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Abstract 

Progressive brain diseases create a huge social and economic burden on modern societies as a major cause of disabil-
ity and death. Incidence of brain diseases has a significantly increasing trend and merits new therapeutic strategies. 
At the base of many progressive brain malfunctions is a process of unresolved, chronic inflammation. Macrophage 
migration inhibitory factor, MIF, is an inflammatory mediator that recently gained interest of neuro-researchers 
due to its varied effects on the CNS such as participation of nervous system development, neuroendocrine func-
tions, and modulation of neuroinflammation. MIF appears to be a candidate as a new biomarker and target of novel 
therapeutics against numerous neurologic diseases ranging from cancer, autoimmune diseases, vascular diseases, 
neurodegenerative pathology to psychiatric disorders. In this review, we will focus on MIF’s crucial role in neurological 
diseases such as multiple sclerosis (MS), Alzheimer’s disease (AD) and glioblastoma (GBM).

Keywords MIF, Neuroinflammation, Neurodegeneration, MS, AD, Astrocytoma

Introduction
During immune responses, a galaxy of factors are acti-
vated to maintain homeostasis. Disease occurs when the 
homeostasis is broken, and inflammation persists. One 
of the inflammatory mediators with broad influence on 
host immune responses is MIF. MIF, a cytokine, hormone 
and enzyme, was first described almost a half century 
ago in association with delayed-type hypersensitivity [1, 
2]. At that time, Bloom and Bennett in an in vitro study 
showed the inhibition of macrophage migration medi-
ated by a soluble factor produced by sensitized lym-
phocytes upon interaction with a specific antigen [1]. 
In 1989, Weiser et al. isolated a cDNA encoding human 
MIF, which allowed further studies on its physiological 
and pathological characteristics [3]. The identification of 
MIF’s receptors confirmed its chemokine-like functions 
and major regulatory abilities in host immune defense 
and inflammation [4]. According to Human Protein Atlas 
(HPA) (www. prote inatl as. org), MIF and its partners (e.g., 
CXCR4, CD74, p53, JAB1) are expressed in all tissues 
with high levels in bone marrow, reproductive, brain and 
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lymphoid tissues [5–7]. In the Th2 subset of lympho-
cytes and monocytes/macrophages, in contrast to other 
cytokines, MIF is present in high intracytoplasmic lev-
els in unstimulated cells. Notably, at least two orders in 
magnitude lower LPS is needed to stimulate expression 
of MIF than that in case of TNF-α [8]. In the CNS, MIF 
is secreted by neurons, Schwann cells, microglia, astro-
cytes and oligodendrocytes, predominantly in the cortex 
layer [9, 10]. MIF, a multifaceted cytokine is involved in 
immune response and numerous biological processes like 
proliferation, angiogenesis, anti-oxidant signaling and 
tissue repair [11, 12]. MIF has been identified as a criti-
cal controller of inflammation and immune responses 
by counter-regulating immunosuppressive effect of glu-
cocorticoids [8, 13–15]. Production during systemic 

inflammation and glucocorticoid regulatory abilities of 
MIF are in tight conjunction with the hypothalamic–
pituitary–adrenal axis. As a pituitary derived stress hor-
mone, MIF became recognized as a key neuroendocrine 
regulator of immune responses in the CNS [13, 16, 17]. 
Part of MIF’s pathologic role in inflammatory diseases 
may be based on neuroendocrine mechanisms [18]. 
MIF functions in cell proliferation and glucocorticoid 
action by MAPK (mitogen-activated protein kinases) 
and cytoplasmic phospholipase A2 activation (cPLA2) 
[19] (Fig.  1). MIF directly interacts with intracellular 
protein, JAB1, a coactivator of AP-1 transcription, neg-
atively modulating JAB-1 controlled pathways includ-
ing cell-cycle regulation [20]. The discovery that MIF is 
capable of influencing cell proliferation by inactivating 

Fig. 1 MIF function and signaling. MIF fulfills its biological functions through membrane receptors and via binding to intracellular molecules. MIF’s 
binding to membrane receptor CD74 recruits CD44 and leads to activation of Src/MAPK signaling. MIF via CXCR2/4 activates PI3K/Akt downstream 
signaling and induces cell migration. Sustained activation of ERK1/2 phosphorylation is mediated by JUN activation domain binding protein-1 
(JAB1) and leads to cytoplasmic phospholipase A2 (cPLA2) activity (blocked by glucocorticoids) and further to arachidonate/prostaglandin 
production. MIF production can be stimulated via TLRs by e.g., LPS stimulation. MIF regulates innate immune responses through modulation 
of TLR4. In response to LPS and Gram-negative bacteria MIF upregulates TLR-4 expression and in consequence induces the production 
of pro-inflammatory cytokines. MIF overrules glucocorticoid effects such as the nuclear factor-κB (NF-κB) inhibitor IκB which downregulates 
inflammatory responses. MIF via p53 inhibits activation-induced apoptosis, increase cellular survival and proliferation. MIF’s functions include: 
1. stimulation of proinflammatory and co-stimulatory factors; 2. activation of adhesion molecules; 3. increase of cell trafficking to the sites 
of inflammation; 4. increase of cell proliferation and survival and inhibition of apoptosis
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p53 tumor suppressor activity may suggest a direct link 
between inflammation and cancer [21]. MIF exerts its 
activity via specific receptors including its cognate recep-
tor CD74, and via non-cognate interactions with CXCR2, 
CXCR4 or CXCR7, or possibly via endocytic engulfment 
to the cytoplasm [22–24]. MIF binds to the extracellu-
lar domain of CD74, initiating CD44 activation and the 
extracellular signal-regulated kinase-1/2 MAP (ERK1/2 
MAP) kinase cascade and downstream inflammatory 
pathways leading to cell proliferation, cell survival and 
 PGE2 production [25] (Fig. 1). Particularly, linkage of MIF 
with CD74/CD44 regulates the immune response by con-
trolling maintenance, proliferation and survival of mac-
rophages and B cells [26]. Recently, a product of CD74 
cleavage, a CD74 cytosolic intracellular domain (CD74-
ICD) has been found to induce cell–cell signaling and cell 
survival in B cells [27]. MIF shares biological functions 
with its homologue, D-dopachrome tautomerase (D-DT 
or MIF-2), which in a similar way activates the inflamma-
tory responses [28, 29]. According to HPA, D-DT but not 
MIF, is greatly produced by white blood cells which sug-
gests that D-DT possesses an especially important role 
in innate inflammation through CD74 [12]. As for the 
genetic regulation of MIF expression, there are two pro-
moter polymorphisms located in the MIF gene: (1) func-
tional alleles of a − 794 CATT 5–8  microsatellite repeat 
that modulates MIF mRNA transcription and correlates 
with MIF expression levels. MIF promoter activity is pro-
portional to increased numbers of the CATT repeats at 
position − 794 [30]: and (2) the nearby − 173 SNP C allele 
may be associated with increased MIF  promoter activ-
ity by its linkage disequilibrium with the high-expres-
sion − 794 CATT 7 variant.

