 13 mg/kg. Three treated prophylactically, 
i.e. starting before the insult, and used single dosing in 
fetal mice. All showed improved histological (reduced 
markers of neurotoxicity and improved microvascular 
integrity) (P < 0.05, Kruskal–Wallis one-way ANOVA) 
and functional outcomes (improved visual evoked 
potentials) (P < 0.05, Kruskal–Wallis one-way ANOVA 
with Dunn’s post-test) in the offspring when assessed at 
4–6 h, and 15–30 days after the insult, respectively [46, 
49] (Table 1). Three studies treated the neonate directly 
using repeated doses started immediately after the 
insult in postnatal mice exposed to maternal LPS and 
or neonatal hypoxia. All showed improved histologi-
cal (P < 0.05, ANOVA with Newman–Keuls post hoc 
test) and functional outcomes (P < 0.05, unpaired t-test 
with Welch correction) 40 days later [50] (Table  1). 
One study gave three doses of anakinra between 5 min 
and 22 h after the insult to LPS-treated male rat pups 
and showed improved histological and MRI outcomes 
1  day later (P < 0.05, Kruskal–Wallis tests with Dunn’s 
multiple comparisons) [51]. One study gave anakinra 
1  h after progressive repeated LPS exposure in fetal 
sheep and showed both improved histological (P < 0.05, 
two-way ANOVA with Fisher’s LSD) and functional 
(improved electroencephalogram power, P < 0.05 two-
way ANOVA with repeated measures) after 4 days [55]. 
Two studies gave one or two doses of 5.1 to 7.7 mg/kg 
to the fetus of a mouse anti-ovine IL-1β monoclonal 
antibody (Table 2) starting 15 min after the insult. Both 
showed improved histological outcomes (blood brain 
barrier penetration and reduced grey matter apopto-
sis) after 1-day recovery (P < 0.05, P < 0.05, one-way 
ANOVA with FSD post hoc) [38, 39] (Table 1).

Temperature monitoring
Ten out of 59 studies (16%) reported monitoring core 
temperature during the study (Table  1, Fig.  5A). Of 
these, 5 reported maintaining core temperature dur-
ing the insult (HI) but not during recovery. One study 
reported temporal core temperature data through-
out the experimental period [58]. Twenty-three stud-
ies reported maintaining ambient air temperature 
(range: 28–38 ℃) during the study period, 18/23 (78%) 
reported neuroprotection. Twenty five studies did not 
report temperature monitoring as part of their study 
protocol, however 11/25 studies (44%) were con-
ducted in fetal sheep, where fetal core temperature is 
maintained in utero between 39.0 and 39.5 ℃ by the 

intrauterine environment [78, 79]. An overview of type 
of temperature control for the studies included can be 
seen in Fig. 5A.

Subject sex
Forty-one out of 59 studies (69%) reported outcomes in 
both sexes, but 11 of these studies did not report num-
bers or ratios of males and females (Table  1, Fig.  5B). 
Four out of 59 studies reported outcomes in males only 
[51, 63, 66]. Of these, 2 reported improved outcomes, one 
reported no improvement and one reported worse out-
comes with treatment. Fifteen out of 59 studies (25%) did 
not report the sex of the subjects, of these, 14/15 studies 
showed improved outcomes (Fig. 5B).

Study bias
The SYRCLE RoB tool [32] was used to measure risk of 
study bias (Table  3). Thirty out of 40 papers stated that 
allocation to groups was random, although only two 
papers gave specific details relating to how the randomi-
sation was performed [47, 74]. Nine out of 40 papers 
reported the baseline characteristics of the groups ana-
lysed. No studies explicitly reported randomly hous-
ing animals during the experiment or noted whether 

Fig. 5 A The number of studies (n) that showed neuroprotection 
(white) or no protection (black) and monitored ambient temperature, 
core temperature, or did not report temperature monitoring. B 
The number of studies (n) that showed neuroprotection (white) 
or no protection (black) which reported outcomes in both males 
and females (♂ + ♀), males only (♂), females only (♀), or did not report 
the sex of the subjects
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the caregivers and examiners were blinded to treat-
ment groups. Seventeen out of the 40 papers (42%) did 
not report blinding of the assessor/s during the analysis, 
while one paper reported conducting a random outcome 
assessment [65]. Seventeen out of 40 papers (42%) did 
not address incomplete outcome data and were therefore 
at risk of attrition bias. All papers appeared to be free 
from selective outcome reporting (Table 3).

