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Abstract 

Background Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS), char-
acterized by neuroinflammation, demyelination, and neurodegeneration. Considering the increasing prevalence 
among young adults worldwide and the disabling phenotype of the disease, a deeper understanding of the complex-
ity of the disease pathogenesis is needed to ultimately improve diagnosis and personalize treatment opportunities. 
Recent findings suggest that bioactive lipid mediators (LM) derived from ω-3/-6 polyunsaturated fatty acids (PUFA), 
also termed eicosanoids, may contribute to MS pathogenesis. For example, disturbances in LM profiles and especially 
those derived from the ω-6 PUFA arachidonic acid (AA) have been reported in people with MS (PwMS), where they 
may contribute to the chronicity of neuroinflammatory processes. Moreover, we have previously shown that cer-
tain AA-derived LMs also associated with neurodegenerative processes in PwMS, suggesting that AA-derived LMs 
are involved in more pathological events than solely neuroinflammation. Yet, to date, a comprehensive overview 
of the contribution of these LMs to MS-associated pathological processes remains elusive.

Main body This review summarizes and critically evaluates the current body of literature on the eicosanoid biosyn-
thetic pathway and its contribution to key pathological hallmarks of MS during different disease stages. Various parts 
of the eicosanoid pathway are highlighted, namely, the prostanoid, leukotriene, and hydroxyeicosatetraenoic acids 
(HETEs) biochemical routes that include specific enzymes of the cyclooxygenases (COXs) and lipoxygenases (LOX) 
families. In addition, cellular sources of LMs and their potential target cells based on receptor expression profiles will 
be discussed in the context of MS. Finally, we propose novel therapeutic approaches based on eicosanoid pathway 
and/or receptor modulation to ultimately target chronic neuroinflammation, demyelination and neurodegeneration 
in MS.

Short conclusion The eicosanoid pathway is intrinsically linked to specific aspects of MS pathogenesis. There-
fore, we propose that novel intervention strategies, with the aim of accurately modulating the eicosanoid pathway 
towards the biosynthesis of beneficial LMs, can potentially contribute to more patient- and MS subtype-specific treat-
ment opportunities to combat MS.
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Graphical Abstract

Introduction
Multiple sclerosis (MS) is a chronic autoimmune disease 
of the central nervous system (CNS) with an increas-
ing global incidence among young adults (between the 
age of 20–40  years). In 2020, 35.9 out of 100,000 peo-
ple were estimated to have MS, which corresponds to 
2.8 million people with MS (PwMS) worldwide [1]. 
Central to the disease is the targeting of the lipid-rich 
myelin sheath by the immune system, giving rise to its 
breakdown, a process known as demyelination. As the 
primary functions of the myelin sheath imply provid-
ing nutrients and protection to neurons as well as acting 
as an electrical insulator for proper neuronal signal-
ling, demyelination often leads to axonal damage and 
neurodegeneration [2]. In MS, this neurodegeneration 
can be translated into clinical symptoms, such as vision 
and cognitive impairments, or physical disabilities (e.g., 

balance or movement), depending on the location and 
size of these insults within the CNS [3].

Traditionally, MS is believed to start with a primary 
neuroinflammatory phase characterized by the infil-
tration of T- and B lymphocytes into the CNS, which, 
subsequently, attracts peripheral monocytes [3]. Both 
infiltrating leukocytes as well as locally activated glial 
cells create a pro-inflammatory environment within 
the CNS, through the secretion of pro-inflammatory 
cytokines (e.g., interferon γ (IFNγ), interleukin-1 (IL-1) 
and tumour necrosis factor (TNF)), neurotoxic factors 
(reactive oxygen species (ROS)) and matrix metallo-
proteinases (MMPs) [4]. In turn, this pro-inflammatory 
environment further triggers glial activation, demyelina-
tion and axonal damage [5] (Fig. 1). Moreover, leukocyte 
infiltration into the CNS is accompanied by a transient 
disruption of the blood–brain barrier (BBB), a selective 
barrier comprised of brain endothelial cells, pericytes, 
and astrocytes that, under healthy conditions, restricts 
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the passage of pathogens, large hydrophilic molecules, 
and peripheral immune cells into the CNS [6]. BBB dis-
ruption and the associated neuroinflammation, besides 
demyelination and neurodegeneration, therefore, form 
critical hallmarks of MS pathogenesis, leading to MS 
lesion formation and disease progression [7, 8]. None-
theless, large individual differences in the progression 
of MS among PwMS exist, which can be attributed to 
numerous genetic and environmental factors [9–13]. 
For instance, individuals carrying the HLA–DRB1*15:01 
allele, individuals who have had a previous infection with 
the Epstein–Barr virus, and smokers display a higher risk 
of developing MS. As a result, MS is an extremely hetero-
geneous and complex disease with an unknown aetiology.

Clinical diagnosis of MS has been roughly divided 
into three different subtypes: (I) relapsing–remitting MS 
(RRMS), (II) primary progressive MS (PPMS), and (III) 
secondary progressive MS (SPMS) [14]. Overall, 85% of 
PwMS display the RRMS subtype that generally depicts 
the first phase, defined by recurrent relapses lasting at 

least a day, followed by partial or full recovery (remis-
sion). Here, neuroinflammation, mainly driven by the 
CNS-infiltrating T- and B-lymphocytes, and demyeli-
nation driven by monocyte-derived macrophages are 
the most common pathological hallmarks. The majority 
of people with RRMS (PwRRMS), however, gradually 
develop a more progressive variant of MS, termed SPMS. 
In this subtype, neurodegeneration becomes more prom-
inent and the innate immune system is suggested to be 
the main driver of progression (e.g., infiltrating periph-
eral monocyte-derived macrophages and CNS-resident 
microglia). Around 15% of PwMS display this progres-
sive course from disease onset and are classified as peo-
ple with PPMS (PwPPMS). Diagnosis of these subtypes 
is based on a combination of clinical, biochemical and 
radiological features, including biomarkers, such as neu-
rofilament light (Nfl), symptom evaluation, and location 
of demyelinating lesions, as measured by magnetic reso-
nance imaging (MRI). Nonetheless, relapses may hide 
disease progression during early MS stages and specific 

Fig. 1 Simplified overview of the traditional perspective on multiple sclerosis pathogenesis. Pathogenesis is mediated by an accumulation 
and activation of T/B lymphocytes and monocyte-derived macrophages within the CNS (1–2a) and activated microglia and astrocytes (2b, 3b). This 
leads to the release of a plethora of inflammatory mediators (3a, 3c), targeting myelin sheats and oligodendrocytes surrounding axons (4–5)
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disease outcomes, such as progression independent of 
relapse activity (PIRA), might be more clinically useful 
instead [15]. Considering the great heterogeneity in dis-
ease onset, course, progression and dependence on lesion 
location, no definitive test for subtype-specific MS diag-
nosis is currently available.