MIF expression has long been associated with certain 
diseases such as rheumatoid arthritis, asthma and can-
cer with increased levels found in more aggressive forms 
of such diseases [31–34]. In SLE, MIF has been found to 
play a dual role. High-expression MIF polymorphisms 
have been found to be associated with a lower incidence 
of SLE. However, in patients with established disease, 
low-expression MIF polymorphisms have been linked 
with a lower incidence of the end-organ injury [35]. Brain 
disorders from autoimmunity, stroke, cancer and demen-
tia are characterized by an inflammatory component, 
and MIF has a detrimental effect on these pathologies. 
In MS, AD and GBM, MIF contributes to the severity of 
disease [36]. However, its pathological role in brain dis-
eases became challenged based on some recent studies. 
In Parkinson’s disease (PD), MIF has been found to medi-
ate a neuroprotective effect by suppressing inflammatory 
responses, inhibiting apoptosis, and inducing autophagy 
[37]. Moreover, the protective effect of MIF has been 
reported in amyotrophic lateral sclerosis where elevated 

MIF levels inhibited the accumulation of misfolded SOD1 
[38]. In stroke, cerebral ischemia and depression, MIF 
has protective as well as pathological roles [36]. From 
the accumulating data, MIF possesses diverse functions 
within the CNS and more research is needed to decipher 
its specific role in normal and pathological conditions.

This review focuses on MIF research and actions in 
progressive brain diseases such as MS, AD and GBM. As 
a molecule broadly involved in many biological events 
and variety of autoimmune or inflammatory conditions, 
MIF can become a new potential biomarker and thera-
peutic target for the development of new prognostic, 
diagnostic as well as treatment strategies. Of note, differ-
ent approaches to modulating MIF-dependent pathways 
are now in advanced clinical testing, including neurologic 
disorders.

Multiple sclerosis
MS is an autoimmune inflammatory disorder of the 
CNS characterized by demyelination and permanent 
neurological disability in young adults with prevalence 
in women [39, 40]. The most common form of MS at 
the beginning of disease is relapsing–remitting (RRMS) 
characterized by spontaneous episodes and partial recov-
ery in disease severity with accumulating neurological 
dysfunctions over time [39]. After several years, disease 
mostly progresses into secondary progressive MS (SPMS) 
with slow permanent advancement of neurological, 
physical, and mental disfunction [41]. The pathogenesis 
of MS possesses a strong immune component and MIF 
as an inflammatory cytokine with potent control over 
innate and adaptive arms of immunity contributes to the 
development and progression of the disease [29]. Activa-
tion of MIF is essential for regulation of leukocyte migra-
tion across the blood–brain barrier [42]. Infiltration of 
immune cells to the brain tissue causes inflammation, 
demyelination, and formation of sclerotic plaques, hall-
marks of MS.

MIF profiles in MS patients
MIF drives T cell and macrophage activation and may 
play a pivotal role in MS. Several different studies have 
been performed in order to decipher a role of MIF in MS 
pathogenesis. However, information about MIF expres-
sion in MS patients is limited with some contradictions 
due to variations in groups of MS patients with respect 
to different stages and severity of disease. In 2000, Niino 
et  al. determined the level of MIF in the cerebrospinal 
fluid (CSF) of patients with conventional-form multiple 
sclerosis (C-MS), optic-spinal form multiple sclerosis 
(OpS-MS), and neuro-Behcet’s disease (NBD) [43]. The 
highest levels of MIF have been found in the CSF of OpS-
MS patients in relapse. Elevated levels of MIF were also 
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found in relapsed but not in remission cases of C-MS. In 
NBD patients, the concentration of MIF in CSF was sig-
nificantly elevated compared with control samples [43]. 
Similarly, increased levels of MIF were found in sera of 
untreated patients with MS relapse indicating their asso-
ciation with MS disease activity [44]. To that point, the 
high levels of MIF correlated with clinical MRI find-
ings with a worsening EDSS score in different subtypes 
of MS including clinically isolated syndrome (CIS) [45]. 
A recent study in CIS patients revealed that observed 
overexpression of MIF, D-DT, and CD44 appeared to 
be unique for CD4( +)T cells [46]. In healthy blood MIF 
is predominantly expressed by B cells [47]. In early MS 
patients, B cells have been found to have downregulated 
MIF and MIF receptor (CD74) and upregulated the MIF 
receptor CXCR4 as compared to healthy controls, poten-
tially reflecting a functional state of anergy that may con-
tribute to the persistence of pathogenic immature B cells 
in the periphery [47]. In another study, MIF was shown 
to be highly expressed in human active white matter MS 
lesions predominantly associated with reactive hyper-
trophic GFAP + astrocytes and macrophages, suggesting 
MIF may contribute to the actively demyelinating lesion 
[48]. A more recent study showed increased levels of 
MIF both in CSF and in serum of RRMS patients [49]. 
In contrast, the study by Hjaeresen et al. shows that MIF 
is decreased during RRMS and increased in SPMS [50]. 
Additionally, MIF levels were significantly decreased in 
females with CIS and RRMS as compared to males sug-
gesting sex-dependent regulation of MIF production. 
These findings are in accordance with our previous study 
and demonstrate the importance of estrogens and estro-
gen receptor in inhibition of MIF expression, as well as 
the binding between MIF and its CD74 receptor in the 
monocyte sub-population [51, 52]. The findings on how 
MIF exerts its effect on MS progression in males and 
females require further clarifications.