Discussion
Perinatal inflammation is a major cause of neurodevel-
opmental impairments in preterm and term infants [25, 
26]. Developing effective therapeutic interventions for 
the ‘at risk’ fetus or neonate requires that we improve our 
understanding of the pathophysiological mechanisms 
that lead to neurodevelopmental impairments, identify 
therapeutic targets, and test pharmacological interven-
tions in a translational research pipeline that incorporates 
high quality small and large animal trials. In this system-
atic review, we set out to identify which immunomodula-
tory interventions have been trialled between 2012 and 
2023 for inflammation-induced brain injury and deter-
mine key knowledge gaps in the literature that need to be 
addressed in animal studies before progressing potential 
therapies into human trials for perinatal neuroprotection.

Modelling perinatal infection/inflammation
There is compelling evidence that both mild and moder-
ate-to-severe HIE and infection/inflammation are highly 
associated with microgliosis and activation of distinct 
inflammatory pathways in the peripheral and central 
nervous system, as previously reviewed [19, 26, 80]. Most 
of the studies surveyed here (59%) used models of ‘non-
infection’ related inflammation (hypoxia with or without 
ischaemia). A  few studies modelled ‘infection’ related 
inflammation (28%) or combined ‘infection and non-
infection’ related insults (12%). None tested interventions 
in the setting of Gram-positive infection, such as myco-
plasmas (e.g. Ureaplasma spp.), which are among the 
most common bacterial isolates in pregnancies compli-
cated by chorioamnionitis (fetal infection/inflammation), 
preterm birth [81], and neurodevelopmental impairment. 
For example, amniotic fluid cultures that are positive for 
Ureaplasma urealyticum are associated with a higher risk 
of adverse psychomotor development, abnormal neu-
rological outcome and a higher risk of cerebral palsy at 
2 years of age compared to patients with negative amni-
otic fluid cultures [82].

None of the studies surveyed used polymicrobial mod-
els of inflammation. There is emerging evidence that 
multiple bacteria and viruses reside in the placenta and 
amniotic fluid, raising the possibility that, at least in some 
cases, there may be a polymicrobial aetiology to perinatal 

infection/inflammation-induced impairments in brain 
development [83–87]. This concept is supported by stud-
ies in animal models that show combining viral and bac-
terial inflammation in pregnant mice is associated with 
increased rates of preterm birth, tissue inflammation and 
necrosis relative to either inflammatory stimulus alone 
[88, 89]. Furthermore, few studies modelled repeated 
fetal or neonatal infection/inflammation. Repeated 
infections occur in approximately two thirds of preterm 
infants ≤ 30  weeks of gestation and are associated with 
an increased risk of white matter abnormalities and mor-
tality [90, 91]. Another consideration is that none of the 
studies surveyed tested immunomodulators in models of 
viral infection. This highlights another important knowl-
edge gap given the strong association between congenital 
infections with viruses, such as cytomegalovirus herpes 
simplex virus type 1 and severe acute respiratory syn-
drome coronavirus 2, and long-term neurological seque-
lae [92–95].

