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Contribution of CNS and extra‑CNS 
infections to neurodegeneration: a narrative 
review
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Abstract 

Central nervous system infections have been suggested as a possible cause for neurodegenerative diseases, par-
ticularly sporadic cases. They trigger neuroinflammation which is considered integrally involved in neurodegenera-
tive processes. In this review, we will look at data linking a variety of viral, bacterial, fungal, and protozoan infections 
to Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis and unspecified dementia. 
This narrative review aims to bring together a broad range of data currently supporting the involvement of central 
nervous system infections in the development of neurodegenerative diseases. The idea that no single pathogen 
or pathogen group is responsible for neurodegenerative diseases will be discussed. Instead, we suggest that a wide 
range of susceptibility factors may make individuals differentially vulnerable to different infectious pathogens 
and subsequent pathologies.
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Background
Central nervous system (CNS) infections have been sug-
gested to act as a possible trigger for neurodegenerative 
diseases such as Alzheimer’s disease (AD), Parkinson’s 
disease (PD), amyotrophic lateral sclerosis (ALS) and 
multiple sclerosis (MS). They are particularly interesting 
when trying to explain the high prevalence of sporadic 
neurodegenerative diseases which genetic factors alone 
are unable to explain.

For a while, the field of neurodegeneration has 
been dominated by the idea that neurodegenerative 
diseases are caused by the pathological accumula-
tion of toxic aggregating proteins such as amyloid-β 
(AD), α-synuclein (PD). However, the processes that 

trigger protein accumulation in various brain areas are 
still poorly understood, apart from rare familial cases 
where the accumulation is caused by dominantly inher-
ited mutations. Since research targeting aggregating pro-
teins has been limited in its ability to produce effective 
treatments, many researchers have turned towards com-
plementary hypotheses [1].

The ‘infection hypothesis’ suggests that infections can 
push the system to pathology by direct harm caused by 
the infection or by triggering neuroinflammation [1–3]. 
As we will later see, microbes can harm the host organ-
ism in multiple ways, such as via toxic molecules, inhi-
bition of host immune function, disruption of tissue 
tight junctions, induction of proteotoxic stress, or by 
directly killing host cells. On the other hand, they trigger 
an immune response which can be detrimental to host 
cells (‘bystander effect’) especially if the inflammatory 
state becomes chronic. However, not all infections lead 
to neurodegeneration, and genetic susceptibility factors 
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may help explain why some people are more vulnerable 
to the detrimental effects of infections than others. Fur-
thermore, infections are only one possible cause for neu-
roinflammation alongside other factors such as traumatic 
injury, ischemic injury, autoimmunity, metabolic disease, 
and lifestyle (diet, sleep, exercise, stress, smoking) which 
we will not cover here.

To assess whether infections are involved in neurode-
generation, we need to determine (a) whether patients 
suffering from neurodegeneration have a history of CNS 
infections, (b) whether non-CNS infections can cause 
neurodegeneration without direct CNS invasion, (c) 
whether infections increase risk of neurodegeneration, 
and (d) whether infections are able to induce neuroin-
flammation and neurodegeneration-related changes at 
the cellular and tissue level, possibly even after infection 
clearance. It would also be important to know whether 
pathogen infections and known risk factors for neuro-
degenerative diseases interact, and whether eradicating 
infections is an effective treatment and/or prevention 
strategy for neurodegenerative diseases. Since aggregat-
ing proteins are integral to neurodegenerative diseases, 
we will look at how aggregating proteins and infections 
could fit into the same picture.

Main text
Prevalence of CNS infections in the global population
Neurological symptoms such as fatigue, headache, sen-
sory changes, cognitive changes, psychosis, seizures, 
paresis, and coma are common symptoms of many 
infectious diseases [4]. For example, around 20–30% of 
all Covid-19 patients have been reported to have neu-
rological symptoms such as fatigue or cognitive impair-
ment even months after acute respiratory infection [5]. 
It is often difficult to know whether the neurological 
symptoms are secondary to the systemic disease state or 
caused by direct infection of the CNS. However, a variety 
of pathogens from viruses and bacteria to fungi and pro-
tozoa have been detected in the CNS using histochemi-
cal and molecular biology methods [6]. In fact, many 
globally significant diseases, such as malaria, borreliosis/
Lyme disease, HIV, diphtheria, tuberculosis, candidiasis, 
and syphilis have neurological presentations where the 
otherwise systemic infection enters the brain [4].

Differences in target tissues, infection routes, rep-
lication, and release patterns are likely to affect the 
outcome of the infection [7]. Some CNS-infiltrating 
pathogens specifically target brain cells such as neu-
rons or glia. For example, rabies virus, Zika virus, tick-
borne encephalitis virus and herpes viruses specifically 
target neurons. They often cause severe disturbance of 
the CNS homeostasis, such as encephalitis or menin-
gitis, which can cause death or disability. Such severe 

infections are associated with many disorders including 
neurodegeneration in survivors [8–12].

Other pathogens are more likely to enter the CNS 
during disturbance such as immunodeficiency, inflam-
mation, blood–brain barrier (BBB) breakdown, trauma, 
neurosurgical procedures or other infections. Such 
pathogens include Candida yeasts, Cryptococcus and 
Mycorales fungi, the protozoan parasite Toxoplasma 
gondii, as well as the bacteria Streptococcus pneumo-
niae, Staphylococcus aureus and Mycoplasma sp. [13]. 
These microbes can cause encephalitis in immunocom-
promised patients, but such severe representations are 
rare in otherwise healthy individuals.

Certain pathogens, such as Helicobacter pylori, peri-
odontal bacteria, and gut microbes, have been linked 
to neuropathology without a direct infection of the 
CNS. In fact, changes of the gut-brain axis, such as gut 
dysbiosis (imbalance of the gut microbiome), are very 
common in patients of neurodegenerative diseases 
[14]. It is thought that systemic inflammation caused by 
extra-CNS  infections can jump across the CNS barri-
ers (most notably the BBB) via proinflammatory factors 
such as cytokines, extracellular vesicles, and small lipid 
mediators, which triggers neuroinflammation [15–20]. 
Interestingly, this jump can occur prior to BBB disrup-
tion [21] which suggests that systemic infections could 
disturb BBB function from both sides. Furthermore, 
changes in the gut-brain axis can affect the CNS also 
via the secretion of neurotransmitters, vitamins, impor-
tant fatty acids such as butyrate, and amyloid proteins 
by gut microbes [14].

Finally, most neurodegenerative disease patients do 
not have a history of severe CNS pathologies such as 
encephalitis or meningitis. Thus, common pathogens 
that cause milder infections have gained the interest of 
scientists. For example, most of us carry latent infec-
tions (Table  1) which means that such infections could 
potentially explain common diseases such as dementias. 
Latent infections are characterized by alternating active 
and quiescent periods, where the pathogens hide from 
the immune system only to reactivate under favorable 
conditions such as stress-induced immunosuppression. 
To do this, they use immunomodulatory molecules [22, 
23], biofilms [24], cysts [25], encapsulation [23], and inte-
gration to the host genome (viruses) [26]. While the reac-
tivation of latent infections can lead to severe pathology 
such as encephalitis [11], majority of these infections are 
mild or asymptomatic. However, the chronic presence 
of these pathogens in the CNS is thought to cause long 
lasting or reoccurring neuroinflammation [25, 27, 28]. 
In fact, latent infections have been linked to severe con-
ditions such as cancer [29–31] and neurodegenerative 
diseases.
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Table 1  Examples of common pathogens that cause chronic latent infections and their prevalence in different adult human 
populations

Virus Abbreviation Associated disease Immunoglobulin G prevalence, 
adult
(females, males or pooled)

Known to 
enter the 
CNS

Refs.

Human herpesviruses

 Herpes simplex virus 1/Human 
herpesvirus 1

HSV-1 Cold sores, encephalitis UK: 71%, 69% (female, male)
Latin America & the Caribbean: 88% 
(pooled)
Middle East & North Africa: 92% 
(pooled)
Sub-Saharan Africa: 96% (pooled)
Asia: 77% (pooled)
East Asia (Japan): 63%, 55% (female, 
male)

Yes [32–36]

 Herpes simplex virus 2/Human 
herpesvirus 2

HSV-2 Genital herpes Europe: 11%, 5% (females, males)
Eastern Mediterranean: 8%, 3% 
(females, males)
UK: 17%, 15% (females, males)
Americas: 24%, 12% (females, males)
Latin America & Caribbean: 25%, 14% 
(females, males)
Africa: 44%, 25% (females, males)
South-East Asia: 10%, 7% (females, 
males)
East Asia (Japan): 7%, 9% (females, 
males)
Western Pacific: 15%, 7% (females, 
males)

Yes [32, 33, 37, 38]

 Varicella zoster virus/Human 
herpesvirus 3

VZV, HHV-3 Chicken pox, Varicella,
Shingles,
Herpes zoster

UK: 91%, 94% (females, males)
Western Europe (Netherlands): 95%, 
93% (females, males)
US: 98% (pooled)
Middle East (Iran): 78% (pooled)
East Asia (South Korea): 93% (males)

Yes [32, 39–42]