MIF genetic polymorphisms in MS
MIF genetic polymorphism studies support the role of 
MIF in the pathogenesis and severity of MS. Two poly-
morphisms in the promoter region of MIF gene have 
shown correlation with the worsening of autoimmune 
and inflammatory diseases such as systemic lupus erythe-
matosus (SLE), rheumatoid arthritis (RA) and psoriatic 
arthritis (PsA) in Mexican-Mestizo population [53–57]. 
As studied in the white Turkish population, a MIF poly-
morphism has been associated with younger age of MS 
disease onset. Patients with multiple sclerosis had an 
increase in the MIF-173 CC genotype and exhibited sig-
nificantly lower age of disease onset compared with those 
with the MIF-173 CG and MIF-173 GG genotypes. The 
MIF-794 CATT 6/7 genotype had a significantly lower 

progression index compared with MIF-794 CATT 6/6 
and patients with the MIF-794 CATT 5/6 genotype had 
a significantly later age of disease onset [58]. In another 
study in the Turkish population, the results suggested 
no relation between MS susceptibility and MIF gene-
173G>C polymorphism [59]. In Mexican patients, the 
MIF-173 GC genotype was associated with a higher clini-
cal severity of MS [60]. Our study found a correlation 
between a high expression −794CATT5-8 and associated 
−173G/C SNP with increased MIF and D-DT levels in 
males with progressive disease [52]. These findings on the 
sex-specific contribution of MIF polymorphisms were 
supported by studies on MS patients in Western Mexico. 
When grouping by sex, an effect of both MIF polymor-
phisms (−794 CATT5-8 and − 173 G > C) was found with 
high MIF serum levels, increased severity and progres-
sion in male MS patients [61]. Both studies suggest that 
MIF polymorphisms could act as sex-specific disease 
modifiers that increase the severity and progression of 
MS in male patients. Further confirmation that 173G > C 
polymorphism can also regulate DDT expression in a 
sex-specific way and that the DDT is highly expressed in 
MS brain tissues and promotes MS progression in males 
but not females has been reported recently [62].

MIF in the EAE animal model
In experimental autoimmune encephalitis (EAE), an ani-
mal model for MS, MIF has been shown to accelerate 
disease progression, mostly by activation of macrophages 
and microglia and upregulation of the inflammatory 
responses in the CNS [48, 63–67]. Moreover, MIF pro-
motes resistance of pathogenic CD4( +) T cells to gluco-
corticoid treatment in EAE [68]. In SJL mice with severe 
EAE, treatment with anti-MIF antibodies reduced dis-
ease severity and improved recovery by impairment 
of CNS homing of pathogenic T cells [69]. In another 
study, MIF-deficient C57BL/6 mice were protected from 
EAE and treatment with a small-molecule inhibitor of 
MIF reduced EAE severity in SJL mice [70]. Using MIF-
/- mice, it was reported that MIF is necessary for pro-
gression of EAE, possibly due to significant decreases in 
inflammatory cytokines [64]. In our previous study, we 
demonstrated that MIF or D-DT deficiency ameliorates 
EAE severity and that D-DT absence is associated with 
reduced migration of memory and activated mononu-
clear cells into the CNS. We also showed that genetically 
controlled high expression of both molecules promotes 
MS progression in males and that both molecules are 
important sex-specific disease modifiers [52]. A novel 
role for MIF in inducing microglial C/EBP-beta, a tran-
scription factor shown to regulate myeloid cell function 
has also been proposed in a rodent model of MS [48].
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MIF‑oriented MS treatments
At present there are no sufficient and satisfactory treat-
ments for MS. The most important caveat in system-
atically administrated drugs is the limited penetration 
through BBB. Drugs such as monomethyl fumarate 
(MMF), a product of dimethyl fumarate (DMF) hydroly-
sis after absorption inside the small intestine and MTX 
(mitoxantrone) have only limited access to the CNS. 
Thus, these drugs would likely have little influence on 
MIF levels in CNS-resident cells and limited effect on 
increased MIF levels in CSF as found in RRMS patients 
[50]. A newer anti-inflammatory drug, ibudilast, a non-
selective inhibitor of various cyclic nucleotide phospho-
diesterases often used as a bronchodilator for bronchial 
asthma treatment, plays a central role in processes like 
inflammation and synaptic plasticity. Ibudilast suppresses 
pro-inflammatory cytokines, upregulates anti-inflam-
matory cytokines and blocks TLR4 and acts as a non-
competitive and allosteric inhibitor of MIF tautomerase 
activity and its chemotactic effects [71]. Additionally, 
ibudilast possesses an enhanced ability to pass the BBB, 
and was found in a successful PMS Phase 2 clinical trial 
to inhibit glial activity, support the production of neu-
rotrophic factors and influence CNS production of MIF 
[72]. Other therapeutic approaches such as a small mol-
ecule inhibitor (ISO-1) and MHC constructs (DRQ) will 
be discussed below. That said, we are not aware of any 
studies using MS approved drugs that have evaluated 
MIF levels.