Controlling for iatrogenic hypo/hyperthermia
Most publications (n = 47/59, 79%) used neonatal 
rodents. Rigorous studies in neonatal rodents offer many 
advantages for neuroprotection research, as previously 
highlighted [96]. However, due to their small body mass 
relative to surface area, lack of subcutaneous fat, naked 
skin and limited shivering response, neonatal rats pro-
duce less heat and lose more body heat than adults [96, 
97]. These factors make them functionally poikilothermic 
and susceptible to rapid changes in body and brain tem-
perature during changes in environmental temperature 
[98]. Small changes in body temperature are known to 
affect neurological outcomes in animal and human stud-
ies [96, 99, 100]. Furthermore, as previously reviewed, 
neuroprotective effects of various pharmacological inter-
ventions, including anaesthetics, can be confounded by 
drug-induced hypothermia mediated by increased heat 
loss [100]. Conversely, neuroprotection can be masked by 
delayed hyperthermia [101, 102]. Thus, care is required 
to ensure that iatrogenic changes in body temperature do 
not occur to ensure that outcomes are not confounded by 
unappreciated changes in body temperature or environ-
mental conditions.

Of concern, only 16% of studies published since 2012 
measured core temperature; half of these studies meas-
ured core temperature during the insult, and one explic-
itly reported temperature data after treatment [58]. Most 
of the studies measured environmental temperature 
which ranged from 28–38 ℃ (− 4 to 0 ℃ below core tem-
perature). We identified 4 studies that used maternal LPS 
exposure to model antenatal infection/inflammation, 
all reported modest improvements in neurological out-
comes, but none monitored maternal body temperature. 
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Two of these studies administered fingolimod, a periph-
eral vasodilator [103], to the mother. One study did not 
state whether temperature was maintained, the other 
reported maintaining ambient temperature between 
21 and 22 ℃. This is an important consideration since 
maternal LPS exposure is commonly associated with 
pyrexia. Intrapartum fever is associated with adverse 
neonatal outcomes and increased risk of cerebral palsy 
and neonatal encephalopathy [104], likely mediated by a 
combination of increased release of oxygen free radicals 
and excitatory neurotransmitters, enhanced glutamate 
toxicity on neurons and glia, blood brain barrier dys-
function and proteolysis [105]. Thus, it is not possible to 
know whether neuroprotective effects of fingolimod were 
mediated by iatrogenic hypothermia in the pregnant 
dams or direct anti-inflammatory effects of fingolimod.

Of the 25 studies that did not report controlling body 
temperature, 10 were conducted in fetal sheep. A major 
advantage of testing potential neuroprotectants in fetal 
sheep is that their body temperature is regulated by the 
pregnant ewe and therefore unless the ewe is febrile, fetal 
core temperature is highly stable [78, 79]. Collectively 
these observations highlight the need for animal stud-
ies to improve core temperature monitoring throughout 
the experimental period to ensure that outcomes of pre-
clinical drug trials are not confounded by fluctuations in 
maternal, fetal or neonatal body temperature.

Limitations of current immunomodulatory therapies: 
corticosteroids and antibiotics
Currently there are no clinically proven treatments to 
prevent infection/inflammation related brain injury. Of 
the immunomodulatory interventions identified in this 
systematic review corticosteroids and antibiotics are 
among the most routinely used interventions in perinatal 
medicine. In our analysis, the corticosteroids dexameth-
asone and betamethasone showed the least promising 
outcomes, with 5/10 (50%) of studies reporting either no 
improvement or deleterious effects. Indeed, in human 
studies corticosteroids have been associated with exacer-
bation of perinatal brain injury, including increased risk 
of both intraventricular haemorrhage, cerebral palsy and 
hyperactivity in childhood [8, 106]. The potential for cor-
ticosteroids to cause deleterious effects in the perinatal 
brain are postulated to relate to the stage of neurodevel-
opment at the time of exposure, the dose and duration 
of exposure relative to the timing of the insult [107], and 
their potential to cause hyperglycaemia, which animal 
and human studies have shown to augment encepha-
lopathy  after HI [44, 108]. Furthermore, meta-analysis 
suggests that prophylactic antibiotics given to women 
at risk of preterm labour with ruptured membranes are 
associated with an increased risk of neonatal death and 

disability [109]. These observations are supported by ani-
mal studies, for example treating pregnant rabbits with 
antibiotics 24  h after intrauterine E. coli administration 
was associated with improved survival but increased 
white matter cell death [110]. The mechanisms for this 
are unclear, however it is possible that bacterial lysis pro-
motes the release of bacterial fragments that augment 
inflammation-induced injury.