 Epstein-Barr virus/Human herpes-
virus 4

EBV, HHV-4 Mononucleosis UK: 96%, 93% (females, males)
US: 89% (pooled)
Middle East (Qatar): 100%, 96% 
(females, males)
Sub-Saharan Africa (Nigeria): 20% 
(pooled)
East Asia (China): 90% 
(pooled, > 8-year-olds)
Australia: 89%, 96% (females, males)

Yes [32, 43–46]

 Cytomegalovirus/Human herpes-
virus 5

CMV, HHV-5 Europe: 45–95%, 35–44% (females, 
males)
UK: 59%, 96% (females, males)
North America: 24–81%, 48% (females, 
males)
Latin America: 58–94% (females)
Africa: 55–97% (pooled)
East Asia (Japan): 60% (females)

Yes [32, 47, 48]

 Human (beta)herpesvirus 6 HHV-6 UK: 91%, 90% (females, males)
Northern Europe (Finland): 86% 
(pooled)
Western Europe (France): 76% 
(females)
US: 98% (pooled)
Middle East (Qatar): 93%, 71% 
(females, males)
South America (Brazil, Ecuador): 
91–92%, 90% (females, males)
Northern Africa (Morocco): 20% 
(females)
Sub-Saharan Africa: 60–90% (females)
East Asia (Japan): 79% (pooled)

Yes [32, 49–53]
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General mechanisms of microbe‑induced pathology 
in the brain
Potential mechanisms for microbial neuropathology are 
diverse. Many of them are secondary to the microbe’s 
attempt to infect, survive and replicate inside the host. 
For example, many viruses and intracellular parasites lyse 
the host cell as part of their reproductive cycle to release 
the newly produced pathogens. However, there are other 
ways in which pathogens are harmful. For example, many 
molecules that microbes use to survive can be toxic to 
the host [70]. Furthermore, the infiltration of pathogens 

into host tissues via pore formation [71], modulation of 
adhesion proteins [72], and hijacking of the host endocy-
tosis [73] can disrupt important host cell-to-cell contacts 
[74, 75], cause the fusion of adjacent cells (syncytia) [75–
78], and cause leakage of molecules across host barriers 
such as the BBB [75].

Similarly, by hijacking the host protein synthesis 
machinery, cytoskeleton, and intracellular transport 
system, the pathogen facilitates its own replication and 
spread. Simultaneously, it can also disrupt the homeo-
static function of the host cell, such as normal protein 

Table 1  (continued)

Virus Abbreviation Associated disease Immunoglobulin G prevalence, 
adult
(females, males or pooled)

Known to 
enter the 
CNS

Refs.

 Human (beta)herpesvirus 7 HHV-7 UK: 96%, 93% (females, males)
Central America (Mexico): 98% 
(pooled)
South Africa: 99% (pooled)
East Asia (Japan): 44% (pooled)
Germany/Israel/Poland/Australia/US: 
75–85% (pooled)

Yes [32, 54, 55]

 Kaposi’s sarcoma-associated her-
pesvirus/Human herpesvirus 8

HHV-8 UK: 8%, 9% (females, males)
Southern Europe (Spain): 7%, 6% 
(females, males)
Middle East (Iran): 15% (females)
US: 3–5% (pooled)
Sub-Saharan Africa: 40% (pooled)
The Caribbean: 3% (pooled)
South-East Asia: 4% (pooled)

No [32, 56–60]

Human papillomaviruses

 Human papillomaviruses HPV Anogenital cancers Among asymptomatic individuals:
Africa: 21–23%, 17% (females, males)
Eastern Africa: 35%, 38% (females, 
males)
North America: 5–14%, 9–45% 
(females, males)
South America: 14–17%, 9–34% 
(females, males)
Central America: 21%, 26% (females, 
males)
Europe: 7–10%, 7–31% (females, 
males)
Eastern Europe: 29%
Asia: 8–11%, 3% (females, males)
Eastern Asia: 19%, 15% (females, 
males)

No [61–64]

Parasites

 Toxoplasma gondii Toxoplasmosis Europe: 30% (females)
Northern Europe (Finland): 14%, 20% 
(females, males)
UK: 27%, 29% (females, males)
Eastern Europe (Serbia): 45%, 55% 
(females, males)
Eastern Mediterranean: 40% (females)
USA & Canada: < 10% (females)
Latin America: 45% (females)
Africa: 31–40%, 30% (females, males)
South-East Asia: 25% (females)
Western Pacific: 11% (females)

Yes [32, 65–69]
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synthesis and axonal transport [79, 80]. This can lead to 
problems such as proteotoxic stress [81]— a common 
occurrence in neurodegenerative diseases [82].

Furthermore, the immunomodulatory and immuno-
suppressive tactics utilized by pathogens to evade the 
host immune system [22, 23, 83] can lead to secondary 
infections, or to the disruption of homeostatic functions 
performed by the immune cells, e.g. waste clearance per-
formed by microglia.

Finally, host immune response to pathogen surface 
structures or secreted products can become as detri-
mental as the infection itself. For example, cytokines, 
antimicrobial molecules, reactive oxygen species (ROS), 
nitric oxide, phagocytosis, and forced cell death are used 
by immune cells to destroy pathogens [84]. These same 
mechanisms can be harmful to nearby host cells if there 
is no balance between optimal pathogen clearance and 
excessive inflammatory response [75, 84].

A brief introduction of discussed neurodegenerative 
diseases
Dementia (unspecified)
World Health Organization estimates that around 55 mil-
lion people are affected by dementia around the world 
and the number is thought to increase to 139 million 
by 2050 [85]. Dementia itself is not a disease but a syn-
drome (a collection of symptoms) which describes the 
decline of cognitive abilities such as memory, learning, 
concentration, planning, motivation, language process-
ing, reasoning, and thinking. It also affects mood and can 
cause anxiety, depression, or aggression. The most com-
mon causes for dementia are AD (70% of all cases), fron-
totemporal dementia, vascular dementia, and dementia 
with Lewy bodies. All of them have slightly different 
main symptoms and disease dynamics, but the overlap 
between diseases is considerable. Determining which dis-
ease causes dementia in each patient is difficult and often 
based on symptoms alone. Thus, many studies handle 
dementia as a collective unit.

Alzheimer’s disease
AD causes around 60–70% of all dementia cases [85]. It 
is characterized by progressive degeneration of the brain 
parenchyma and the accumulation of proteinaceous 
amyloid-β and tau inclusions. The pathology is associated 
with neuroinflammation, glial activation, and dysfunc-
tion of the BBB and the brain blood circulation.

Apolipoprotein E (APOE) ξ4 allele is the most preva-
lent genetic risk factor for late-onset AD (begins after 
the age of 65). It increases the risk of AD ~ threefold in 
heterozygotes and ~ 15-fold in homozygotes [86]. APOE 
is a lipid carrier molecule that facilitates the trafficking 
of cholesterol and phospholipids between cells. Due to 

its effect on lipid membranes, APOE is involved in many 
cellular functions, including the regulation of immune 
cells such as microglia [87, 88].

Many other risk mutations for AD are enriched in 
microglia, including mutations in TREM2, ABI3, ABCA7, 
CD33, and CR1 [89–91]. For example, triggering receptor 
expressed on myeloid cells 2 (TREM2) regulates micro-
glial functions such as phagocytosis, microglial activa-
tion, and inflammatory responses, which are crucial for 
CNS immunity. Rare mutants of TREM2, such as the sin-
gle nucleotide mutation R47H, have been associated with 
increased risk of AD and other dementias [92, 93].

Parkinson’s disease
PD is the second most common neurodegenerative dis-
ease after AD. In 2019 it was estimated to have affected 
over 8.5 million individuals globally [94]. PD is the most 
common cause of parkinsonism, a motor disorder char-
acterized by tremors, rigidity, bradykinesia, and posture 
changes. PD also causes a variety of gastrointestinal (GI) 
symptoms. The symptoms are a result of the progressive 
loss of dopaminergic neurons of substantia nigra. The 
process is associated with neuroinflammation and the 
accumulation of amyloid-like α-synuclein.

Many important PD risk genes are involved in endo-
somal (LRRK2, SNCA) and lysosomal (GBA, TMEM175, 
CTSB) function, mitophagy (PINK1, PARK2), autophagy 
(SNCA, KAT8), RNA processing (TARDBP), and antigen 
presenting (HLA-DRB6, HLA-DQA1) [95]. Many of these 
functions are important for immune response. Thus, 
mutations in these pathways can make an individual 
susceptible to the negative effects associated with infec-
tions. For example, the PD risk mutation p.G2019S in the 
LRRK2 gene lead to higher reovirus mortality in mutant 
mice compared to wildtype animals. The effect seems to 
be caused by heightened inflammatory response [96, 97]. 
Interestingly, the LRRK2 p.G2019S mice were better at 
controlling septic Salmonella typhimurium infection [96] 
which hints at a pathogen-specific effect.

Amyotrophic lateral sclerosis (ALS) and ALS‑like syndromes
Amyotrophic lateral sclerosis, also known as Lou Gehrig’s 
Disease, is a fatal motor neuron disease characterized by 
progressive degeneration of upper and lower motor neu-
rons. It leads to muscle weakness and the loss of motor 
control, which leads to death when it spreads to respira-
tory muscles. Intracellular aggregation of proteins such 
as transitive response DNA-binding protein 43 (TDP-
43), fused in sarcoma (FUS) and superoxide dismutase 1 
(SOD1) are common.