Alzheimer disease
Alzheimer disease (AD) is the most common neuro-
degenerative disease affecting predominantly the hip-
pocampus and cerebral cortex characterized by the 
aggregation of extracellular Aβ proteins and intracellular 
neurofibrillary tangles (NFT), which are composed of 
hyperphosphorylated tau proteins in neurons. Neuroin-
flammation plays a pivotal role in AD pathogenesis lead-
ing to neuronal loss, alterations in glial cells and severe 
cognitive decline.

MIF’s effects on glia and neurons in AD
One of the first reports on the MIF’s involvement in AD 
identified MIF as a new Aβ-binding protein in a soluble 
fraction of the cerebral cortex of AD brain by immuno-
precipitation [73, 74]. Some early reports using immu-
nohistochemistry reported elevated expression of CD74, 
a MIF receptor in AD [75, 76]. CD74 was found to be 
increased in microglia in AD cases compared to age-
matched controls [76]. Following study revealed a sig-
nificant increase in CD74 primarily in neurofibrillary 
tangles, amyloid-beta plaques, microglia and for the first 
time in neurons of AD cases [75]. Toxic involvement of 

MIF within amyloid-aggregates was established by stud-
ies in brains of transgenic APP mice where MIF has been 
found to be produced by activated microglia near Aβ 
plaques [77]. The co-localization of MIF and activated 
microglia to amyloid deposits has been further confirmed 
by using mass spectrometry-based imaging technique 
[78]. Besides microglia, MIF possesses strong influence 
also on astrocyte activation (Fig.  3). MIF in astrocytes 
plays an important role in elevated tau phosphoryla-
tion, which involves mediators released by the activated 
astrocytes in AD animal model [79]. In animal models, 
the expression of MIF in astrocytes and the number of 
reactive astrocytes were noticeably increased in contrast 
to MIF knockout mice. Additionally, it has been found 
that conditioned medium from activated astrocytes 
could stimulate tau hyperphosphorylation in neurons in 
a MIF-dependent manner. Recently it has been shown 
that MIF displays neurotoxicity similar to Aβ [1–42], 
which was associated with the MIF-induced increase in 
apoptosis in human neuroblastoma cells [80]. It has been 
found that MIF’s involvement in neuronal cytotoxicity 
can be reversed by ISO-1 that blocks the enzymatic and 
biologic activities of MIF [81]. In vitro data using murine 
and human neuronal cell lines revealed that ISO-1 almost 
completely antagonized the neurotoxic effects of Aβ [77]. 
A recent study on the effect of MIF on inflammatory 
markers and spatial learning in a mouse model of spo-
radic AD and on tau pathology in AD patients showed 
that MIF inhibition resulted in reduced cytokine produc-
tion in vitro and in vivo [82].

Sugar metabolic malfunction affects MIFs role in high 
glucose‑induced AD
Some recent studies implicate MIF with progression of 
high glucose-induced AD. AGEs (advanced glycation 
endproducts) are neurotoxic, foster the deposition of 
Aβ and the hyperphosphorylation of tau protein and the 
expression of proinflammatory mediators in glial cells 
[83, 84]. It has been demonstrated that AGEs promoted 
the expression of MIF and aggravated the neuroinflam-
matory response at the cell level [85]. In PC12 cells, (an 
AD-cell model), ISO-1 reduced AGE-mediated dam-
age by decreasing the expression of neuroinflammatory 
mediators. Previously, MIF has been found to be gly-
cated and oxidized in AD brain homogenates. The glyca-
tion completely inhibited the enzymatic activity of MIF 
and was harmful to the signaling effects of MIF on glia, 
strongly weakening MIF-induced ERK phosphorylation 
[86] (Fig.  2). This might be especially important at the 
beginning of AD where microglia are actively involved 
in removing Aβ plaques and MIF signaling is crucial for 
this beneficial microglia’ function. Thus, dysregulation of 
glucose homeostasis or insulin regulation leads to MIF 
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conformational changes and severely affects MIF activity 
with implications for impaired innate immune response 
during progression of AD [86].

MIF in AD patients
In human subjects with AD at early clinical stages, cer-
ebrospinal fluid levels of MIF were increased in com-
parison with age-matched controls, and correlated with 
biomarkers of tau hyper-phosphorylation and neuronal 
injury suggesting that MIF can play a role as biomarker 

for early-stage AD. First report from clinical studies 
showed significantly increased levels of MIF in the CSF 
of AD patients in comparison to age matched controls 
[87]. A possible link between MIF and TNF-α release 
in AD group is suggested as a correlation between MIF 
and TNF-a concentrations has been found. The next 
study by this group showed the highest levels of MIF in 
the brain cytosol and CSF in a mild cognitive impair-
ment group of patients (MCI) that has a high risk to 
develop AD over time, thus providing evidence that the 