A better understanding of MS pathogenesis is, there-
fore, crucial, and current research focuses on biomarker 
discovery that may enable a more accurate disease 
course prediction as well as a better distinction between 
the different MS subtypes to optimize and personalize 
treatments. Part of this research is focussed on the neu-
roinflammatory and neurodegenerative components 
of MS and includes biomarkers, such as Nfl, glial fibril-
lary acidic protein (GFAP), and IL-1β [16–18]. Recently, 
bioactive lipid mediators (LMs) derived from ω-3/-6 
poly-unsaturated fatty acids (PUFA) have gained inter-
est due to their potential role in MS progression, as they 
are effective regulators of inflammation, both during 
onset as well as during inflammation–resolution [19–21]. 
In addition, derivatives of the ω-6 PUFA arachidonic 
acid (AA) or eicosanoids [e.g., prostaglandin  E2  (PGE2) 
and 15-hydroxyeicosatetraenoic acid (15-HETE)], are 
found to be elevated in PwMS and correlate with clini-
cal parameters, such as the expanded disability status 
scale (EDSS), Nfl and MRI parameters [19, 20, 22, 23]. 
These observations suggest that the eicosanoid pathway 
may fulfil a broader role in MS than solely driving neu-
roinflammation. This review, therefore, summarizes and 
discusses the current knowledge on the eicosanoid bio-
synthetic pathway and its contribution to key pathologi-
cal hallmarks of MS during different disease stages with a 
specific focus on AA derivatives in MS pathogenesis.

The group IVA cytosolic phospholipase A2 
(cPLA2‑α)‑dependent lipid mediator pathway 
with arachidonic acid (AA) as its substrate
AA is an ω-6 PUFA abundantly present in the CNS, liver 
and muscles, where it is stored in glycerophospholipids 
within cellular membranes. Upon cellular stimulation, 
calcium-dependent cPLA2-α is phosphorylated and 
activated by members of the mitogen-activated protein 
(MAP) kinase pathway, which promotes its transloca-
tion to the Golgi, endoplasmic reticulum (ER) and/or 
nuclear envelope [24–28]. Here, it catalyses the hydroly-
sis of AA on the sn-2 position of glycerophospholipids, 
which triggers the release of AA from the cellular mem-
branes to make it accessible for cytochrome P450 (CYP), 
cyclooxygenase (COX) and lipoxygenase (LOX) enzymes 
that can reside at these membranes (Fig.  2) [28, 29]. 
These enzymes can convert AA further into a plethora of 
downstream LMs, all having an unique set of biological 

actions, often defined by interactions with LM-specific 
receptors (Tables 1, 2).

Cyclooxygenase (COX)‑derived prostanoids in MS
The most extensively investigated enzymes of the eicosa-
noid pathway are COX-1 and COX-2, responsible for the 
biosynthesis of prostanoids (e.g., thromboxanes, pros-
taglandins and prostacyclin) through the formation of 
meta-stable prostaglandin  G2  (PGG2). Where COX-1 is 
constitutively expressed and thought to have cytopro-
tective and homeostatic functions, COX-2 expression 
is tissue-specific, with relatively high expression lev-
els in tissue, such as the kidney, heart and brain, which 
can be increased in response to growth factors and 
pro-inflammatory stimuli (e.g., TNF) [30]. Importantly, 
several studies have shown that COX-2 expression is sig-
nificantly elevated in PwMS and experimental murine 
models of MS (i.e., Theiler’s murine encephalomyeli-
tis virus-induced demyelinating disease), specifically in 
microglia and macrophages [31–34]. These findings have 
made COX-2 a prominent target in the context of MS 
pathology, where it is currently considered to mediate 
both beneficial as well as detrimental processes depend-
ing on the biosynthesis of its downstream LMs.

COX-2 contains two catalytic properties through which 
it oxidizes the liberated AA, generating the short-living 
intermediate  PGG2 (Fig. 3).  PGG2 is rapidly converted by 
peroxidase activity into prostaglandin  H2  (PGH2), which 
forms the central precursor for the synthesis of all other 
downstream prostanoids, including prostaglandin  D2 and 
 E2  (PGD2 and  PGE2, respectively), prostacyclin  (PGI2) 
and thromboxane A2  (TxA2). Interestingly, inhibition 
of COX-2 in the experimental autoimmune encephalitis 
(EAE) murine model for MS was found to reduce clini-
cal signs by preventing the proliferation of autoreactive 
T lymphocytes and the production of pro-inflammatory 
cytokines [35]. However, this approach should be treated 
with caution, as long-term COX-2 inhibition may trans-
late into severe vascular side effects, such as non-fatal 
myocardial infarction, non-fatal stroke, or vascular death 
[36]. In addition, as the synthesis of anti-inflammatory 
prostanoids, such as 15-deoxy-(12,14)-PGJ2 (15d-PGJ2),  
might be affected upon COX-2 inhibition, selective 
blocking of enzymatic targets further downstream in the 
prostanoid pathway might be more valuable to combat 
the neuroinflammatory component of MS to avoid severe 
side-effects.

Potential role of PGE2–EP2/EP4 signalling and their dual role 
during neuroinflammation
Examples of such downstream enzymatic targets are 
microsomal prostaglandin E synthase-1 (mPGES-
1) and membrane-bound prostaglandin E synthase-2 
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(mPGES-2), responsible for the biosynthesis of  PGE2 
from  PGH2 (Fig. 3; Table 1). In MS,  PGE2 has been linked 
to the chronicity of neuroinflammation, where several 
studies have found increased  PGE2 levels in both serum 
and CSF of both PwRRMS and people with progres-
sive MS (PwPMS) [20, 23, 37]. Moreover, mPGES-1 was 
found to be expressed by macrophages in demyelinating 
lesions, yet a direct link between the increased mPGES-1 
expression and  PGE2 levels has only been shown in EAE 
mice [38, 39]. Here, the role of mPGES-1-mediated 
 PGE2 in disease development seems to be substantial, as 
mPGES-1 knock-out (KO) mice showed decreased neu-
roinflammation and demyelination during EAE, that cor-
responded with lower  PGE2 levels in their spinal cords 
[38]. Taken together, these findings suggest that  PGE2 
synthesis is a pivotal contributor to chronic neuroin-
flammation in MS and that therapeutically targeting of 
mPGES-1, instead of the more upstream COX-2, may 
help to attenuate this pathogenic event [40].