Noncoding hexanucleotide GGG​GCC​ repeat expan-
sion in C9orf72 is the most common genetic mutation 
found in ALS patients (40–50% of familial cases, 5–10% 
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of sporadic cases) and frontotemporal dementia [98]. The 
gene is involved in many cellular functions including lys-
osomal function, stress granule formation and immune 
function. Several gain-of-function and loss-of-function 
mechanisms have been suggested to explain how muta-
tions in C9orf72 increase ALS risk [99, 100].

Several mutations in SOD1 explain around 2% of all 
ALS cases and 20% of familial cases. SOD1 is an impor-
tant antioxidant enzyme that protects cells from ROS, 
which is secreted by immune cells during pathogen infec-
tions [101]. A combination of infection and genetic sus-
ceptibility to ROS could make an individual vulnerable to 
neurodegeneration [102].

Multiple sclerosis
MS is the most common inflammatory demyelinating 
disease in the brain and spinal cord. It affects around 
2.8 million people worldwide [103]. It is characterized 
by defects in sensory, motor, and autonomic functions. 
The most common clinical course involves alternating 
relapses and remissions where flare-ups of symptoms are 
followed by periods of full or partial recovery. Common 
histopathological findings include focal demyelinated 
plaques or lesions surrounded by activated T-cells and 
myeloid cells such as microglia. The leading theory is that 
MS is caused by autoimmunity against host myelin-pro-
ducing cells. In fact, many MS risk genes are involved in 
autoimmunity, such as the human leukocyte antigen class 
II allele HLA-DBR1*15:01 and the interleukin 2 receptor 
subunit alpha (IL2RA) [104]. The possible role of infec-
tions in MS remains unknown. On the one hand, micro-
bial molecular mimics of myelin-associated proteins such 
as the myelin basic protein (MBP) could trigger autoim-
munity [105, 106]. On the other hand, it has been sug-
gested that excessive hygiene in modern societies leads to 
deficient training of immune cells which can cause them 
to attack host tissues (‘the hygiene hypothesis’).

Role of pathogens in neurodegenerative diseases
Many CNS-infiltrating pathogens have been found in 
neurodegenerative disease patients using histological and 
PCR-based methods. Many of them show positive associ-
ations with neurodegeneration in population level studies 
(often around 1.3–3.0-fold increase in risk, see Table 2). 
The strength of these associations is of the same magni-
tude as other commonly accepted neurodegeneration-
associated factors such as cardiovascular disease, stroke, 
and sleep disorders [107–112].

Furthermore, in  vitro cell culture studies and in  vivo 
animal models have shown that many pathogens can 
induce neuroinflammation and neurodegeneration-
related changes, such as glial activation, leukocyte infil-
tration, cytokine production, BBB dysfunction, and the 

accumulation of neurodegeneration-related aggregating 
proteins.

The diversity of pathogens that have been implicated in 
neurodegenerative diseases is striking, even though none 
of the connections have been conclusively proven. For 
example, Sipilä et  al. screened the association of hospi-
tal-treated pathogen infections (925 International Clas-
sification of Diseases-10 codes) with dementia using the 
medical records of over 700 000 participants in Finnish 
and United Kingdom databanks. The dataset included 
pathogens of all classes: viruses, bacteria, fungi, and pro-
tozoan parasites, and both CNS and non-CNS infections. 
All types of infections increased the risk of dementia 
which suggests that there is no single pathogen or infec-
tion type that would be solely responsible for demen-
tia. Furthermore, multiple simultaneous or subsequent 
infections increased the risk of dementia more than sin-
gle infections (adjusted hazard ratio (aHR) 5.08 vs. 3.04 
respectively), particularly in the case of combined virus 
and bacterial infections (aHR 8.15, 95% CI: 4.73–14.05) 
[116]. Similar results have since been published by Bohn 
et  al. [139]. However, there may be disease-specific dif-
ferences. For example, Fang et  al. found no association 
between CNS infections and ALS in a study of 4000 ALS 
patients and 20 020 matched controls [140].

Below, we will continue exploring this diversity by 
reviewing the data that supports the involvement of CNS 
infections by herpesviruses, enteroviruses, HIV, SARS-
CoV-2,  spirochete bacteria,  bacterial pneumonia, fungi, 
and T. gondii in unspecified dementia, AD, PD, ALS, 
and MS (Fig. 1). We will also briefly mention extra-CNS 
infections that have strong link to neurodegeneration, 
namely periodontal disease, H. pylori infections, and gut 
dysbiosis. Simultaneously, we will discuss the importance 
of individual susceptibility, which may explain why neu-
rodegeneration is triggered in some individuals while 
most are left unaffected. The final section of this review 
discusses the idea that neurodegeneration-related aggre-
gating proteins could function as innate immune proteins 
that bind microbes and repress their replication while 
activating antimicrobial immune pathways.

Herpesviruses
The family of human herpes viruses includes herpes sim-
plex virus 1 and 2 (HSV-1 and HSV-2), varicella-zoster 
virus/human herpes virus 3 (VZV/HHV-3), Epstein-Barr 
virus/human herpes virus 4 (EBV/HHV-4), cytomegalo-
virus/human herpes virus 5 (CMV/HHV-5) and human 
herpes viruses 6, 7 and 8 (HHV-6, HHV-7, HHV-8). They 
cause common ailments such as cold sores of the mouth 
and genitals (HSV-1 and HSV-2), chickenpox/shingles 
(VZV), and mononucleosis/ ‘the kissing disease’ (EBV). 
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HSV-1 is also the most common cause of encephalitis 
worldwide.

While many members of this family of viruses have 
been implicated in neurodegenerative diseases, it is 
unlikely that any of these viruses would be the sole 
cause of any neurodegenerative disease. After all, 
despite the extremely high prevalence of herpesviruses 
in the global population, most us are not affected by 
neurodegeneration.

Thus, it is not surprising that studies attempting to 
find correlation between neurodegenerative diseases 
and herpesviruses have yielded mixed results (Table  2). 

However, accounting for genetic risk factors associated 
with neurodegenerative diseases might help explain this 
discrepancy. For example, the association between APOE 
ε4 and HSV-1 in AD was first suggested by Ruth Itzhaki 
et al. in the late 1990s, when they reported that the odds 
of finding APOE ε4 allele in HSV-1 positive AD patients 
was almost 17 times higher compared to HSV-1 nega-
tive individuals without AD (OR 16.8, 95% CI: 3.61–77.8) 
[141].

Linard et  al. and Lopatko Lindman et  al. have also 
reported a 3.68–4.55-fold increase in AD risk in HSV-1 
positive APOE ε4 carriers [123, 125]. Furthermore, 

Fig. 1   A variety of CNS infections are associated with AD, PD, ALS, and MS. IL2RA Interleukin-2 receptor subunit alpha
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Lopatko Lindman et al. reported an association between 
AD, HSV-1, and a risk score which was calculated from 
the presence of mutations in nine AD risk genes (ABCA7, 
BIN1, CD33, CLU, CR1, EPHA1, MS4A4E, NECTIN2, 
and PICALM) (OR 2.35, 95% CI: 1.21–4.56, P = 0.01) 
[125]. Interestingly, the combination of APOE ε4 with 
other pathogens, including HSV-2, did not increase AD 
risk [125]. It suggests that the genotype-microbe interac-
tions are somewhat pathogen-specific.

The mechanisms through which genetic risk factors, 
such as APOE ε4 allele, increase AD risk, are still under 
investigation. However, it has been suggested that the 
APOE isoform may affect for example HSV-1 latency and 
frequency of reactivation [141–143] or the number of 
oral lesions [144].

Cell culture models also support the involvement 
of HSV-1 in AD. In vitro studies by Cairns et  al., Qiao 
et  al. and D’Aiuto et  al. have shown that HSV-1 can 
induce AD-like pathology in human induced pluri-
potent stem cell (hiPSC) -derived neural cultures and 
3D organoids[145–148]. The signs of AD pathology 
included changes in neuronal morphology, the forma-
tion of syncytia, neuronal loss, amyloid-β and tau accu-
mulation, expression changes in amyloid-β processing 
genes (PSEN1, PSEN2, BACE1), increased expression of 
pro-inflammatory cytokines (TNF-α, IFN-γ, IL-1β, IL-6, 
IL-10, IL-4, CXC3R) as well as gliosis characterized by 
changed astrocyte morphology, increased expression of 
genes involved in astrogliosis (e.g. glial fibrillary acidic 
protein, GFAP) and microglial activation (CD11b, CD68, 
HLADR) [145–148]. Fruhwürth et al. have also reported 
that HSV-1 infection downregulates TREM2 pathway 
in hiPSC-derived microglia which leads to impaired 
interferon-β induction and impaired phagocytosis of 
HSV-1 infected neurons [149]. One possible mechanism 
for HSV-1-induced neuropathology is through the bind-
ing of the virus envelop glycoprotein D and the Aβ42 
peptide. The amino acid residues involved in Aβ42-
binding are left open, which means that the Aβ42-virus 
complex can act as a seed for Aβ oligomerization[150]. 
While this binding property may have evolved as part of 
the innate immune system (see later section), the process 
has likely become harmful to the host in conditions such 
as AD.