Fig. 2 MIF in AD. Activated glia and especially neurons are the main sources of MIF in AD. Dysregulated glucose metabolism and AGE promote MIF 
conformational changes leading to disrupted ERK signaling in glia cells. In AD increased CD74 has been found in microglia, neurofibrillary tangles, 
amyloid β plaques and neurons
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neuroinflammation occurs early, at predementia stages of 
AD [77]. A recent study based on measurements of MIF 
levels in plasma and CSF in MCI or mild dementia (cog-
nitive impairment, CI) patients established a significant 
role for MIF as biomarker in AD pathology for predict-
ing cognitive failure in MCI and CI [88]. Additionally, 
this study provided evidence that MIF-related inflamma-
tion is related to amyloid pathology, tau hyperphospho-
rylation, and neuronal injury at the early clinical stages 
of AD. Further usefulness of MIF as a potential AD bio-
marker has been proposed by Zhang et  al. [89]. In this 
study, elevated MIF levels were detected in CSF of AD 
patients but not in MCI or vascular dementia patients. 
Neurons but not glia cells stimulated with Aβ oligom-
ers were the main source of MIF. Interestingly, reduced 
MIF expression impaired learning and memory in the 
AD mouse model thus supporting the conclusion that 
neuronal secretion of MIF may serve as a defense mecha-
nism to compensate for declining cognitive function in 
AD. MIF has been found to have neuroprotective abili-
ties on neuronal cells by inducing expression of BDNF, 
an essential modulator of synaptic plasticity related to 
learning and memory [90]. MIF administration protected 
neurons from hypoxic injury by upregulation of mature 
BDNF and anti-apoptotic molecules in human neuro-
blastoma cells. Previously, BDNF, serotonin and THP2, 
a critical enzyme in the biosynthesis of serotonin in the 

brain have been found to be upregulated by MIF in vitro 
as well as during both exercise and electroconvulsive sei-
zure in vivo [91].

Glioblastoma
Glioblastoma (GBM) is a grade IV astrocytoma derived 
from astrocytes according to WHO classification [92]. 
GBM is the most common and the most deadly brain 
tumor with low treatment efficacy after surgery, chemo-
therapy and radiation. One of the main reasons for poor 
therapeutic outcome in this type of cancer is marked cel-
lular heterogeneity with genetic and epigenetic variability 
[93]. Recent genome-wide association studies (GWAS) 
showed that genetic susceptibility to GBM and non-GBM 
tumors are highly distinct with possible different etiolo-
gies [94].

Pro‑carcinogenic abilities of MIF
Despite MIF’s critical role in the pathogenesis of inflam-
matory and immune responses, it has been documented 
that MIF promotes carcinogenesis and its elevated levels 
have been found in various tumors [95–97]. MIF is able 
to promote cellular processes related to tumorigenesis 
such as cell cycle progression, tumor growth, blockage of 
apoptosis, induction of angiogenesis and tumor spread 
[98] (Fig.  3). Moreover, MIF has profound and detri-
mental effects on anti-cancer immune responses. This 

Fig. 3 Main MIF sources and its effects in GBM. One of the key stressors in development of GBM are hypoxia and hypoglycemic states which induce 
production of high MIF levels in primary GBM cells leading to neovascularization. MIF major sources are: 1. cancer stem cells (CSC) located nearby 
new blood vessels; 2. transformed astrocytes and 3. MCs. All sources add to promotion of immune suppression mostly by MDSCs, angiogenesis 
and increased cell proliferation



Page 8 of 16Matejuk et al. Journal of Neuroinflammation            (2024) 21:8 

includes inhibition of NK anti-cancer cytotoxic effect, 
inhibition of T cell activation, promotion of MDSCs 
(myeloid-derived suppressor cells) and polarization of 
macrophages towards an anti-inflammatory phenotype 
[99–103]. Blockade of MIF by shRNA in glioma cells 
restores cytotoxic activity of NK and CD8 + T cells down-
regulating the immune receptor NKG2D [104]. In con-
trast to abundant studies showing that MIF is a key factor 
in tumor immune response, recently it has been found 
that its cognate receptor CD74 is confined to human 
microglia/macrophages and is positively associated 
with pro-inflammatory anti-tumor immune responses 
and improved patients’ survival [105]. Considering the 
extremely high diversity of microglia subpopulations 
with unique gene expression profiles and different roles, 
more studies are needed to decipher the role of CD74 in 
microglia anti-tumor responses.

High levels of MIF predict poor survival rates in can-
cer patients [106, 107]. In prostate cancer and in many 
solid tumors, increased risk is associated with polymor-
phism in the C allele in the MIF-173 G/C promoter sin-
gle-nucleotide polymorphism (SNP) as documented by 
meta-analysis. MIF gene promoter polymorphisms also 
are associated with lymphatic metastasis and cervical 
cancer [108, 109]. MIF is highly expressed by GBM cells 
and higher levels of MIF are associated with increased 
cancer grade [104, 110] as well as poor prognosis and 
tumor recurrence [103, 111]. One of the critical stressors 
in the development of GBM are hypoxia and hypoglyce-
mic states which induce production of high MIF levels in 
primary GBM cells leading to neovascularization [110, 
112] (Fig. 3). Hypoxia-induced MIF expression is driven 
by HIF-1, but amplified by hypoxia-induced degradation 
of cAMP-responsive element binding protein (CREB) 
[113]. In the hypoxic area of glioma specimens, MIF co-
localized with CXCR4 where MIF promotes vasculogenic 
mimicry formation [114].

MIF effects on the cellular environment in glioma
In the CNS, MIF is produced by neurons, astrocytes, oli-
godendrocytes, microglia and Schwann cells [10, 115]. 
Activated microglia and macrophages play a central 
role in the delivery of MIF and signaling molecules to 
nearby neurons and transformed astrocytes [116, 117]. 
An increased number of activated microglia that reside 
in the tumor periphery and infiltrating macrophages that 
occupy the perivascular area account up to 30–50% of all 
cell types in gliomas and correlate with higher grade and 
worse prognosis [118]. The number of glioma-associated 
microglia/macrophages (GAMs) and MDSCs is the high-
est in malignant gliomas and inversely correlates with 
patient survival [103, 117]. MDSCs have been identified 
nearby cancer stem cells (CSC) which are responsible for 