Despite these pro-inflammatory characteristics,  PGE2 
should be considered as a versatile LM, depending both 

on the timing, its concentration and the receptor it binds 
to. Four receptors  [PGE2 receptor 1–4 (EP1–EP4)] have 
been identified to date, through which  PGE2 can medi-
ate a variety of cellular processes [41] (Table 1). In gen-
eral, EP1/EP3 receptors promote vasoconstriction and 
hypertension, whereas EP2/EP4 receptors, in contrast, 
promote vasodilation and hypotension [42–45]. EP1 and 
EP3 have been studied in MS or experimental animal 
models, but are considered to be of little functional rel-
evance and have not been examined in great detail in this 
context. Nevertheless, EP1 potentially contributes to the 
disruption of the BBB, as blocking or genetically delet-
ing EP1 in an ischemic murine model led to reduced BBB 
permeability, presumably through the downregulation of 
MMP-9, which in MS is found to be elevated in serum of 
PwRRMS [46–48]. MMPs are enzymes that are involved 
in BBB breakdown, potentially due to the downregula-
tion of endothelial tight junctions [49]. This suggests that 
an increase in MMP-9 serum levels facilitates immune 
cell extravasation into the CNS, potentially in an EP1-
dependent manner. Indeed, EP1 may play a larger role in 

Fig. 2 Schematic overview of the molecular signalling that leads to AA hydrolysis from glycerophospholipids in cellular membranes 
of the Golgi system and the nuclear envelope. Environmental stimuli (e.g., pro-inflammatory cytokines) that either activate the MAPK-signalling 
pathway (1) or raise intracellular  Ca2+ levels (2) result in the phosphorylation of group IVA cytosolic phospholipase A2 (cPLA2-α) (3). This results 
in the translocation of cPLA2-α towards the cellular membranes of the Golgi system and the nuclear envelope, where it interacts with esterified 
AA incorporated in glycerophospholipids, which will make AA accessible for further metabolism (4). Enzymes with oxidative properties, such 
as cyclooxygenases (COXs) and lipoxygenases (LOXs), that reside in these cellular membranes can interact with this hydrolyzed AA and convert it 
into a variety of bioactive LMs (5). *for simplicity, only MAPK without further upstream signalling is shown
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MS development than initially considered, as EP1 gene 
expression correlates with clinical scores of EAE mice 
[39]. Notably,  PGE2–EP3 signalling does not seem to 
contribute to MS pathology, as MS-related murine mod-
els have shown that EP3 is not present in MS lesions, no 
correlations are found between EP3 mRNA expression 
and EAE severity and EAE clinical signs are unaffected in 
EP3 KO EAE mice in vivo [39, 50].

In contrast, EP2 and EP4 have been associated with MS 
pathology as both receptors are involved in the regula-
tion of the adaptive and innate immune system (Fig.  4; 
Table 1) [41]. Both receptors are, for example, expressed 
on T-helper lymphocytes as well as on microglia and 
macrophages, whereas EP2 is also expressed on oli-
godendrocytes (OLs) [51–53]. Of these immune cells, 
T-helper lymphocyte type 1 (Th1) and 17 (Th17) are 
suggested to be the main drivers of MS pathogenesis, 

as they accumulate in the CNS and actively reinforce a 
pro-inflammatory environment [54, 55]. Especially EP2 
may promote neuroinflammation as its expression is 
significantly induced on Th17 lymphocytes of untreated 
PwRRMS as compared to healthy subjects [51]. In turn, 
treatment of patient-derived Th17 lymphocytes with 
the EP2-specific agonist butaprost resulted in increased 
transcription of IFNγ and granulocyte–macrophage 
colony-stimulating factor (GM-CSF), thus amplifying 
the inflammatory response, while EP2 overexpression 
on Th17 lymphocytes of healthy subjects led to similar 
results [51].

Signalling of  PGE2 through EP4, on the other hand, is 
thought to associate with the accumulation of T-helper 
lymphocytes through increased proliferation in the CNS 
of PwMS [56]. This is substantiated by decreased num-
bers of infiltrated  CD4+ T lymphocytes, monocytes and 

Table 1 Overview of the different prostanoids, their receptors and their described function in MS

Lipid mediator (LM) Enzymes required for biosynthesis Receptors Described role References

Thromboxanes Thromboxane  A2
(TxA2)

TxAS TP • Promotes platelet aggregation [84]

Prostaglandins Prostaglandin  D2
(PGD2)

Combination of COX-1/2 + 
H-PGDS or L-PGDS

DP1 • Inhibits the migration and activation 
of T lymphocytes and basophils

[66, 67]

DP2 • Promotes T lymphocyte migration [68]

15-deoxy-δ (12,14)-PGJ2
(15d-PGJ2)

Combination of COX-1/2 + 
H-PGDS or L-PGDS + 
Non-enzymatically conversion 
of  PGD2

PPAR-y • Suppresses astrocytic and microglial 
production of pro-inflammatory 
cytokines TNF, Il-1β
• Regulate macrophage migration, 
proliferation and activation in vitro

[71, 75, 76]

Prostaglandin  E2
(PGE2)

Combination of COX-1/2 + 
mPGES-1 or 2

EP1 • Contribute to the disruption 
of the BBB via matrix metalloprotein-
ase 9 (MMP-9)

[46–48]

EP2 • Increases in IFNγ and granulocyte–
macrophage colony-stimulating 
factor (GM-CSF)
• Induce a pro-inflammatory pheno-
type in both macrophages and micro-
glia
• Increase in COX-2 expression 
and the induction of apoptosis in rat 
microglia

[53, 54, 60, 61]

EP3 – –

EP4 • Accumulation of T-helper lympho-
cytes in the CNS
• Differentiation of Th1 lymphocytes
• Expansion of Th17 lymphocytes 
contribute to BBB disruption
• Downregulate activation of micro-
glia/macrophage cells

[56–59]

Prostaglandin F2-alpha
(PGF2α)

Combination of COX-1/2 + 
ACR1C1 or ACR1C3

FPα/β • Indirectly promotes demyelination 
through glial activation

[70]

Prostacyclin
(PGI2)

Combination of COX-1/2 + 
PTGIS

IP • Induce Th17 lymphocyte signalling 
and differentiation in vitro
• Prevent pericyte loss and demyelina-
tion after LPC treatment
• Counteracting the vasoconstrictor 
and platelet aggregation-promoting 
role of thromboxane  A2

[80, 81, 83]
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macrophages in the spinal cord of EAE mice with an EP4 
deficiency, where it normally may promote Th1 lympho-
cyte differentiation and Th17 lymphocyte expansion in 
an IL-23 and IL-1ß-dependent manner [57, 58]. Further-
more, EP4 signalling may also contribute to BBB disrup-
tion, as T lymphocytes of EP4-deficient EAE mice show 
decreased levels of MMP-9 [59]. Taken together, both 
EP2 and EP4 likely contribute to T lymphocyte-associ-
ated detrimental events during early MS pathogenesis, 
thereby representing promising therapeutic targets for 
intervention.

During later stages of MS, the innate immune sys-
tem and especially CNS-infiltrating monocyte-derived 

macrophages and CNS-resident microglia may become 
the main drivers of pathology by creating a chronically 
inflamed environment in the vicinity of MS lesions. 
 PGE2 is also proposed to be involved in this process 
through EP2/EP4 receptor interactions as it can induce 
a pro-inflammatory phenotype in both macrophages 
and microglia through EP2 and, additionally, may pro-
mote OLs apoptosis via this signalling pathway [52, 
60, 61]. Furthermore, conditional knock-out of EP2 in 
myeloid cells of lipopolysaccharide (LPS)-challenged 
mice resulted in reduced hippocampal and cortical IL-6, 
TNF, IL-1β and inducible nitric oxide synthase (iNOS, 
a macrophage activation marker) mRNA levels, further 

Table 2 Overview of ALOX-associated LM and their functions in MS pathogenesis

Lipid mediator (LM) Enzymes required for 
biosynthesis

Receptors Described role References

Leukotrienes Leukotriene  B4  (LTB4) ALOX5/FLAP complex + 
LTA4 hydrolase

BLT1 • Chemo-attractant for Th17 
lymphocytes in vitro

[108, 110]