VZV is another herpesvirus, which has been researched 
in terms of neurodegeneration. Some studies have 
reported a mild increase in the risk of dementia (1.09–
1.11-fold) [115, 117, 118] and PD (1.17–1.5-fold) [129, 
130] in herpes zoster patients (detectable reactivation 
of VZV) while others have found either no association 
or an inverse association [114, 127, 151, 152]. Interest-
ingly, Cairns et al. have reported that VZV induced glio-
sis and secretion of proinflammatory cytokines in hiPSC 

-derived neural cultures, but not the accumulation of 
amyloid-β or tau. Instead, VZV induced the reactiva-
tion of quiescent HSV-1 infection which then led to the 
accumulation of Aβ and phosphorylated tau [145]. Simi-
lar reactivation could be induced by other viruses such as 
SARS-CoV-2 [153–155].

Like HSV and VZV, EBV has been linked to many neu-
rodegenerative diseases [156, 157]. The strongest link 
has been identified between EBV and MS. Up to 32-fold 
increase in MS risk has been reported following EBV 
infection [8, 134, 135]. Furthermore, MS is very rare in 
individuals who are seronegative for EBV [158]. EBV can 
infect neurons directly, disrupt BBB integrity, and cause 
neuroinflammation [156]. However, the prevailing theory 
is that EBV predisposes the host to MS-related autoim-
munity through the infection of host B cells as well as 
through molecular mimicry of host myelin-associated 
proteins myelin basic protein (MBP) and glial cell adhe-
sion molecule (GlialCAM) by the EBV nuclear antigen 
1 (EBNA1) [105, 106, 159]. Since EBV is almost ubiq-
uitously present in the population (90%), the affected 
individuals likely carry other vulnerabilities to autoim-
mune diseases. For example, the MS risk factor HLA-
DRB1*15:01 can facilitate EBV entry into host B cells 
[160, 161]. Lifestyle factors, such as smoking, can further 
modulate this interaction [162]. Furthermore, another 
EBV protein, EBNA2, binds and alters the expression of 
MS-associated host genes which may increase MS risk. 
The effect is dependent on the presence of known protec-
tive or risk mutations for MS (listed in Table 3) [163].

Antiherpetic drugs such as valacyclovir and acyclovir 
have been reported to reduce symptoms and slow dis-
ease progression in dementia patients. Linard et al. have 
reported that intake of at least one systemic antiherpetic 
drug reduced the risk of AD (aHR 0.85, 95% CI: 0.75–
0.96, p = 0.009) in a cohort of 6642 subjects over the age 
of 65. Most subjects had undergone only a single intake 
of antiherpetic drugs and regular treatment was rare 
[124]. Antiviral therapy also reduced the risk of demen-
tia in a Taiwanese population cohort study of 39,205 
herpes zoster patients (HR 0.55, 95% CI 0.40–0.77) [118] 
and a South Korean cohort study of 34 505 herpes zoster 
patients (aHR 0.79, 95% CI: 0.69–0.90)[117]. The typi-
cal length of antiviral drug treatment was not specified 
for these studies. A study by Young-Xu et  al. on 87 687 
HSV-positive US veterans over the age of 50 years found 
that antiherpetic medication was associated with lower 
dementia risk when compared to the untreated group 
(aHR 0.75, 95% CI: 0.72–0.78). The reduction in dementia 
risk was associated with lower markers of neuroinflam-
mation [167]. It is noteworthy that these therapies are not 
specific to any specific herpesvirus and that the positive 
effect could also be mediated by other viral infections.
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In contrast, Schnier et  al. found no convincing asso-
ciation between antiherpetic drug use and reduction in 
dementia risk in a study of 2.5 million individuals aged 
over 65 years. They only found a small and heterogenous 
negative effect in an analysis of four European databases 
from Wales, Germany, Scotland and Denmark. How-
ever, the typical length of antiherpetic drug treatment 
was relatively short: only 1–2 weeks [168]. In fact, it has 
been suggested that the antiherpetic/antiviral treatment 
lengths commonly administered in Europe are not long 
enough to show positive effects in these database-driven 
association studies. For example, the above-mentioned 
study by Young-Xu et al. reported that increasing length 
of antiviral treatment is associated with larger reductions 
in dementia risk in symptomatic HSV carriers. While 
any antiherpetic medication reduced the risk of demen-
tia by 25% (HR = 0.75, 95% CI: 0.72–0.78), treatments 
longer than one year reduced the risk of dementia by 43% 
(HR = 0.57, 95% CI, 0.53–0.61). In the subgroup receiv-
ing medication for less than 30  days, the reduction was 
negligible (HR = 0.93, 95% CI: 0.87- 0.98) [167]. Thus, 
more studies testing the efficacy of longer antiherpetic 
drug treatments are needed. An ongoing clinical study by 
Columbia University [169] is currently assessing the effi-
cacy of 7–8-week valacyclovir treatment in HSV-1 and 
HSV-2-positivie patients suffering from mild AD [170].

Enteroviruses
Enteroviruses, such as poliovirus, coxsackievirus, echo-
virus, enterovirus-A71, and enterovirus-D68 have gained 
interest in the field of motor neuron diseases due to 
their ability to infect motor neurons [171]. For example, 
poliovirus, the most famous enterovirus, attacks motor 
neurons of the spinal cord and brain stem causing neu-
roinflammation which can lead to irreversible paralysis 
(poliomyelitis aka. Polio). Around 28% of poliomyelitis 
survivors develop motor neuron disease (post-polio syn-
drome) decades after acute disease suggesting a chronic 
or reactivated infection [172].This disorder resembles 
ALS because it is characterized by gradual weakening 
and atrophy of specific muscles (often the limbs affected 
by poliomyelitis years earlier) due to the loss of motor 
neurons in the brainstem and spinal cord. Other symp-
toms include muscle fasciculations, fatigue, pain, sleep 
disturbance, and sometimes problems breathing or swal-
lowing. However, post-polio syndrome can often be dis-
tinguished by the life history of poliomyelitis as well as 
slower progression and more generalized fatigue [173].

The relationship between ALS and ALS-like syndromes 
is still unclear, as is the involvement of enteroviruses in 
ALS. Some studies have found enteroviral RNA in ALS 
and motor neuron disease patients more frequently than 
in controls using PCR methods [174–177]. In contrast, 

others have failed to detect enterovirus RNA in the spinal 
cord of ALS patients [178–180]. The discrepancies could 
be explained by geographical differences (positive results 
in France, UK, Japan vs. negative in US and Australia) or 
by random variation introduced by small sample sizes 
(< 30 samples per group for all studies except one posi-
tive study where the number of samples was ten times 
higher).

Interestingly, Xue et  al. have reported that sublethal 
coxsackievirus B3 infection can cause an increase in 
proinflammatory gene expression, TDP-43 pathology, 
neuronal damage, and immune cell infiltration in the 
CNS of normal C57BL/6J mice. In addition, coxsackievi-
rus B3-infected mice carrying an ALS-related mutation 
SOD1G85R displayed also a reduction in their lifespan and 
earlier start of motor dysfunction than non-infected ALS 
mice. Their results suggest that while the virus alone is 
able to cause neurodegenerative changes in these mice, 
a genetic susceptibility is needed for the onset of motor 
dysfunction [166].

In contrast, MS is a disease which affects the myelin 
sheaths around axons instead of the neurons themselves. 
Based on the limited evidence available, enteroviruses 
are not involved in the development of MS. For example, 
Kuusisto et  al. found no evidence of enterovirus infec-
tion in the serum or cerebrospinal fluid of 17 MS patients 
[181]. Similarly, Perlejewski et  al. detected enterovirus 
by RT-qPCR in the cerebrospinal fluid of only one MS 
patient (1 out of 34) [182].

HIV
HIV/AIDS is an infectious viral disease that compromises 
the host immune system due to the selective tropism of 
the virus to immune cells such as CD4 positive T helper 
cells, macrophages, dendritic cells, and microglia. The 
replication cycle of HIV kills the host cell which results in 
depletion of host immune cells and generalized immune 
deficiency. If left untreated, the patients succumb to sec-
ondary infections typically within 10 years [183]. In fact, 
HIV patients are susceptible to other opportunistic infec-
tions such as candidiasis, toxoplasmosis and bacterial 
pneumonia [184–186] as well as the reactivation of other 
latent infections such as herpesvirus infections [187, 
188].

Interestingly, HIV has been linked to multiple neu-
rodegenerative diseases. Around half of HIV/AIDS 
patients develop HIV-associated neurocognitive disorder 
(HAND) even with effective antiretroviral medication 
[189, 190]. Many of the symptoms resemble dementia, 
such as difficulties in learning, memory, decision making, 
and concentration. Patients also display neuroinflamma-
tion, neuronal loss, microglia/macrophage activation, 
multinucleated giant cells, and diffuse atrophy of many 
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brain areas [191–193]. According to Wendelken et  al. 
HAND-associated brain atrophy is exacerbated by the 
AD risk factor APOE ε4 [194]. Furthermore, neuro-
pathologies such as progressive brain atrophy and micro-
glia/macrophage activation, are present even in those 
with successful antiviral therapy which suggests that the 
pathology is mainly driven by neuroinflammation [195–
197]. However, low-level viral replication in the CNS 
cannot be completely discounted even with successful 
suppression of the viral load in the plasma [191]. Inter-
estingly, the use of antiviral therapy in HIV positive indi-
viduals is associated with an increase in the CSF levels 
of Aβ40 and Aβ42 compared to untreated HIV patients. 
Patients suffering from HIV-associated dementia (HAD) 
display reduced CSF levels of Aβ40 and Aβ42 compared 
to neurocognitively unimpaired individuals. The former 
is also commonly observed in AD patients [198]. These 
results suggest that HIV impairs Aβ clearance to the 
CSF, which may be a result of increased Aβ deposition 
into mature plaques. This process may be exaggerated in 
HAD patients. Increased CSF Aβ40 and Aβ42 levels fol-
lowing antiviral therapy would then indicate rescued Aβ 
clearance, which is however not enough to rescue cogni-
tive functions [199].