high MIF production and promotion of immune suppres-
sion activities of MDSCs [119]. Depletion of MDSCs by 
5-fluorouracil (5-FU) increases the survival rate in mice 
with glioma [119]. In vitro treatment with sulforaphane, 
a MIF inhibitor, reverses the transition of normal mono-
cytes to MDSCs [120]. Higher numbers of the circulat-
ing monocytic subset of MDSCs (M-MDSC), in contrast 
to macrophages and regulatory T cells, have been asso-
ciated with higher tumor grade and poorer prognosis in 
GBM [103, 121]. Recently it has been found that in both 
murine and human models, M-MDSCs express high lev-
els of the CD74 MIF receptor and are localized in the 
glioma microenvironment, in contrast to granulocyte-
MDSCs (G-MDSCs) which show minimal accumulation 
in the tumor environment [103]. Ibudilast which appears 
effective in an experimental model of glioma, suppresses 
MDSCs and boosts activity of CD8 T cells [103]. Addi-
tionally, mast cells (MCs) have a crucial role in glioma 
pathogenesis that contribute to angiogenic processes and 
immune regulation [122]. MIF attracts mast cells to the 
tumor environment and accumulation of MCs and their 
pSTAT5 expression correlates with the level of MIF [123]. 
MIF expression was frequently associated with the pres-
ence of the tumor-suppressor gene p53, which supports 
stem cell tumorigenic activities [110]. Many stem cells, 
including human pluripotent stem cells (iPCS), were the 
source of MIF [124]. Blockade of MIF by miR-608 in gli-
oma stem cells reduced the proliferation, translocation, 
and invasion [125]. MIF gene knockdown effected brain 
tumor initiating cell (BTIC) function through direct, 
intracellular inhibition of p53, reducing cell prolifera-
tion and increasing apoptosis in an in vitro setting and in 
human mouse xenograft model [126].

MIF and D‑DT signaling in cancer
MIF signals though several different receptors primarily 
via cognate CD74 and non-cognate receptors CXCR2, 
CXCR4 and CXCR7 [4, 25, 127, 128]. Upon binding to 
CD74 in combination with the CD44 co-receptor, the 
signal is transduced via src/MAPK signaling pathway, 
whereas binding to CXCR2, MIF signaling is PI3K/Akt-
dependent [128]. MIF activates MAPK and PI3K path-
ways involved in signal transduction cascades in many 
cancers [103, 121, 129–131]. Additionally, the PI3K 
pathway contributes to the MIF-mediated suppres-
sion of apoptosis linked with p53 activation [132]. It has 
been found that in melanoma, CD74-MIF interaction 
promotes tumor survival via the PI3K/AKT pathway 
in response to IFN-γ [133]. A second ligand for CD74 
is D-DT (a.k.a. MIF-2) with close structural and func-
tional similarities with MIF and an overlapping spec-
trum of activities such as tumor formation, growth and 
survival of cancer cells and tumor invasion [134, 135]. 
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Both molecules cooperate in tumorigenesis. For exam-
ple, in non-small cell lung carcinoma both molecules via 
CD74 negatively regulated AMP-activated protein kinase 
(AMPK) leading to increased expression of CXCL8 and 
VEGF [136, 137]. In pancreatic cancer tissue, D-DT was 
over-expressed together with MIF and knockdown of 
D-DT and MIF in a pancreatic cell line, PANC-1, coop-
eratively inhibited ERK1/2 and AKT phosphorylation, 
increased p53 expression, and reduced cell proliferation, 
invasion and tumor formation. A covalent tautomerase 
inhibitor of both DDT and MIF, a 4-iodo-6-phenylpy-
rimidine (4-IPP), attenuated cell proliferation and colony 
formation in vitro and tumor growth in vivo [138]. 4-IPP 
irreversibly binds to Pro1 of MIF or D-DT via nucleo-
philic dislocation by Pro1 of an aromatic iodo group 
and was shown in  vitro to have anticancer properties 
in the head and neck squamous cell carcinoma cell line, 
SCCVII, and in the human A549 lung adenocarcinoma 
[139]. In GBM, targeted inhibition of MIF and D-DT by 
4-IPP might improve radiation therapy [140]. Additive 
effects have been shown in dual inhibition of MIF and 
D-DT by shRNA treatment in clear cell renal cell carci-
nomas [141]. Current treatment strategies are focused on 
simultaneous counteracting of both cytokines.

Anti‑MIF treatment strategies in glioma models
Several different anti-cancer and GBM treatment 
approaches based on MIF inhibition have been proposed 
and include competitive, irreversible and endogenous 
inhibitors, molecules that destabilize MIF, and mono-
clonal antibodies blocking MIF or CD74 [34, 103, 142]. 
One of the biggest caveats in glioma treatment strate-
gies is the inability of drugs to traverse the blood–brain 
barrier (BBB). Attempts have been made to design more 
lipophilic compounds with better ability to reach CNS 
tumors. Recently this direction of research has become 
focused on nanotechnology [143, 144]. So far, only 
liposomes have reached phase I/II clinical trials [143]. 
One of the well-known MIF competitive inhibitors is 
ISO-1. ISO-1 reduces the proliferation of human glioblas-
toma cell lines, especially the human LN18 cell line, in a 
dose-dependent manner and was able to restore contact 
inhibition, reduce proliferation and mitogenic signaling 
[112, 145]. Moreover, ISO-1 was able to sensitize glioma 
cells to glucocorticoids, and when applied together with 
dexamethasone, cell migration and invasion were dimin-
ished in Hs683 glioma cells [146]. MIF knockdown by 
antisense transfection allowed for restoration of con-
tact inhibition in human glioblastoma cell lines [145]. 
Blockade of MIF with shRNA resulted in an increase of 
CD8-positive CTLs and reduction of Treg lymphocytes 
in the brain in animal models of glioma [119]. Silencing 
of CD74 by shRNA was associated with reduced AKT 