BLT2 • Unknown –

PPAR-α • Induces macrophage apoptosis 
in vitro

[115, 116]

CysLTR1 • Chemo-attractant for Th17 
lymphocytes

[111]

Leukotriene  D4  (LTD4) ALOX5/FLAP complex + 
LTC4 hydrolase + 
Y-glutamyl transferase

CysLTR1/2 • Chemo-attractant for Th17 
lymphocytes

[111, 121, 122]

Leukotriene  E4  (LTE4) ALOX5/FLAP complex + 
LTC4 hydrolase + 
Y-glutamyl transferase + 
LTD4 dipeptidase 1/2

CysLTR1/2 – –

HETEs 5-HETE ALOX5/FLAP complex OXER1 • Promote the migration 
of monocytes

[124–126]

5-KETE ALOX5/FLAP complex + 
5-HEDH

OXER1 • Promote the migration 
of monocytes

[124–126]

11-HETE Non-enzymatic/
Cytochrome P450/
COX-1/2/
Non-enzymatic

– • Associates with lipid peroxida-
tion

[125–127]

12-HETE ALOX-12 GPR31 • Promote chemotaxis of leuko-
cytes
• Induce oxidative stress 
via an ERK1/2-ALOX-12-ROS 
pathway
• May promote apoptosis signal-
ing of mature OLs

120

BLT-2 • Promote chemotaxis of leuko-
cytes
• Induce oxidative stress 
via an ERK1/2-ALOX-12-ROS 
pathway

[134–137]

15-HETE ALOX15-1/
ALOX15-B

BLT-2 • Induce foam cell formation [112, 146, 148–150, 152–154]

PPAR-y • Inhibits LTB4-induced chemot-
axis of PMN leukocytes in vitro
• Promote a pro-resolving pheno-
type in microglia/macrophages

[146–150, 152–155]
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demonstrating the pro-inflammatory properties of EP2 
signalling [61].  PGE2–EP2 signalling led to increased 
COX-2 expression and induction of apoptosis in primary 
rat microglia, which could be prevented with an EP2 
antagonist [62]. Intriguingly, EP2-deficient EAE mice did 
not show an attenuation of EAE development, suggesting 
that the neuroinflammatory role of EP2 signalling in MS 
is not essential for disease onset or severity [50].

While both EP2 and EP4 signalling leads to an eleva-
tion of intracellular cyclic adenosine monophosphate 
(cAMP) levels, each receptor-dependent signalling cas-
cade showed differential cAMP production profiles, 
which were also described to be dose-dependent [63]. In 
addition, the research on the effects of EP4 signalling in 
macrophages and microglia highlights a more nuanced 
role compared to the inflammatory role proposed for EP2 
(Fig. 4; Table 1). The usage of a selective EP4 agonist on 
murine microglial cells in vitro attenuated an LPS-medi-
ated pro-inflammatory response and induced transcrip-
tion of the anti-inflammatory cytokine IL-10 [53]. On 
the other hand, conditional deletion of EP4 in myeloid 

cells of mice challenged with LPS led to increased neu-
ral COX-2, TNF, IL-6, and IL-1ß expression and elevated 
F2-isoprostanes levels, a lipid peroxidation marker [64]. 
This supports the idea that EP4 may have pro-resolving 
effects in macrophages and microglia, that could occur 
either by preventing their polarization towards a pro-
inflammatory phenotype or skewing it towards a more 
pro-resolving phenotype, necessary for tissue recovery. A 
time-dependent factor might be involved, as EP4 expres-
sion was found to decrease over time in mouse microglia 
treated with LPS for 24 h, whereas an inverse effect was 
seen for EP2 [53]. To this end, cell-type-specific effects 
of  PGE2 may take place during the different stages of MS 
pathology, which may explain why solely silencing EP2 
may not yield significant beneficial effects during EAE 
onset, as EP4 signalling on Th17 lymphocytes can still 
contribute to the pro-inflammatory CNS environment at 
this stage. Furthermore, antagonizing the EP4 receptor at 
different timepoints during EAE development resulted 
in varying degrees of disease severity [50], further sub-
stantiating the complexity and temporal impact of 
 PGE2 signalling during the different MS disease phases. 

Fig. 3 Schematic overview of the variety of COX/LOX associated LMs biosynthesized from the hydrolyzed AA



Page 9 of 20Broos et al. Journal of Neuroinflammation           (2024) 21:21  

Additional insights may be obtained by investigating the 
effects of an EP4 KO in microglia and macrophages dur-
ing disease onset as this may hamper EAE development.

The (anti‑)inflammatory or demyelinating potential of PGD2 
and its metabolite 15d‑PGJ2
Besides  PGE2, other inflammation-mediating prostanoids 
are identified in PwMS, such as  PGD2 and its non-enzy-
matically formed metabolite 15d-PGJ2 (Fig.  3).  PGD2 
itself is biosynthesized from  PGH2 by two distinct syn-
thases; cytosolic hematopoietic PGD synthase (H-PGDS) 
and the lipocalin-type PGD synthase (L-PGDS) located 
on the rough ER and nuclear membrane [65]. In plasma 
of both PwRRMS and people with SPMS (PwSPMS), 
 PGD2 levels are found to be elevated [20], where it is 
proposed to have both anti- and pro-inflammatory 
properties depending on the G protein-coupled recep-
tor (GPCR) it interacts with: the D prostanoid receptor 
(DP1) or the chemoattractant receptor–homologous 
molecule on Th2 cells (CRTH2, also known as DP2) 
(Table 1).  PGD2–DP1 signalling is considered to be anti-
inflammatory as it inhibits T lymphocyte and basophil 
migration/activation, whereas  PGD2–DP2 signalling can 
promote T lymphocyte migration and thus can be con-
sidered pro-inflammatory [66–68]. Intriguingly,  PGD2 
may even play an indirect role in demyelination through 

the G protein-coupled F prostanoid receptor FP, which 
will be addressed more extensively in the  PGF2α section 
[69, 70]. Yet, evidence for a direct contribution of  PGD2 
to MS pathogenesis is limited.