Parkinsonism is another possible, albeit rare, outcome 
of HIV infection. There are multiple possible causes for 
parkinsonism in people living with HIV, including sec-
ondary infections, HAND, dopamine-blocking drugs 
such as neuroleptics, adverse reaction to antiretroviral 
therapy, and HIV encephalitis. Thus, the mechanistic 
connection between HIV and parkinsonism is not clear-
cut. In general, the emergence of antiretroviral therapy 
has reduced the occurence of HIV-associated parkinson-
ism. Amelioration of symptoms following antiretroviral 
treatment, or the discontinuation of dopamine-blocking 
drugs, has also been reported [200]. Hence, HIV testing 
is worth considering in patients with otherwise unex-
plained parkinsonism.

Several case studies have also reported ALS-like syn-
drome in HIV patients, including in vivo signs of upper 
and lower motor neuron involvement [201–211]. How-
ever, the authors of this article are unaware whether 
motor neuron loss has been documented in post mortem 
or not. The patients often display earlier onset than in 
classical sporadic ALS [209]. The causation between HIV 
and ALS-like syndrome is yet unproven, and the putative 
mechanism is still unknown. However, the mechanism 
is likely indirect since HIV specifically targets immune 
cells such as microglia (instead of motor neurons). Simi-
lar to HIV and parkinsonism, antiretroviral therapy has 
been an effective treatment in many cases of HIV-asso-
ciated ALS-like syndrome [202, 204, 208, 209] which 
suggests that the possibility of HIV infection should be 

taken into consideration in patients at high risk of expo-
sure. In contrast, reduced risk of MS and reduced rate of 
relapsing have been reported in HIV positive individuals. 
It is currently not known whether the reduction in MS 
risk is a result of the HIV infection itself or secondary to 
antiretroviral therapy. Multiple explanations have been 
suggested. On the one hand, the depletion of CD4 + T 
cells by HIV could inhibit the development of CD4 + T 
cell-associated autoimmunity in untreated or late stage 
HIV patients. On the other hand, antiretroviral therapy 
could also inhibit other CNS viruses than HIV, includ-
ing EBV, which could subsequently reduce MS risk. So 
far, the results have been variable and clear conclusions 
cannot be drawn. This and many other open questions in 
the field of HIV and MS have recently been reviewed by 
Stefanou et al. [212].

SARS‑CoV‑2
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is a respiratory virus which caused the recent 
COVID-19 pandemic. Interestingly, CNS symptoms are 
common during and after SARS-CoV-2 infections, and 
they can last for extended periods of time (‘long covid’). 
A meta-analysis by Ceban et  al. reported that twelve or 
more weeks after COVID-19 diagnosis 32% of individu-
als suffered from fatigue (68 included studies), and 22% 
of cognitive impairments (43 included studies) [5]. In a 
study by Xu et al. the burden of neurologic sequelae was 
70 per 1000 persons after one year [213]. Changes in 
brain anatomy, such as reduction in grey matter thick-
ness and global brain volume, have also been detected 
in COVID-19 patients – even milder cases [214]. Micro-
haemorrhages are also common [215–217].

This has triggered the questions whether SARS-CoV-2 
can infect the brain, and whether the COVID-19 pan-
demic could increase the prevalence of neurodegen-
erative diseases in the future. Particularly, AD has been 
implicated due to the cognitive changes seen during and 
after COVID-19 disease. The diseases also share the risk 
factor APOE ε4, which increases the risk of late onset AD 
as well as severe COVID-19 disease [217, 218]. Further-
more, severe COVID-19 disease and mortality due to it 
are more common in AD patients.

To answer the first question: Post mortem studies have 
detected the presence of viral components in neurons, 
glia, and brain endothelial cells in deceased COVID-19 
patients (the cases were not selected based on neurologi-
cal symptoms) [219–223]. Consistently, stem cell-derived 
2D and 3D models have shown that SARS-CoV-2 can 
infect the choroid plexus epithelium, astrocytes, subset 
of neurons, and possibly even microglia [224–234]. Thus, 
CNS infection by SARS-CoV-2 is possible.
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Signs of neuropathology are also present after SARS-
CoV-2 infection. Histopathological signs of neuroinflam-
mation such as astrogliosis, microglial activation [219, 
220, 235], BBB disturbance [235, 236], and infiltration of 
peripheral immune cells [219, 235] have been reported in 
COVID-19 patients. Stem cell studies have also reported 
microglial activation [237], cytokine production [231, 
232, 237, 238], astrogliosis [223, 231, 239], altered neu-
ronal morphology [229, 238, 239], synapse elimination 
[230], and neuronal loss [223, 230, 232] after SARS-
CoV-2 infection. All of these processes are involved in 
AD. Even tau accumulation has been reported [240, 
241], which is a hallmark of AD and other so called 
‘tauopathies’.

Taken together, SARS-CoV-2 does display signs of 
neurodegenerative potential. However, it is possible 
that in  vivo the neurodegenerative potential of SARS-
CoV-2 is mediated by peripheral cytokine release and 
brain barrier disturbance (BBB, blood-CSF barrier) and 
cerebral hypoperfusion rather than by direct infection 
[236]. According to Matschke et. al, the severity of the 
histopathological changes they observed was not cor-
related with the presence of viral particles in the CNS 
which suggests that the peripheral inflammatory pro-
cess is enough to cause CNS pathology [219]. Similarly, 
Käufer et  al. have reported that intranasal SARS-CoV-2 
infection caused microgliosis, tau hyperphosphorylation, 
and α-synuclein pathology in the hamster cortex even 
without CNS infection. Notably, the pathology persisted 
beyond virus clearance which could have implications for 
long-COVID and neurodegeneration [223].

Spirochete bacteria
Spirochetes are a group of spiral-shaped bacteria from 
the genera Spirochaeta, Treponema, Borrelia and Lepto-
spira. Many members of this group are human pathogens 
that cause diseases such as leptospirosis, Lyme disease, 
relapsing fever, syphilis, and periodontitis. Cases for and 
against the involvement of spirochetes in neurodegenera-
tive diseases have been raised.

For example, Miklossy et al. have suggested the involve-
ment of spirochetes in AD [242–244]. They have reported 
that spirochetes, such as periodontal Treponema sp. and 
Borrelia burgdorferi, co-localize with Aβ and neurofi-
brillary tangles in AD brains, form plaque-like colonies, 
establish latent infections, disturb cerebral blood flow, 
and induce AD-related lesions and neuroinflammation 
[243, 244].

In vitro experiments by the same group on rat pri-
mary neurons, astrocytes, and microglia have shown 
that 2–8-week exposure to Borrelia burgdorferi induces 
AD-like changes, such as overexpression of the amyloid 
precursor protein (APP), tau hyperphosphorylation, and 

the accumulation of Aβ inclusions reminiscent of amy-
loid plaques. Interestingly, the presence of microglia 
increased Aβ accumulation, which highlights the impor-
tance of microglia in the neurodegeneration induced by 
spirochetes [242].

In contrast, Gutacker et al. found no evidence of Bor-
relia burgdorferi in the brains of ten AD patients [245]. 
Similarly, Forrester et al. found no geographic correlation 
between the incident rate of Lyme disease and death rate 
of neurodegenerative diseases in the United States [246]. 
However, neurodegenerative diseases are considered 
highly multifactorial, which makes such broad correla-
tions difficult to assess. If it turns out multiple pathogen 
groups can trigger neurodegenerative changes in suscep-
tible individuals, important correlations can get over-
looked by studies focusing on one type of infection.

Syphilis is another pathogen that may be relevant to 
only a subset of patients. Syphilis is a sexually transmit-
ted disease caused by the spirochete Treponema pal-
lidum, which swept through Europe in the 1500s. It has 
since become rare due to effective antibiotic treatments. 
CNS presentation is relatively common at the early stages 
of syphilis [247]. It is characterized by sensorimotor 
symptoms such as abnormal gait, tremors, and numb-
ness of the lower limbs accompanied by cognitive and 
mood dysfunction such as confusion, poor concentra-
tion, depression, and irritability. Interestingly, several 
cases of dementia caused by late neurosyphilis have been 
reported [248–259]. Commonly the patients are around 
40–60-year-old at the time of diagnosis (early-onset 
for dementia) and they display a variety of neurological 
symptoms such as rapid cognitive decline, behavioral 
changes, and psychosis. In some patients, the symptoms 
ameliorate after treatment with antibiotics [248–259]. 
Thus, syphilis should be considered as a cause for demen-
tia-like symptoms in infected individuals. Interestingly, 
asymptomatic neurosyphilis patients display differ-
ent levels of Aβ42 and tau in the CSF compared to AD 
patients, which could be used as a biomarker to differ-
entiate between the diseases as well as to determine the 
stage of neurosyphilis in a patient [260].