Consistent with this hypothesis, we identified two 
studies in this review that showed increased injury with 
stand-alone antibiotic or anti-fungal treatments [57, 61]. 
By contrast, combining antibiotics with the matrix met-
alloproteinase-9 inhibitor trocade was associated with 
improved outcomes, suggesting that in cases of fetal or 
neonatal infection combining antibiotics with an anti-
inflammatory intervention could be a more effective 
approach [57]. Conversely, another study showed that 
combining antibiotics with the phosphodiesterase inhibi-
tor pentoxifylline did not augment vancomycin-induced 
protection against Gram-positive bacterial infection, 
indicating that targeting the right anti-inflammatory 
mechanism/s to augment antimicrobial treatment is 
an important consideration [58]. In this analysis anti-
cytokine therapies, particularly those targeting the pri-
mary effector cytokine IL-1, were most associated with 
improved outcomes in models of both infection related 
inflammation and non-infection related inflammation. 
This raises the possibility that use of anti-cytokine thera-
pies alone or as an adjuvant to antibiotic therapy could 
be an effective approach to prevent or mitigate inflamma-
tion-induced injury in the perinatal brain.

Who are we treating and when are we treating them?
A key translational consideration for testing potential 
neuroprotectants is who and when to treat. A minority 
of therapeutics (8/20; 40%) identified in this review were 
tested across multiple preclinical models of infection 
related, non-infection related or combined inflammation. 
Almost half of the studies (29/59; 46%) started the inter-
vention before or immediately after the insult (within 
60  min). Whilst this approach provides useful insight 
into the early pathophysiology of injury, it unlikely to be 
practical for clinical translation. Clinically, it is difficult to 
identify fetuses who are at risk of injury since the posi-
tive predictive value of fetal heart rate monitoring and 
biophysical profiling for predicting adverse neurode-
velopmental outcomes is low [111, 112]. Similarly, early 
neonatal cranial ultrasound is not reliable at detecting 
ongoing diffuse white matter injury. Instead, its valid-
ity has been shown in the setting of advanced severe 
cystic white matter injury, which is now less common 
than diffuse non-cystic injury [113–115]. Diffusion mag-
netic resonance imaging (MRI) has been shown both in 
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preclinical models and in preterm infants to accurately 
detect acute white matter injury [116–121]. However, it is 
not feasible to systematically screen all high-risk infants 
with diffusion MRI in the first few days after birth. 
Twenty-one out of 59 studies (35%) started the interven-
tion between 1 and 6 h, and 9 studies (15%) started treat-
ment between 18  h and 3  days after the insult. Ideally, 
pharmacological interventions need to be administered 
around the time of bulk cell death/injury, which primarily 
occurs within hours to days after the insult. As well, there 
is evidence that chronic inflammation makes a contribu-
tion to the sub-acute and chronic phases of injury, which 
develop several days to weeks after the initial insult 
[9, 122–124]. This suggests that delayed use of immu-
nomodulatory interventions, alone or in combination 
with interventions that target other pathways of cell dam-
age or repair (e.g. antioxidants, trophic factors, stem cells 
or stem cell secretomes), could be an effective strategy to 
mitigate delayed or tertiary brain injury. Ultimately, this 
raises the need to identify biomarkers of evolving brain 
injury to facilitate early treatment [125–127], along with 
understanding the therapeutic window of opportunity for 
potential interventions in carefully designed animal trials 
to progress promising therapies from the animal lab to 
the bedside.