The non-enzymatically formed  PGD2 metabolite 
15d-PGJ2, however, is known to suppress astrocytic 
and microglial-mediated production of pro-inflam-
matory cytokines, such as TNF and IL-1β [71]. It can 
exert these effects by binding to the nuclear recep-
tor peroxisome proliferator-activated receptor γ 
(PPAR-γ), which inhibits the inflammation-promoting 
transcription factors nuclear factor kappa B (NF-κB) 
and signal transducer and activator of transcription 1 
(STAT-1) [72–74]. Next to suppressing pro-inflamma-
tory cytokine production, 15d-PGJ2 may regulate mac-
rophage migration, proliferation, and activation in vitro 
and repress overall EAE development by decreasing 
toll-like receptor 4 and 9 expression on T lympho-
cytes in vivo, thereby limiting antigen presentation [75, 
76]. However, 15d-PGJ2 treatment of undifferentiated 
mouse oligodendrocyte precursor cells was found to 
induce apoptosis, suggesting that it may also contain 
neurotoxic properties [77]. Overall, additional studies 
are necessary to determine whether  PGD2 plays a role 
in MS-associated neuroinflammation and/or demy-
elination. Nevertheless, its derivative 15d-PGJ2 shows 

Fig. 4 PGE2–EP2 and  PGE2–EP4 signalling in Th17 lymphocytes (left) and microglia/macrophages (right).  PGE2 can promote the accumulation 
of Th17 lymphocytes in the CNS by signalling through its EP2 receptor and promotes the secretion of pro-inflammatory factors such 
as IFN-y and GM-CSF by signalling through its EP4 receptor. However, in monocyte-derived macrophages and microglia EP2 signalling leads 
to their polarization towards a pro-inflammatory phenotype, while, in contrast, EP4 signalling in these cells results in the suppression of this 
pro-inflammatory phenotype
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several PPAR-γ-mediated anti-inflammatory proper-
ties that can be exploited to combat chronic neuroin-
flammation, although caution is required regarding its 
potential neurotoxic effects.

The PGF2α receptor, FP, mediating demyelination
Another prostanoid is  PGF2α., that can be biosynthesized 
either from  PGH2 or  PGD2 by the aldo–keto reductase 
family 1 member C3 (AKR1C3) or from  PGE2 by the 
9-ketoreductase (AKR1C1 and AKR1C2), and exerts its 
effect through the receptors  FPA or  FPB (Fig. 3; Table 1) 
[78]. In PwSPMS, peripheral  PGF2α levels have been 
found to be increased, yet, little is known about the spe-
cific function of  PGF2α in MS [20]. One study showed 
that a FP antagonist was able to attenuate demyelination 
of the corpus callosum in the demyelination-inducing 
cuprizone murine model for MS [70]. Here, a decrease in 
TNF expression in the corpus callosum was accompanied 
by a reduction of glial activation and an increase in motor 
function, suggesting that  PGF2α–FP signalling enhances 
glial-mediated demyelination. However, such a direct 
effect by  PGF2α still needs to be addressed and, as briefly 
mentioned before, this effect of FP signalling could also 
be mediated by  PGD2 and  PGE2, as these prostanoids are 
also elevated in PwMS and can bind to the FP receptor, 
albeit with a lower affinity than  PGF2α (Ki = 3.2  nM for 
 PGF2α, 6.7 nM for  PGD2 and 116 nM for  PGE2 in recom-
binant HEK293 cells) [69, 79].

Prostacyclin (PGI2) synthesis and its potential role in 
neuroinflammation and demyelination
While it has not been studied extensively in the context 
of MS, the highly unstable prostacyclin  (PGI2) has some 
beneficial, potentially disease-altering properties worth 
exploring.  PGI2 is biosynthesized from  PGH2 by the con-
stitutively expressed enzyme prostaglandin  I2 synthase 
(PTGIS, Fig. 3), present in the cytosol of neurons, micro-
glia, and OLs [80]. Once formed,  PGI2 may exert con-
trasting, cell-type-specific effects on neuroinflammation 
or demyelination through the prostacyclin (IP) receptor. 
For example, stimulating  CD4+ T lymphocytes with ilo-
prost, a stable  PGI2-analog, was found to induce an IP-
dependent Th17 lymphocyte differentiation and IL-17 
production in  vitro [81]. In contrast, iloprost treatment 
was found to prevent pericyte loss induced by lysophos-
phatidylcholine (LPC) treatment in an in vitro BBB model 
and diminished LPC-induced demyelination in vivo [82]. 
In addition, IP-deficiency in EAE mice was found to 
reduce the infiltration of mononuclear cells into the spi-
nal cord and delayed EAE development, while it did not 
affect disease severity, suggesting that  PGI2–IP signal-
ling might be involved in the timing of disease onset but 
not in overall disease development [83] (Table 1). Finally, 

 PGI2 is mostly known to have antithrombotic proper-
ties, by counteracting the vasoconstrictor and platelet 
aggregation-promoting role of thromboxane  A2  (TxA2). 
This interplay between  PGI2 and  TxA2 is essential for a 
proper cardiovascular homeostasis and should, therefore, 
be taken into account when considering  PGI2-associated 
therapies [84].

Thromboxane A2, platelet activation and aggregation
As mentioned above,  TxA2 is a vasoconstrictor that 
can promote platelet aggregation [84]. It is biosyn-
thesized from  PGH2 by the thromboxane-A synthase 
(TxAS), in a wide variety of cells but especially in plate-
lets, and interacts mainly with the thromboxane pros-
tanoid (TP) receptor (Fig.  3; Table  1). Similar to other 
prostanoids,  TxA2 is chemically unstable and degrades 
quickly through hydrolysis into its inactive, but stable 
metabolite thromboxane  B2  (TxB2), which is increased 
in PwMS [20]. Although no conclusive role for  TxA2 has 
been defined in MS yet, high platelet activation is seen in 
PwMS and a direct interaction between platelet aggrega-
tion and immunity has been observed consistently [85–
88]. In EAE mice, a time-dependent depletion of platelets 
during disease onset was found to prevent T lymphocyte 
accumulation in the spinal cord and led to diminished 
disease and lesion development [87]. More specifically, 
platelet-activating factors reinforced Th1/Th17 lympho-
cyte differentiation in early MS and EAE pathogenesis, 
whereas at later stages of MS, the formation of plate-
let aggregates and T lymphocytes were associated with 
diminished T lymphocyte activation [88]. In addition, a 
low-dose administration of acetylsalicylic acid (ASA, i.e., 
aspirin), to inhibit platelet activation and aggregation, 
decreased  TxA2 and alleviated clinical symptoms of EAE 
[89]. Still, a direct role of  TxA2 in these processes in MS 
remains uncertain, as its instability limits the timeframe 
for proper detection and the ability to investigate whether 
 TxA2 can exert the aforementioned effects in MS patho-
genesis before being degraded into  TxB2.Furthermore, 
ASA irreversibly acetylates COX enzymes, leading to 
the complete inactivation of the downstream prostanoid 
biosynthesis and not solely to that of  TxA2. Instead, the 
TP receptor might represent a more interesting target, 
as isoprostanes, which are free radical-catalysed per-
oxidation products of AA (e.g., 8-iso-PGF2α), are known 
to promote platelet activation via the TP receptor and 
have been found to be elevated in the CSF of PwMS as 
compared to healthy controls [90]. Moreover, TP posi-
tively regulates COX-2 expression in endothelial cells 
and results in increased levels of  PGH2, thus potentially 
fuelling the biosynthesis of other prostanoids [91]. Taken 
together, platelet activation and aggregation may contrib-
ute to early MS by reinforcing Th1/Th17 differentiation, 
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although other factors than  TxA2 might be responsible 
for this effect via the TP receptor.