A few cases of suspected syphilis-induced ALS or ALS-
mimic syndrome have also been reported [261–263]. 
However, determining whether these syndromes truly fill 
the criteria for ALS, and whether syphilis is causative in 
these cases, is beyond the expertise of the authors of this 
article [264]. Furthermore, anecdotal evidence  suggests 
that other spirochete bacteria such as Borrelia burgdor-
feri can cause ALS-like pathology [265]. However, in gen-
eral, Lyme disease does not seem to be associated with 
ALS [266, 267].

As for MS, one study has reported spirochete bac-
teria in the brains of four MS patients [268], but other 
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evidence of spirochete involvement in MS is currently 
lacking.

Bacterial pneumonia
A link has been suggested between bacterial pneumonia 
and dementia. For example, a Taiwanese cohort study has 
reported a positive association between bacterial pneu-
monia and subsequent dementia risk (HR 2.83, 95% CI: 
2.53–3.18), particularly between Staphylococcus pneu-
monia and vascular dementia (HR 5.4) and Hemophilus 
pneumonia and AD (HR 3.85, 95% CI: 1.66–8.96) [269]. 
Tate et al. have reported that hospitalization for pneumo-
nia increased the risk of later developing dementia (aHR 
1.9, 95% CI: 1.4–2.8, P < 0.0001) [270]. Neither study 
assessed whether the infection affected the CNS directly.

Chlamydia pneumoniae is a bacterial pathogen which 
causes respiratory infections, including pneumonia. It 
has been shown to sometimes enter the brain. Interest-
ingly, Gérard et  al. have reported C. pneumoniae in the 
neurons and glia of around 80–90% of late-onset AD 
patients and only 5–10% of healthy controls. Notably, the 
bacteria were detected in proximity to AD-related lesions 
such as amyloid plaques [164, 271, 272]. The authors 
did not list the cause of death for these patients. Since 
AD and dementia patients have a higher risk of hospi-
talization and mortality due to pneumonia than unaf-
fected individuals [273, 274], more information would be 
needed to rule out the possibility that C. pneumoniae was 
present in the brains of these patients due to an infection 
secondary to AD.

However, Chacko et al. have shown that C. pneumoniae 
can infect the glia in olfactory and trigeminal nerves, 
olfactory bulb, and other brain areas of mice within 72 h 
of inoculation. They observed Aβ accumulation adjacent 
to bacteria in the olfactory system, and changes in neu-
rodegeneration-relevant pathways [275]. Lopatko Lind-
man et al. have studied whether the Alzheimer’s disease 
risk allele APOE ε4 mediates the risk between C. pneu-
moniae infection and AD. They tested the presence of C. 
pneumoniae in the plasma of 360 AD and 360 matched 
controls from samples that had been collected on aver-
age 9.6  years before the diagnosis. They reported no 
association between Chlamydia pneumoniae, APOE ε4 
allele, and the risk of AD [125]. In contrast, Gérard et al. 
have reported that C. pneumoniae burden is higher in 
the brains of AD patients that carry APOE ε4 allele com-
pared to non-carriers [164]. Others have also reported 
that full length human APOE and derived peptides have 
direct antimicrobial function against Gram-negative bac-
teria [276, 277].

C. pneumoniae has also been studied in relation to 
many diseases with immunological etiology, including 
MS. However, reports have been published both for and 

against an association with MS, and clear conclusions 
cannot be drawn yet [278].

Finally, a study by Turkel et al. assessed the presence of 
Chlamydia pneumoniae in the serum of 51 PD patients 
and 37 matched controls. They found no statistically 
significant correlation between C. pneumoniae and PD 
[279].

Fungi
Fungi have received less attention in the study of neuro-
degenerative diseases than viruses and bacteria due to 
their lower relative abundance in the human microbiome. 
However, they are relevant human pathogens, particu-
larly in immunocompromised individuals.

Most of the exploratory work on the involvement of 
fungi in neurodegenerative diseases has been done by a 
single research group lead by Luis Carrasco. They have 
detected multiple species of fungi in the brains of AD, 
PD, ALS, and MS patients.

For example, they detected Candida albicans, Candida 
ortholopsis, Candida tropicalis, Cladosporium, Malasse-
zia globosa, Malassezia restricta, Neosartorya hiratsu-
kae, Phoma, Saccharomyces cerevisae, and Sclerotinia 
borealis in the brains of altogether ten AD patients but 
not in the same number of controls. Not all species were 
detected in all patients [280]. Similarly, they found anti-
bodies against multiple species of fungi, as well as fun-
gal proteins, and fungal 1,3-β-glucan in the serum of AD 
patients. Such signs of fungal infection were also present 
in healthy controls but at lower frequency [281]. Consist-
ently, Yashkin et al. have reported that fungal infections 
increased the risk of AD (HR 1.98, 95% CI:1.89–1.92) in a 
dataset collected from a 5% sample of U.S. Medicare ben-
eficiaries aged 65 + years [282] (the number of Medicare 
beneficiaries was over 65 million in 2023 [283]).

The group of Luis Carrasco have also reported the pres-
ence of Botrytis, Candida, Fusarium and Malassezia spe-
cies in the brains of all six PD patients using nested PCR 
analysis. When they compared these results to a previ-
ously published control group (n = 12) [281], the level 
of fungal infection was higher in PD patients. They also 
detected chitin immunopositivity in samples from PD 
patients but not from controls [284]. Interestingly, they 
detected bacteria in the spinal cord, medulla, and motor 
cortex of the same PD patients, which suggests the pos-
sibility of polymicrobial infection in PD. While bacteria 
were also present in healthy controls (n = 9) the results 
clustered separately in principal component analysis 
which suggests that the infection profile was different in 
patients and controls [284].

The same group has also reported fungal intracellular 
structures such as yeasts and hyphae in the motor cor-
tex, medulla, and spinal cord of all eleven assayed ALS 
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patients. PCR and next generation sequencing revealed 
fungi from multiple genera: Candida, Malassezia, Fusar-
ium, Botrytis, Trichoderma, and Cryptococcus [285]. Bac-
teria were present in the spinal cord, medulla, and motor 
cortex of the ALS patients but not in healthy controls, 
which suggests the possibility of polymicrobial infection 
also in ALS patients [286].

Similarly, polymicrobial infections of fungi and bacteria 
were present in the post mortem CNS tissues of all ten 
MS patients but not in controls. Particularly, the fungi 
Trichosporon mucoides was found in most MS patients 
[287]. Furthermore, the group has detected fungal RNA, 
antigens, and antibodies against multiple Candida spe-
cies [288, 289] in the CSF of MS patients [288]. They also 
detected fungal DNA and β-1,3 glucan in patient blood 
and serum samples, respectively [289]. The same group 
reported that antigens for Candida increased the risk of 
MS 3.0 – 7.3-fold (depending on Candida species) in a 
cohort of 80 MS patients and 240 matched controls [290].

As for the mechanisms of fungi-induced neurodegen-
eration, C. albicans has been shown to cause AD-like 
pathology in cell culture models, including Aβ oligomeri-
zation and accumulation [291]. Furthermore, a study by 
Wu et  al. showed that intravenous infection of C. albi-
cans in mice causes mild memory impairment which 
resolves after fungal clearance. The impairment was asso-
ciated with the production of proinflammatory cytokines 
(IL-1β, IL-6, TNF-α) as well as localized accumulation of 
soluble Aβ peptides, activated microglia, and astrocytes 
around the yeast cells [291] which suggests that neuroin-
flammation is a key factor in the observed pathology.

Interestingly, a couple studies have shown Aβ to be 
protective against Candida infections. Even though 
the suggested mechanisms differed between studies 
(reviewed in more detail in later section), the main find-
ing was the same: Aβ peptides can inhibit the growth of 
C. albicans in vitro [291, 292]. Furthermore, full length 
APOE and derived peptides may also have a direct anti-
microbial function against pathogens such as Candida 
yeasts [276, 277]. In fact, Vonk et al. have reported that 
APOE knock-out mice display higher mortality following 
C. albicans infection than their APOE wildtype controls 
[293]. Together this suggests a possible interplay between 
fungal infections and AD risk factors.

The involvement of fungal toxins in neurodegeneration 
has also been suggested. Fungal toxins such as gliotoxin 
and fumonisin have been shown to destroy glia such as 
astrocytes and oligodendrocytes, which could poten-
tially lead to myelin loss in MS [294]. Gliotoxin from 
Aspergillus fumigatus has been reported to induce neu-
roinflammation and to aggravate clinical symptoms in 
experimental autoimmune encephalomyelitis mice (the 
most common mouse model for MS) [295]. It has also 

been reported to penetrate hiPSC model of the BBB and 
to impair the barrier function as measured by transen-
dothelial electrical resistance (TEER) and fluorescein 
permeability [296].

Together, these data show that fungal pathogens are 
worth considering when searching for causes for neuro-
degenerative diseases. However, more research on the 
topic is needed in the future to better understand fungal 
CNS infections in seemingly immunocompetent individ-
uals. Furthermore, the important exploratory work done 
by Carrasco et al. should be replicated by others to con-
firm and further elucidate the role of polymicrobial infec-
tions and different fungal species in neurodegeneration.