Assessment of long‑term functional and histological 
outcomes
Another important limitation of the studies identified 
in this review is that most studies (61%) used survival 
times of ≤ 7 days, and less than half (22/59 studies; 37%) 
assessed functional outcomes. Indeed 40% of studies 
used survival times of hours to 2  days after the insult. 
Short survival times provide important information 
about acute histological and functional outcomes, but it 
is well established that injury evolves many days–weeks 
after the insult [9, 123, 128] and that functional and 
histological outcomes are sometimes discordant [96]. 
Twenty-one out of 59 studies (35%) assessed outcomes 
beyond 1 week, most (18/21 studies; 85%) reported neu-
roprotection, however none reported measuring core 
temperature during treatment or beyond the initial 
insult. Thus, assessment of histological and functional 
outcomes in studies beyond the first few hours to days 
after the insult is an important consideration for future 
animal trials designed to evaluate the efficacy of potential 
therapeutics.

Controlling for potential effects of subject sex 
on neurological outcomes
Most studies (40/59) reported using subjects of both 
sexes in the experimental design, however 11 of these 
studies did not report numbers or ratios of males and 

females. The remaining studies either did not report the 
sex of the subjects or tested interventions in males only. 
Studies investigating the impact of infectious and non-
infectious insults have reported sexual dimorphisms in 
the severity and evolution of immune responses [129], 
perinatal brain injury [130, 131] and responses to treat-
ment [132, 133]. Four of the 59 studies only used male 
subjects in their experimental protocol. In addition, only 
eight studies accounted for sex in outcome reporting. Of 
these, two stated that a post hoc analysis was performed 
to assess sex differences between the groups [46]. The 
remaining five studies reported sex differences as primary 
outcomes [37, 62, 65], and showed a bias towards neu-
roprotective effects in males. It remains unclear whether 
similar differences exist in human trials [11, 134, 135]. 
Overall, these data raise the need for greater emphasis on 
evaluating the impact of sex in future animal studies.

Risk of bias
To evaluate study bias, we used the SYRCLE risk of bias 
assessment tool. No studies reported random housing of 
animals. This is a particularly important consideration for 
small animal (rodent) studies. For example, there is com-
pelling evidence that differences in light exposure, which 
may vary with respect to rack location, can affect repro-
duction and behaviour [136, 137]. Additionally, ambient 
temperature can vary with respect to position of the cage 
with ambient temperature in the top cage being up to 5℃ 
higher than the bottom cage [138]. Seventeen out of 40 
papers (42%) did not report blinding of examiners during 
outcome assessments, and 17/40 papers (42%) did not 
state whether incomplete outcome data were addressed. 
Only 9/40 papers (23%) reported baseline characteristics, 
raising the possibility that potential confounders (e.g. 
unequal distributions of sex, body weight, relevant physi-
ological parameters) may not have been addressed in the 
analysis. Collectively these data highlight possible incon-
sistencies in the quality of the data surveyed. We cannot 
definitively conclude that the methodological issues iden-
tified in our analysis affected the outcomes of the studies. 
Nevertheless, if this critical information is not reported 
or accounted for in publications, it is difficult to assess 
the significance of past and future studies in a meaningful 
way.

Conclusion
There is an important unmet need to identify and 
develop effective immunomodulatory interventions 
for the prevention of perinatal brain injury. Despite 
many successful preclinical trials, there are no immu-
nomodulatory treatments for perinatal neuroprotec-
tion in clinical practice. In this systematic review, we 
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examined preclinical publications between 2012 and 
2023 and highlight opportunities to improve the way 
that preclinical animal trials are designed, carried out 
and reported to help overcome the ‘translational block’ 
and close the gap between animal studies and human 
trials for perinatal neuroprotection. Future studies 
should evaluate potential therapies in diverse preclini-
cal models that replicate relevant disease pathophysiol-
ogy, control for iatrogenic changes in temperature that 
may occur as part of the experimental insult or treat-
ment, address pragmatic treatment regimens that are 
conducive to clinical application, control for potential 
effects of subject sex on outcomes, assess long-term 
functional and histological outcomes, and follow rel-
evant guidelines that mitigate study bias.
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