To summarize, AA-derived prostanoids encompass 
several LMs with potent inflammatory or demyelinat-
ing properties, which seem to be MS-stage-specific and 
depend not only on the associated receptor but also on 
the corresponding cell type. This makes the role of this 
LM family in MS highly complex, but also provides inter-
esting therapeutic targets for personalized and MS-stage-
specific treatment. For example, specific targeting of 
downstream synthases or receptors, such as mPGES-1 or 
EP2, might provide more optimal disease-stage-specific 
therapeutic treatments with high efficacy. However, as 
most LMs are extremely unstable and versatile in a cell-, 
receptor- and perhaps even time- and concentration-
dependent manner, extensive research is warranted to 
further understand their exact role in the context of MS 
pathology.

Lipoxygenase (LOX)‑associated AA‑derivatives in MS
Besides the COX-mediated biosynthesis of eicosa-
noids, an increasing amount of research is focusing on 
other enzymes with oxygenation properties, such as the 
lipoxygenases (LOXs), which are thought to be criti-
cally involved in microglia-mediated neuroinflamma-
tion [92]. A potential reason for this association may 
involve 5-LOX, which, together with 5-LOX activating 
protein (FLAP), forms the foundation for the biosynthe-
sis of pro-inflammatory leukotrienes (LTs) (Fig.  3) and 
is consistently overexpressed in gene expression profiles 
of peripheral blood mononuclear cells (PBMC)s in PwR-
RMS [93, 94]. 5-LOX resides in the cytoplasm or nucleo-
plasm and translocates to the nuclear envelope following 
stimuli such as stress signals that either increase intracel-
lular calcium levels or promote 5-LOX phosphorylation 
[95]. At the nuclear envelope, 5-LOX forms an enzymatic 
complex with FLAP that facilitates the transfer of free 
AA to 5-LOX. 5-LOX then catalyses the oxygenation of 
AA, forming 5(S)-HpETE, which, in turn, is rapidly con-
verted into either 5-HETE or into the unstable interme-
diate leukotriene  A4  (LTA4) by an additional enzymatic 
cycle. Of these products  LTA4 is the most interesting in 
the context of MS as it forms the central precursor for 
the biosynthesis of other LTs.

Controversy exists regarding the role of 5-LOX in the 
context of MS. A protective role, for instance, was attrib-
uted to 5-LOX during MS pathogenesis based on the 
observation that EAE progression was exacerbated in 
5-LOX-deficient EAE mice [96]. However, in cuprizone 
mice 5-LOX inhibition with MK-886 attenuated neuro-
inflammation, motor dysfunction and axonal damage, 
while it did not reduce the cuprizone-associated demy-
elination [97]. In addition, administration of flavocoxid, a 

dual COX-2/5-LOX inhibitor, attenuated EAE pathogen-
esis presumably by promoting the transition of inflamed 
microglia towards an anti-inflammatory phenotype [98]. 
Moreover, in both PwMS and EAE mice, 5-LOX gene 
expression was upregulated in MS lesions, which was 
found to be mainly expressed by macrophages in these 
areas as shown with immunohistochemical analysis [99]. 
Studies with human monocyte-derived macrophages 
showed that inhibition of FLAP reduced the biosynthesis 
of pro-inflammatory LTs, such as leukotriene  B4  (LTB4) 
[100, 101]. In addition, FLAP inhibition has been applied 
in in  vivo models for several inflammatory diseases, 
including asthma and atherosclerosis, with some inhibi-
tors successfully being applied in clinical trials, showing 
the potential of this targeting strategy in the context of 
MS [102, 103].

A possible explanation for these contrasting effects on 
both inflammation and EAE disease progression may be 
attributed to the wide range of metabolites 5-LOX can 
synthesize, similar to the COX enzymes, as 5-LOX is also 
involved in the biosynthesis of the pro-resolving lipox-
ins and resolvins [21]. Nonetheless, in human leukocytes 
these pro-resolving LMs are present in low quantities 
and often cannot be detected, in contrast to the abundant 
release of LTs under inflammatory conditions [104]. Of 
interest, in contrast to blocking 5-LOX, targeting FLAP 
in macrophages can efficiently suppress LT formation 
without reducing resolvin levels [100, 101]. Therapeutic 
targeting of downstream LT-associated synthases might 
be a more direct approach to steer the direction of LM 
biosynthesis towards more beneficial LMs during specific 
MS disease stages and targeting of the  LTB4 receptor 1 
(BLT1) may provide such a tool.

LTB4: a potent chemoattractant for migrating leukocytes 
towards the CNS
LTB4 is the most common leukotriene implicated in MS 
pathogenesis and is biosynthesized from  LTA4 by the 
 LTA4 hydrolase  (LTA4H) (Fig. 3). It exerts its effect mainly 
via two GPCRs called BLT1 and BLT2, and through 
PPAR-α, through which it promotes chemotaxis of lym-
phocytes, T lymphocyte activation, and ROS production 
(Table 2) [105–108]. In MS, these chemoattractant prop-
erties can mediate the migration of Th17 lymphocytes 
into the CNS, as BLT1 is not only highly expressed on 
Th17 lymphocytes, but these cells also migrate along an 
 LTB4-dependent gradient in vitro (Fig. 5) [108]. In addi-
tion,  LTB4 levels are found to be almost twice as high in 
the CSF of people with clinically active MS when com-
pared to healthy controls [109]. This suggests that the 
CNS infiltration of lymphocytes during MS depends to a 
certain extent on signalling through the  LTB4–BLT1 axis. 
In line with this, BLT1 deficient mice show reduced CNS 
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infiltration of T lymphocytes, neutrophils and peripheral 
monocyte-derived macrophages during EAE [110]. This 
coincided with a delay in EAE onset in combination with 
reduced disease severity and diminished production of 
pro-inflammatory cytokines, such as IFNγ, TNF, IL-6 and 
IL-17, stressing the importance of the  LTB4–BLT1 axis in 
EAE pathogenesis. Intriguingly, migration of Th17 lym-
phocytes towards a high  LTB4 concentration also dimin-
ished after treatment of EAE mice with montelukast, a 
type 1 cysteinyl leukotriene receptor (CysLTR1)-specific 
antagonist, indicating that the  LTB4-associated chemot-
axis of Th17 lymphocytes may not solely depend on the 
BLT1 receptor [111].

LTB4–BLT2 signaling, on the other hand, might be less 
involved in mediating neuroinflammation, as  LTB4 is 
known to have a much lower affinity for BLT2 than for 
BLT1 [112]. In addition, other AA derivatives, such as 
12-HHTrE, a byproduct of  TxA2, and 15-HETE, which 
will be addressed later in detail, display a greater affin-
ity for BLT2 and compete with  LTB4 for BLT2 binding, 
but not BLT1 [112, 113]. As a result, BLT2 may mediate 
distinct biological as well as pathophysiological processes 
compared to BLT1, such as epidermal wound healing 
[114]. Finally,  LTB4 signaling via PPAR-α could exert 
anti-inflammatory effects, as signaling via this route was 
found to play a role in macrophage apoptosis in  vitro 
[115, 116]. However, no clear link with MS pathology can 
be drawn for  LTB4–PPAR-α signaling considering that 
EAE progression and severity in PPAR-α KO EAE mice 
was similar to that of WT EAE mice, and PPAR-α protein 
levels, unlike PPAR-γ, are unaltered in the CSF of PwMS 

[117, 118]. Together,  LTB4 potentially influences MS 
pathogenesis via the BLT1 receptor, through which it can 
promote the chemotaxis of Th17 lymphocytes into the 
CNS, where they fuel a pro-inflammatory environment. 
Specific BLT1 blocking or preventing  LTB4 biosynthesis 
may, therefore, be considered as potent therapeutic strat-
egies, especially during the early stages of MS pathol-
ogy, which are dominated by profound lymphocyte CNS 
infiltration. Finally, while most studies focus on the role 
of  LTB4 on lymphocyte CNS infiltration which indi-
rectly leads to demyelination and neurodegeneration, a 
local, more direct contribution of  LTB4 to these patho-
logical events is also plausible given its pro-inflammatory 
nature, as suggested by the autocrine effects of  LTB4 on 
microglial activation through the BLT1 receptor [119].