Toxoplasma gondii
Toxoplasma gondii is an obligate intracellular proto-
zoan parasite, which is primarily hosted by cats and 
other small mammals. It infects around one third of the 
global human population [65, 66]. It forms chronic, cystic 
infection inside neurons, astrocytes and microglia of the 
brain. Normally, the host immune response keeps the 
parasite in latent state, and clinical manifestations (e.g. 
encephalitis) are typically seen only in immunocompro-
mised patients.

T. gondii has been implicated in various diseases from 
psychiatric and mood disorders to epilepsy and autoim-
mune disorders. Reports regarding its involvement in 
neurodegenerative diseases have been conflicting [297]. 
For example, a Taiwanese cohort study of 200 dementia 
patients and 400 controls has reported a positive asso-
ciation between toxoplasmosis and dementia (HR 2.878, 
95% CI = 1.71–4.97, P < 0.001). Furthermore, the treat-
ment of toxoplasmosis by sulfadiazine or clindamycin 
was associated with a reduction in dementia risk [298]. 
A meta-analysis of eight studies (3239 subjects) suggests 
that T. gondii may be involved in AD (OR = 1.53, 95% CI: 
1.07–2.18). However, the authors were worried about 
publication bias and called for more research on the sub-
ject [299]. In contrast, Wennberg et al. detected no asso-
ciation between T. gondii seropositivity and cognitive 
performance in 575 adults aged 41–97 years [121].

T. gondii infection has been reported to induce pro-
duction of proinflammatory cytokines (TNF-α, IL-1β, 
IL-6), glial nodules, and hyperalgesia in wild type mice 
[300, 301]. Interestingly, studies of T. gondii infection in 
AD model mice have reported beneficial effects such as 
higher levels of anti-inflammatory cytokines, reduced Aβ 
tissue deposition, increased Aβ phagocytosis and degra-
dation, reduced nitrite production from primary cultured 
microglial cells, and better performance in memory tests 
[302, 303].

Multiple studies have suggested that T. gondii infec-
tions might be associated with reduced risk of MS 
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[304–307]. Due to the autoimmune nature of MS, the 
‘hygiene hypothesis’ has been suggested as an explana-
tion for reduced disease risk in Toxoplasma carriers. 
The idea is that parasites promote immunotolerance in 
the host by suppressing the innate and adaptive immune 
responses against themselves. The IFN-γ driven immune 
response is the main host response to T. gondii infec-
tion. However, the parasite can modulate transcription 
factors that regulate this pathway, e.g. signal transducer 
and activator of transcription (STAT) 1, 3, and 6. It also 
inhibits multiple apoptosis pathways, ROS production by 
nicotinamide adenine dinucleotide phosphate (NADPH) 
oxidases, as well as the nuclear factor kappa B (NF-κΒ) 
pathway, which regulates the production of many pro-
inflammatory cytokines [308]. Activation of these same 
pathways have been implicated in the development of 
MS, however, their roles at different stages of the disease 
remain under debate [309, 310].

The hygiene hypothesis of MS has been criticized 
because of the link to EBV infections. [158]. However, 
different pathogens may have a different effect on the 
immune system. In fact, protozoan parasites have been 
explored as potential therapies for autoimmune diseases 
and allergies [311, 312] while the data on herpesviruses 
points mostly towards increased risk of autoimmunity 
[313]. In any case, conflicting reports on the involvement 
of T. gondii in MS have been published [314–317] and 
thus, the question remains under debate.

Extra‑CNS infections
Patients suffering from neurodegenerative diseases fre-
quently display non-CNS infections such as gastric H. 
pylori infections [318–321], periodontal disease [322, 
323], and changes in normal gut microbiome (dysbio-
sis) [324–334]. These changes have been linked to neu-
rodegenerative diseases even in the absence of direct 
CNS infection [165, 335–338], and they share common 
mechanisms through which they can be detrimental to 
the CNS.

One key mechanism is the ability of these microbes to 
manipulate the extracellular matrix and the tight junc-
tions of the host tissues. For example, gut microbes mod-
ulate the tight junctions of the gut epithelium by a variety 
of molecules. To illustrate, beneficial short-chain fatty 
acids (SCFAs), such as acetate, propionate and butyrate, 
are produced by fiber-digesting bacteria and they are 
utilized by host epithelial cells as an energy source. As a 
result, these bacteria facilitate normal epithelial barrier 
function [339, 340]. Furthermore, SCFAs are also known 
to cross the BBB where they modulate microglial func-
tion via G protein-coupled receptors [339]. Patients of 
neurodegenerative diseases often display reduction in 
the abundance of beneficial SCFA-producing bacteria 

[341, 342]. In turn, harmful gut microbes produce pro-
inflammatory molecules such as LPS, cytokines, and 
prostaglandins, which disrupt the tightness of the epi-
thelial barriers and can lead to a ‘leaky gut’. These same 
molecules can transfer to blood circulation and disrupt 
the BBB or cross into the CNS where they induce neuro-
inflammation [18–20].

Similarly, periodontal pathogens can produce mol-
ecules that disrupt BBB function [343]. For example, 
the Gram-negative bacteria Porphyromonas gingivalis 
and the spirochete Treponema denticola secrete mol-
ecules such as gingipains, toxic fimbriae, and dentilisin 
which allows them to modulate host tight junctions and 
to form a suitable habitat in the periodontal pocket [74, 
344]. Interestingly, P. gingivalis has been associated with 
neurodegenerative diseases such as AD, PD and MS [165, 
336–338, 345–351].

P. gingivalis has been detected in the post mortem 
brain tissue of AD patients. It has been reported to pro-
duce outer membrane vesicles carrying gingipains, LPS 
and toxic fimbriae, which can disrupt the BBB [345, 346]. 
Lei et al. reported that P. gingivalis infection and secreted 
gingipains increase transcytosis across the BBB by alter-
ing the expression of calveolin-1 and major facilitator 
superfamily domain containing 2a (Mfsd2a). They did 
not detect changes in occludin levels [344]. In contrast, 
Nonaka et  al. have reported that P. gingivalis/gingipain 
disrupt tight junctions by direct degradation of zonula 
occludens-1 and occludin [344].

Once in the brain, gingipains cause AD-related changes 
such as as increase in Aβ and tau accumulation, modu-
late APP and tau processing, cause microglial activa-
tion and proliferation, induce IL-1β, TNF-α and IL-6 
secretion, cleave APOE proteins, and induce neuronal 
degeneration and synapse loss [336, 346–348, 352]. P. 
gingivalis-derived LPS and inactivated bacteria also cause 
the secretion of nitric oxide and prostaglandin E2 from 
rat primary glial cells (95% astrocytes) [337]. Strikingly, 
peripheral administration of P. gingivalis is enough to 
cause a variety of neurodegenerative changes, which sup-
ports the involvement of indirect mechanisms such as 
outer membrane vesicles [165, 336–338]. For example, 
subcutaneous injection of P. gingivalis aggravated experi-
mental autoimmune encephalomyelitis in MS model 
mice [337]. Oral P. gingivalis administration also led to 
microglial activation and loss of dopaminergic neurons in 
mice carrying the PD risk mutation LRRK2 R1441G. The 
mice displayed decreased expression of the tight junction 
protein zonula occludens-1 and increased expression of 
proinflammatory factors TNF-α, IL-1β, and α-synuclein 
in the colon. Increased serum IL-17A and increased brain 
IL-17A receptor expression implicates T helper (Th) 
17 lymphocytes in the observed brain pathology  [353]. 
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Finally, P. gingivalis is not the only bacteria to produce 
harmful extracellular vesicles. Similar function has been 
attributed to the periodontal bacteria Aggregatibacter 
actinomycetemcomitans and H. pylori [335, 354–356].

Together, these results show that non-CNS infections 
can be as important for neurodegenerative diseases as 
CNS infections due to their potential to induce neuroin-
flammation. Thus, the search for causes for these diseases 
should not be limited to CNS infections, and non-CNS 
infections should also be considered when designing 
future treatments.

Neurodegeneration‑related aggregating proteins display 
antimicrobial properties
Many neurodegenerative diseases display characteristic 
protein aggregation in the nervous tissue. For example, 
AD is hallmarked by the accumulation of Aβ plaques 
and neurofibrillary tangles formed by hyperphospho-
rylated tau. Similarly, PD is hallmarked by α-synuclein 
inclusions, ALS by TDP-43 and FUS aggregation, and 
frontotemporal dementia with tau, TDP-43 and FUS 
aggregates. TDP-43 aggregates are also reported in some 
cases of AD. The role of these protein aggregates is still 
under debate, but traditionally they have been thought to 
be toxic. However, in recent years many of these aggre-
gating amyloid proteins have been reported to have 
antimicrobial effects which suggests a role in the innate 
immune response.

The role of Aβ as an antimicrobial peptide was first 
suggested by Soscia et  al. in 2010 [292]. They showed 
that synthetic and rodent amyloid-β peptides are effec-
tive against Gram -negative and -positive bacteria, and 
C. albicans. According to them, Aβ42 peptides showed 
greater efficiency against microbes than the less amyloi-
dogenic Aβ40 peptides. They also showed that Aβ is able 
to bind anionic bacterial membranes, and that temporal 
lobe homogenates from AD patients inhibited the growth 
of C. albicans more than controls. Homogenates from the 
cerebellum of AD patients did not have the same effect, 
which makes sense considering that the cerebellum is not 
commonly affected by AD. Finally, the dose-dependent 
reduction on C. albicans growth by the temporal lobe 
homogenates from AD patients was abolished by pre-
incubation with antibodies against Aβ [292].