and ERK1/2 pathways and in the human glioma U87 cell 
line, significantly suppressed proliferation and increased 
temozolomide sensitivity [147]. Monoclonal antibodies 
against MIF have been tested in in  vitro settings where 
they were able to reduce growth of glioma cell lines, the 
migration of cells and arginase-1 assembly in MDSCs in 
a CXCR2-dependent manner [119, 123, 145]. Treatment 
with 4-IPP (inhibitor of MIF or D-DT) showed the poten-
tial to improve radiotherapy by inhibiting the stemness 
and intracellular signaling pathways and inducing apop-
tosis in vitro and in vivo glioma models [140]. A common 
chemotherapy in glioma can be efficiently enhanced by 
using combined treatments. Synergism in the inhibition 
of cell cycle and increased apoptosis has been observed 
in ex  vivo and in  vivo models when ibudilast was com-
bined with temozolomide leading to significant increased 
overall survival [148]. Despite some successful results in 
the in vitro experiments mentioned, more studies evalu-
ating molecules and their receptors with known genetic 
polymorphisms are needed to help establish the clinical 
relevance of potential therapeutics in GBM.

Discussion of MIF and CD74 inhibitors for possible 
clinical use in MS, AD and astrocytomas
MIF‑inhibitors as novel neurotherapeutics
Once CD74 was determined to be the cognate receptor 
for MIF [25], additional CD74 targeted pharmacologic 
approaches became available for consideration in CNS 
disease. A monoclonal antibody targeting CD74 (milatu-
zumab) has received US FDA approval for multiple mye-
loma [149], a malignancy of B cells where MIF–CD74 
survival pathways are highly active [150]. Milatuzumab 
further showed evidence of efficacy in lupus nephritis, 
a highly inflammatory condition, in one phase 1B study 
[151]. Anti-MIF (imalumab) completed phase II testing 
in heavily pre-treated cancer patients with a favorable 
safety profile [152], but has yet to be evaluated further. 
The rational design of small-molecule antagonists of 
MIF/CD74 interaction has been facilitated by MIF’s ves-
tigial tautomerase active site, which overlaps structurally 
with the CD74 binding domain [153, 154]. This feature 
has been exploited by several academic and industry 
groups to design small-molecule MIF tautomerase inhib-
itors that target this site [155–158] and a subset of such 
inhibitors shows therapeutic activity in mouse models 
of autoimmunity [159, 160]. The small molecule MIF 
antagonist that is furthest advanced in clinical develop-
ment is ibudilast, which was originally developed as a 
phosphodiesterase inhibitor but was discovered to inhibit 
MIF allosterically [71]. Remarkably, ibudilast binds to a 
dynamic site that is not present in the (apo) crystal form 
of MIF; that is, this site is only revealed when ibudilast 
binds to MIF. Once bound, the ensuing conformational 
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changes eliminate MIF activity. Ibudilast has shown effi-
cacy in a phase II study of MS, where high-expression 
MIF genotype is a risk for progressive disease [52, 161]. 
Ibudilast is used for asthma in Japan and is in clinical 
testing in the US for additional inflammatory conditions, 
as well as in oncology and in neurodegenerative disease 
conditions.

The recent appreciation that the MIF family member 
D-DT is co-expressed with MIF in many disease condi-
tions, and also activates CD74 has prompted interest in 
dual MIF/D-DT inhibitors [162, 163], and possibilities 
exist for targeting both MIF and D-DT together by either 
small molecule or bispecific antibody approaches [164, 
165].

Major histocompatibility complex (pMHC) constructs 
represent a novel therapeutic approach for treatment 
of PMS and other conditions involving activation 
of the CD74 pathway
RTL1000: In the mid-1990s, our lab designed recombi-
nant T cell receptor ligands (RTLs) that mimic the major 
histocompatibility complex (MHC) class II/peptide inter-
face with cognate T cell receptors [166–168]. The initial 
RTL1000 construct, designed to partially mimic only 
the extracellular components of MOG-35-55 specific T 
cell receptor (TCR) ligands present on antigen present-
ing cells, consisted of the alpha-1 and beta-1 domains of 
HLA-DR2 linked to the MOG-35-55 peptide. Interaction 
of the soluble RTL1000 with the TCR of MOG-35-55 
specific CD4 + T cells produced partial, but incomplete, 
T cell activation that selectively blocked T cell prolifera-
tion and IL-2 secretion of MOG-35-55 specific T cells. 
In a series of studies, we demonstrated that partial major 
histocompatibility complex (pMHC) constructs bind to 
human and mouse monocytes through cell surface CD74 
and that this interaction inhibits MIF binding and sign-
aling [65, 169]. The RTL1000 construct could strongly 
inhibit EAE, a mouse model of MS in HLA-DR2*1501 
transgenic mice [170]. This model was relevant to ~ 50% 
of MS patients that were DR2 positive. RTL1000 was 
approved by FDA for a Phase 1 clinical trial carried out in 
2007–2009 which demonstrated safety and tolerability of 
RTL1000 at a ≤ 60 mg dose given i.v. [171, 172].
DRα1-MOG-35–55: We later learned that another 

major receptor for RTL1000 (besides the TCR) was the 
highly conserved CD74 molecule [169], which also was 
the receptor for MIF and D-DT. By slightly altering the 
RTL1000 design (removal of the DR2 beta 1 domain 
that contained histocompatibility markers), we pro-
duced a simplified ligand, DRα1-MOG-35-55, for CD74 
that could competitively inhibit MIF/D-DT signal-
ing, block downstream inflammatory activity (ERK-1/2 
phosphorylation and MAPK activation) and treat EAE 