Linking cysteinyl‑leukotrienes to lymphocyte infiltration
Besides  LTB4,  LTA4 can also be converted into cysteinyl 
leukotrienes (CysLTs), which comprises  LTC4,  LTD4 and 
 LTE4 (Fig. 3) [120]. This LT cascade starts with the con-
version of  LTA4 into  LTC4 a process that is catalysed by 
the  LTC4 synthase in conjugation with glutathione.  LTC4 
is subsequently secreted into the extracellular space via 
the multi-drug resistance protein 1 (MRP-1), where it 
can be further converted into  LTD4 and  LTE4 by extra-
cellular synthases, such as γ-glutamyl transferase and 
 LTD4 dipeptidase-1 and -2 (Fig. 3). All CysLTs exert their 
actions via one of the two GPCRs CysLTR1 or CysLTR2, 
where  LTD4 has a high affinity for CysLTR1 and both 
 LTC4 and  LTE4 for CysLTR2 (Table  2) [120]. Of these 
LMs,  LTD4 is considered to be the most relevant for MS 

Fig. 5 Hypothetically,  LTB4/LTD4 can act as chemo-attractants through either the BLT-1 or CysLTR1 receptor on Th-17 lymphocytes thereby 
mediating their influx across the disrupted BBB towards high  LTB4/LTD4 levels in the CNS of MS patients
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due to its high affinity for CysLTR1, the receptor associ-
ated with Th17 lymphocyte migration and EAE disease 
severity as previously described [111]. Selective blocking 
of CysLTR1 with Montelukast prevented this migration 
towards high  LTB4 concentrations, but also towards high 
 LTD4 concentrations in vitro [121, 122].

The importance of CysLTR1-signaling in MS is gaining 
more interest as CysLTR1 is found to be elevated in the 
blood of PwMS, with an increase on  CD4+ T lympho-
cytes, but also on astrocytes and microglia in MS lesions 
compared to normal appearing white matter in post-
mortem brain tissue [123]. In addition, more CysLTR1-
positive Th-lymphocytes were found inside MS lesions 
of these PwMS as compared to normal appearing white 
matter. As elevated levels of both  LTB4 and  LTD4 have 
been observed in the CSF of clinically active PwRRMS, it 
is tempting to speculate that these LTs might be related to 
the increased number of Th-17 lymphocytes via CysLTR1 
[109, 123]. Nevertheless, whether these findings are 
directly linked to one another remains to be addressed.

Hydroxyeicosatetraenoic acids (HETEs) in MS
A generally understudied LM subclass of AA-derivatives 
in the context of MS are the hydroxyeicosatetraenoic 
acids (HETEs), of which 5-, 11-, 12- and 15-HETE will be 
discussed (Fig. 3). In our previous work, we have shown 
that relative plasma levels of 5-HETE were increased in 
PwPMS as compared to PwRRMS and healthy controls 
and correlated positively with EDSS and serum Nfl lev-
els, suggesting a link with disease progression [19]. How-
ever, no evidence for local 5-HETE levels in the CNS is 
available to further substantiate these initial findings. 
In addition, its oxidised metabolite 5-OxoETE, which is 
formed under oxidative stress by the microsomal enzyme 
5-hydroxyeicosanoid dehydrogenase (5-HEDH), may be 
of importance in neuroinflammation [124]. 5-OxoETE 
can function as a chemoattractant for monocytes syn-
ergistically with chemokine (C–C motif ) ligand (CCL) 
2 and 7. It also acts as a potent activator of GM-CSF 
secretion by monocytes via the oxoeicosanoid receptor 1 
(OXER1), also known as the GPR170 in humans (Table 2) 
[124–126]. Based on these properties, 5-OxoETE may 
promote monocyte migration towards lesions, where 
they can induce a pro-inflammatory environment 
by GM-CSF secretion. However, whether 5-HETE, 
5-OxoETE or GPR170 signalling actually contribute to 
MS disease progression warrants further investigation.

11‑HETE, lipid peroxidation and other pathological hallmarks 
of MS
One of the AA-metabolites of this subclass is 11-HETE, 
which can be biosynthesized either by COX-1/2, CYP, or 
non-enzymatically as byproduct of AA auto-oxidation 

[127, 128]. Mainly due to this auto-oxidative biosynthe-
sis, 11-HETE is described as a marker for lipid peroxida-
tion, a process known to occur in MS and thought to be 
related to inflammation, demyelination and neurodegen-
eration [129, 130]. However, no receptors for 11-HETE 
have been identified to date and 11-HETE itself has never 
been linked to MS before. Nevertheless, other lipids asso-
ciated with lipid peroxidation have been studied in the 
context of MS, for example, increased levels of the clas-
sical oxidative low-density lipoproteins (ox-LDL) and 
high-density lipoproteins (ox-HDL), for instance, have 
been found in both the brain, plasma and CSF of PwMS, 
where their neurotoxic properties are considered to pro-
mote oxidative damage [131, 132]. Thus, it remains to be 
determined whether the AA-metabolite 11-HETE dis-
plays these neurotoxic properties as well.

12‑HETE: potential promotor of neuroinflammation and 
ROS‑mediated demyelination
The platelet-type 12-lipoxygenase (12-LOX or ALOX12) 
is the predominant producer of 12-HETE, and is found to 
be increased in the plasma of both PwPMS and PwRRMS 
in remission [20, 133]. In contrast, 12-LOX expression in 
PBMCs of PwRRMS during a relapse was found to be sig-
nificantly lower than that of healthy subjects [20]. Despite 
the lack of a clear contribution of this LM to MS pathol-
ogy, one can speculate that 12-HETE can have significant 
pathological implications in inflammatory diseases by 
promoting the chemotaxis of leukocytes and induction 
of oxidative stress through receptor interactions (i.e., 
GPR31 and BLT2) [114, 134–136]. 12-LOX-associated 
ROS production was, for example, found to induce apop-
tosis of mature OLs both in  vitro and in  vivo through 
an ERK1/2–12-LOX–ROS pathway, suggesting that 
12-LOX, and presumably 12-HETE, may contribute to 
demyelination in MS [137]. Furthermore, 12-HETE can 
both stimulate and inhibit platelet aggregation thereby 
affecting T lymphocyte accumulation and differentiation, 
critical processes during early MS and EAE pathogen-
esis [87, 138]. Additional studies are, therefore, required 
to assess the contribution of 12-LOX and 12-HETE to 
MS pathogenesis with a specific focus on demyelination, 
mediated by the loss of OLs, and neuroinflammation.