in both DR2*1501 transgenic and wild-type C57BL/6 
mice comparably with RTL1000 that was active only 
in the DR2 transgenic mice [66, 166]. We found that 
the DRα1-MOG-35-55 construct displayed a stronger 
effect in downregulating CD74 expression on male 
CD11b + cells as compared to female cells and the treat-
ment of chronic EAE in female mice was dependent on 
signaling through ER-α [51], a restriction that we could 
overcome with higher doses of DRα1-MOG-35-55. Due 
to conservation of DRα1 in humans and mice and molec-
ular modeling implicating DRα1 but not DRβ1 amino 
acid residues as the major binding region for CD74, the 
DRα1-MOG-35-55 construct was confirmed to retain 
ability to block CD74 signaling and reverse clinical signs 
of EAE independent of MHC barriers [173]. The DRα1 
construct can inhibit the activation and recruitment of 
brain-infiltrating T cells and CD11b + CD45hi myeloid 
cells and expression of the co-stimulatory CD86 marker 
on CD11b + CD45hi cells, and at the same time increase 
expression of the anti-inflammatory CD206 marker 
on CD11b + CD45int microglial cells [173]. Moreover, 
DRα1-MOG35-55 treatment could significantly reduce 
severe disease enhancing effects of MIF and D-DT in 
both male and female wild-type and knockout mice with 
chronic EAE [174, 175].
DRQ: DRQ is a third generation 13.5 kDa protein 

construct comprising the human (h)MOG-35-55 pep-
tide covalently linked to the L50Q modified DR alpha-1 
domain of MHC class II [176]. This modified construct 
had eightfold higher inhibitory activity for blocking 
MIF/D-DT binding and downstream signaling through 
CD74 and enhanced ability to reverse EAE induced 
paralysis in wild-type mice. DRQ is thus our prime candi-
date for treatment of progressive MS as well other MIF/
CD74-dependent inflammatory conditions, including 
stroke, methamphetamine abuse, traumatic brain injury, 
Alzheimer’s disease and GBM without the need for his-
tocompatibility testing of DRQ recipients [173]. Inhibi-
tion of MIF and/or D-DT signaling by DRQ, ISO-1 or 
ibudilast may have the potential to slow MS progression 
(Fig. 4).

Concluding remarks
MIF is a pleiotropic protein that functions as a glu-
cocorticoid-induced immunoregulator, pituitary hor-
mone, inflammatory cytokine, and immune and growth 
response regulator, with pathologic roles in autoim-
munity, neurologic disorders, and oncology. There is a 
growing interest in the therapeutic application of MIF 
antagonists in different diseases. Increased studies of 
D-DT, a MIF homolog molecule with overlapping biolog-
ical functions and possible synergism as MIF, has focused 
attention on the utility of dual inhibition for the full 
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potential of therapy. Possible pharmacological strategies 
include small molecules that disrupt both MIF and D-DT 
interaction with CD74, either as competitive or irrevers-
ible inhibitors. In this regard, 4-IPP, is one dually active, 
irreversible inhibitor. Anti-CD74 similarly prevents both 
MIF and D-DT signaling, and the bio-engineering of 

dual specificity antibodies (e.g., binding to both MIF and 
D-Dt) can be envisioned. A novel therapeutic approach 
utilizing our DRQ construct to inhibit dual effects of 
MIF and D-DT signaling has the potential to treat all 
progressive brain diseases involving CD74-dependent 
neuroinflammatory pathways. In Table  1, we indicate 

Fig. 4 MIF and D-DT inhibition in MS. MIF and D-DT signaling through CD74 is involved in MS progression by increasing inflammatory cell 
migration to the CNS, enhancing secretion of pro-inflammatory cytokines and prolonging survival of pro-inflammatory cells. Inhibition of MIF 
or D-DT signaling by partial MHC constructs (DRQ), ISO-1 or ibudilast attenuates signs of MS progression

Table 1 The operative mechanisms of action of MIF and D-DT in MS, Alzheimer disease and glioblastoma and potential therapeutic 
anti-MIF/D-DT drugs that could block their pathogenic effects

Disease MIF mechanism of action MIF targeting

Multiple sclerosis • Induces leukocyte migration [52, 69]
• Activation of macrophages, astrocytes and microglia [48, 
63–67]
• Promotes resistance of CD4( +) T cells to glucocorticoid treat-
ment [68]
• Increases pro-inflammatory cytokine secretion [52, 64]

• Partial MHC class II constructs [66–69, 169–176]
• Ibudilast [52, 72, 161]
• ISO-1 [70]

Alzheimer disease • Secreted by microglia near Aβ plaques [77, 78]
• Activation of astrocytes [79]
• Induces neurotoxicity [77, 85]

• ISO-1 [81, 112, 145, 146]
• Sulforaphane [120]
• Ibudilast [103, 148]
• mIR-608 [125]
• 4-IPP [140]

Glioblastoma • Induces cell cycle progression, tumor growth, blockage 
of apoptosis [108, 109, 131]
• Induces angiogenesis and tumor spread [98]
• Inhibition of NK and T cell anti-cancer cytotoxicity [99–103]
• Promotes MDSCs and M2 macrophage polarization [99–103]

• ISO-1 [112, 145]
• shRNA MIF inhibitor [119]
• Monoclonal antibodies against MIF [118, 123, 145]
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the operative mechanisms of action of MIF and D-DT 
in MS, Alzheimer disease and glioblastoma and poten-
tial therapeutic anti-MIF/D-DT drugs that could block 
their pathogenic effects. Additionally, the development 
of new technologies that identify genetic heterogeneity 
of cellular subpopulations responsible for pathology such 
as single cell analysis, cellular bar coding, CRISPR-Cas 
9 and CyTOF hold future promise for new therapeutics. 
Finally, the circumstance that approximately 20% of indi-
viduals express a high expression MIF allele [52] supports 
the possibility that MIF/CD74 directed therapies would 
be most effectively used in such subjects, thus provid-
ing a more precise pharmacogenomic for treatment of a 
number of MIF-dependent illnesses. Further studies are 
needed to decipher how MIF inhibitors block the hyper-
activation of cells, including glia cells in the CNS, and 
exert anti-inflammatory and neuroprotective effects.
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