15‑HETE: a link between lipids and MS lesions?
The last LM of this subclass of monohydroxylated AA 
metabolites addressed here is called 15-HETE and can 
be biosynthesized from AA by several lipoxygenases, 
including 15-lipoxygenase-1 (15-LOX-1 or ALOX15) 
and 15-LOX-2 (or ALOX15B) (Fig.  3). In our recent 
work, relative plasma levels of 15-HETE, together with 
disease duration, Nfl and GFAP, were revealed as pos-
sible predictors of MS disability (as measured by EDSS) 
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in PwPMS [19]. In addition, negative correlations were 
observed for 15-HETE with MRI parameters such as 
total brain and deep grey matter volumes in PwPMS and 
indicate a potential link between this AA-metabolite and 
neurodegenerative processes. These findings are in line 
with other studies, where increased levels of 15-HETE 
were observed in CSF and plasma of PwMS [20, 23, 37]. 
Aside from peripheral production, we hypothesize that 
local 15-HETE is biosynthesized primarily by 15-LOX-2 
in demyelinated areas, potentially as a result of hypoxia 
or oxidative stress, as these stimuli have been linked to 
induction of 15-LOX-2 gene expression [131, 139–142]. 
15-LOX-1, which also generates 15-HETE, may contrib-
ute to these elevated 15-HETE levels as well, since effero-
cytosis (referred to as the effective clearance of apoptotic 
cells) initiates ALOX15-1 expression in macrophages 
in  vitro and has been observed in demyelinating areas 
[143, 144]. However, ALOX15-1 moderately converts AA 
into 15-HETE and may prefer the ω-6 PUFA linoleic acid 
(LA) as its substrate [145].

The potential function of 15-HETE in the CNS of 
PwMS is still relatively unknown, although 15-HETE can 
regulate several cellular processes via its two receptors: 
BLT2 and PPAR-γ (Table  2) [112, 146, 147]. Detrimen-
tal effects might be ascribed to 15-HETE as it is able to 
induce ROS production, apoptosis and macrophage foam 
cell formation, processes that are all observed in PwMS 
[147–150]. The latter process is, in particular, interesting 
in MS, as CNS-infiltrating macrophages are known to 
become oversaturated with oxidized lipids derived from 
the deteriorating myelin sheath, thereby turning into 
foam cells [151]. 15-HETE may promote this lipid uptake 
as it can induce membrane glycoprotein CD36 expression 
in these cells, a scavenger receptor that recognizes oxi-
dized phospholipids and lipoproteins and mediates their 
internalization [152, 153]. Increased 15-LOX-2 expres-
sion is also found in atherosclerotic plaques known to 
contain foamy macrophages and silencing of ALOX15-B 
in an atherosclerotic mouse model resulted in decreased 
lipid accumulation and inflammatory markers in mac-
rophages [150]. On the other hand, 15-HETE was also 
found to inhibit  LTB4-induced chemotaxis of polymor-
phonuclear (PMNs) leukocytes in vitro and may promote 
a pro-resolving phenotype of macrophages/microglia via 
binding to the nuclear PPAR-γ receptor, thereby poten-
tially promoting tissue recovery in the MS lesion vicinity 
[154, 155]. Additional studies, including in  vivo studies, 
are, therefore, crucial to unravel the relevance between 
the elevated 15-HETE levels in PwPMS and MS-associ-
ated neuropathological events.

Summary and future perspectives
MS is a heterogeneous disease of the CNS, where current 
therapeutic strategies are mainly focussed on symptom 
management, predominantly by targeting specific parts 
of the immune system. Disease-modifying therapies 
including interferon beta, leukocyte migration inhibi-
tors and monoclonal antibodies that result in lymphocyte 
depletion are currently on the market, which generally 
reduce relapse rate, but, unfortunately, have a limited 
effect on disease progression and are accompanied by 
unwanted side effects. Therefore, a high and unmet need 
remains to design therapeutic strategies that incorpo-
rate anti-inflammatory, remyelination-promoting and/or 
neuroprotective effects to slow down disease progression 
with as little side-effects as possible.

The involvement of AA-derived LMs in various patho-
genic processes such as the MS-associated neuroinflam-
mation, demyelination and neurodegeneration suggest 
that they may have versatile and disease-altering prop-
erties. By delving deeper into the role of LMs in MS, 
one may gain new insights into MS subtype-specific 
occurrences, ultimately leading to the development of 
subtype-specific intervention strategies and accompa-
nying biomarkers. In this review, we substantiated the 
importance of targeting receptors associated with LMs 
or the downstream biosynthetic enzymes to dampen 
pathogenic processes and fuel the protective character-
istics of LM biosynthesis in MS while minimizing the 
risk of side effects. This necessity is demonstrated by 
the example of COX-1/2 inhibitors such as nonsteroidal 
anti-inflammatory drugs that are used to alleviate flu-
related symptoms, highlighting their beneficial and anti-
inflammatory properties. However, these medications 
(i.e., COX-2-selective coxibs) have also been associated 
with severe cardiovascular-associated side effects, pre-
sumably due to imbalances in the prostanoid pathway, 
for example, between  PGI2 and  TXA2 (Fig.  3). COX-2 
inhibition affects the metabolism of a broad range of 
LMs, and each of these could be detrimental or beneficial 
in the context of MS, such as  PGE2,  PGI2,  PGD2 and its 
derivative 15d-PGJ2. Instead, targeting downstream bio-
synthetic enzymes in this pathway, such as mPGES-1 and 
2, should be considered as improved intervention strat-
egies as these enzymes comprise the final step for  PGE2 
biosynthesis and their inhibition may, therefore, have no 
negative impact on beneficial prostanoids. Similarly, tar-
geting  LTB4/LTD4 metabolism by modulation of enzymes 
involved in the leukotriene biosynthetic pathway, such as 
FLAP,  LTA4H or  LTC4H, may also be beneficial in MS as 
this may potentially disrupt the  (LTB4-related) chemot-
axis signal that drives T lymphocytes infiltration into the 
CNS of PwMS during early disease stages.
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Moreover, cell-type-specific targeting of LM-associated 
receptors bears the potential to affect disease pathogen-
esis. For example, blocking the  PGE2 receptors EP2 and 
EP4 and the  LTB4/LTD4 receptors BLT-1 and CysLTR1 
on Th-lymphocytes during early MS stages (e.g., relapse 
phase) and EP2 on microglia/macrophages at later stages 
(e.g., progressive phase) may provide useful tools to influ-
ence disease-specific pathological events. Other parts 
of the AA pathway, such as monohydroxylated HETEs, 
have not been investigated thoroughly, yet may provide 
additional targets for intervention. Overall, in this review 
we provide evidence that the AA metabolome is strongly 
intertwined with pathological processes in MS and indi-
cate the need for strategies targeting this molecular path-
way, to create novel patient- and MS subtype-specific 
therapeutic options against MS.
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