Since then, Eimer et  al. have reported that the hepa-
rin-binding site on soluble Aβ oligomers bind herpesvi-
rus glycoproteins and leads to Aβ deposition and viral 
entrapment [357]. Bourgade et  al. have reported that 
Aβ40 and Aβ42 peptides inhibit the replication of HSV-1, 
an enveloped virus, but not that of non-enveloped human 
adenovirus [358]. Their results suggest that Aβ may exert 
its antimicrobial function through the pathogen surface 

membranes, and it may only be effective against certain 
pathogens.

The effectivity of Aβ against HSV-1 has been called into 
question by Bocharova et al. who reported that Aβ failed 
to protect AD model mice (5xFAD) from HSV-1 infec-
tion. These mice carry mutations in APP which leads 
to Aβ overexpression and early-onset AD in humans. 
Bocharova et al. did not observe any colocalization of Aβ 
aggregates and viral particles, or significant differences in 
survival rate between infected 5xFAD and wildtype mice. 
However, they did report that HSV-1 invasion was lim-
ited in areas of high Aβ burden which they attributed to 
increased phagocytosis by microglia chronically activated 
by Aβ [359].

This result is in line with Wu et al. who observed that 
synthetic and human Aβ40 and Aβ42 peptides inhib-
ited the growth of C. albicans through an interaction 
with immortalized murine BV-2 microglia. Mainly, they 
observed that Aβ treatment increased the phagocyto-
sis of yeast particles by BV-2 microglia and induced the 
secretion of presently unknown fungistatic compounds 
from the same cells [291]. Unlike Soscia et al. they did not 
observe a direct fungistatic effect of Aβ [291].

The study by Wu et al. suggests that Aβ facilitates the 
fast innate immune response. In short, they showed that 
a knockout of APP in mice impaired the clearance of 
C. albicans during the early days of the infection (days 
4–7). The defect was associated with hypothermia and 
impaired secretion of proinflammatory cytokines. In 
contrast, C. albicans clearance was enhanced 5xFAD 
mice known for the overexpression of APP and Aβ. How-
ever, since all mice were able to clear the C. albicans 
infection by day 10, these data suggest that Aβ is not 
obligatory for fungal clearance but instead boosts the fast 
immune response [291]. Interestingly, Bocharova et.al. 
also observed better survival rate within the first 140  h 
(day 5) after HSV-1 infection in 7–10-month-old 5xFAD 
mice compared to wildtype littermates. However, the 
result was not statistically significant [359].

Taken together, these data support the role of Aβ as 
an innate immune alarm molecule that mediates acute 
response to microbial infection. Similar function has 
been suggested to other neurodegeneration-related 
aggregating proteins as we will see below.

The microtubule-associated protein Tau is involved 
in cytoskeletal organization. It has been linked to many 
neurodegenerative diseases termed ‘tauopathies’ due to 
its propensity to hyperphosphorylate and to form intra-
cellular inclusions called ‘neurofibrillary tangles’. In AD, 
the accumulation of neurofibrillary tangles is thought 
to be secondary to Aβ pathology. Kobayashi et  al. have 
reported that small synthetic peptides carrying micro-
tubule binding sites of the tau 4R isoform display potent 
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antimicrobial effects against Staphylococcus aureus and 
Escherichia coli. The effect was strengthened by the addi-
tion of tandem repeat sequences or sequences for nuclear 
localization or laminin receptor binding site. The addi-
tion of sequences for nuclear localization or laminin 
receptor binding site also made the peptides effective 
against C. albicans [360]. Similarly, Kanagasingam et  al. 
have reported that some phosphorylated tau peptides, 
but not all, reduced the viability of the periodontal bac-
teria P. gingivalis. The effective peptides were more prone 
to form β-sheet structures than peptides that did not 
show antimicrobial effects [361].

Alam et  al. report that α-synuclein, which is secreted 
from enteric nervous system neurons, is needed for 
normal peritoneal immune response. In their study, 
α-synuclein knockout mice displayed reduced immune 
cell invasion of peritoneal cavity and reduced production 
of proinflammatory cytokines compared to controls fol-
lowing injection with bacterial peptidoglycan. Further-
more, the exogenous administration of α-synuclein in 
the peritoneal cavity of the knockout mice promoted leu-
kocyte recruitment which suggests that α-synuclein can 
act as an immune system alarm molecule (alarmin). In 
addition, α-synuclein aggregation has been found in the 
gut and it has been suggested that α-synuclein pathology 
could originate in the gut and travel to the brain via affer-
ent neurons [362].

FUS and TDP-43 are RNA-binding proteins which are 
known to localize in stress granules [363, 364]: intracel-
lular assemblies formed by RNA, ribosomes and RNA-
binding proteins that repress protein translation during 
stress. Since viruses require the host cell machinery for 
replication, the repression of host protein synthesis can 
protect the system from the spread of the infection [365].

Interestingly, it has been reported that infection with 
the enterovirus coxsackievirus B3 induces the cleavage 
and translocation of both TDP-43 and FUS. Furthermore, 
the knockout of TDP-43 or FUS induces an increase in 
virus titer, suggesting these proteins can repress virus 
replication [366, 367].

The connection between FUS and the innate immune 
system is further illustrated by the fact that poly(I:C), 
stress granule-inducing respiratory syncytial virus, and 
type I interferon are all able to induce FUS assembly in 
in  vitro cell lines [368]. FUS knockout causes a reduc-
tion in the production in type 1 interferon and other 
pro-inflammatory cytokines following similar infection-
mimicking treatments [367].

Similarly, Dunker et  al. have reported that TDP-43 
is required for the regulation of the accumulation of 
immunostimulatory double-stranded RNA, and for the 
inhibition of interferon-mediated necrotic cell death 
[369]. Interestingly, a recent article by Licht-Murava 

et al. reports that aberrant TDP-43 accumulation in hip-
pocampal astrocytes causes memory impairment by 
inducing interferon-mediated antiviral response [370]. It 
suggests that TDP-43 may be useful or harmful depend-
ing on the situation. Cabrera et  al. have reported that 
latent HSV-2 infection in mouse spinal cord was not 
associated with changes in TDP-43 or FUS despite other 
signs of immune activation and ALS pathology such as 
leukocyte infiltration, microglial changes near motor 
neurons and reduction in C9orf72 levels [371]. Thus, a lot 
more research on the topic is needed.

Methodologies and future experimental avenues
In the future, population level association studies are 
expected to move from associations between a single 
pathogen and a neurodegenerative disease (e.g. HSV-1 
and AD) to more complex models that consider a per-
son’s lifetime infection burden and polygenic risk score 
[372]. Also moving the focus from severe infections 
towards more prevalent milder infections will further 
clarify the interaction between infections and neurode-
generative diseases. Such studies would require large-
scale screening of the healthy population so that elusive 
patterns between asymptomatic or mild infections with 
neurodegeneration could be uncovered. When done con-
sistently over long periods of time, such datasets could 
also elucidate the temporal patterns of disease develop-
ment. However, such projects are labor- and cost-inten-
sive, especially when both sexes and ethnically different 
human populations are represented in studies. The most 
feasible way to carry out such studies is their execution as 
part of large operations such as biobanks.

Simultaneously, experimental approaches are needed 
to advance from mere associations towards more mech-
anistic insight. Progressing from broad claims such as 
‘infections cause neuroinflammation, which leads to neu-
rodegeneration’ to clearer insight on why some individu-
als are affected while others are not, and to more detailed 
processes that lead to distinct neurodegenerative dis-
eases, requires more studies where animals or cell culture 
models carrying different risk factors are infected with 
different pathogens. Including polymicrobial infections 
[373] and their combinations with different genetic risk 
factors into cell and animal models are likely to increase 
our understanding of possible heterogeneous susceptibil-
ity to infection-associated neurodegeneration.

Both animal models and stem-cell based methods have 
their advantages. For example, hIPSC-derived 2D and 3D 
models allow us to study infections on human brain cells, 
to overcome challenges related to species differences, 
and to elucidate the roles of different human cells types, 
e.g. neurons, astrocytes and microglia [374]. Further-
more, stem cell lines can be engineered to carry relevant 
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genetic mutations, or they can be directly collected from 
affected donors e.g. AD patients carrying APOE muta-
tions [374]. The limitation of in vitro stem cell models is 
that the peripheral immune component and the microbi-
ome are often missing. Stem cell models also do not offer 
any information on whether the cell or molecular level 
change will penetrate to the level of behavior, e.g. cogni-
tive function or motor symptoms. Xenotransplantation 
of human cells into mice (chimeric models) could solve 
this problem [375]. However, the xenotransplantation of 
human cells is currently only possible in immunocom-
promised animals [375] which limits the relevance of 
these models when studying infections. Thus, traditional 
in vivo animal models are still needed. For example, ani-
mal models of latent and reactivating virus infections 
have a lot to give to the field [27, 28].

Considering the importance of BBB disturbance in neu-
rodegenerative diseases, improved models and detection 
methods are needed to elucidate the role of infections in 
this complex process. In humans, the measurement of 
BBB integrity in vivo is still emerging. However, imaging 
techniques such as positron emission tomography (PET) 
or magnetic resonance imaging (MRI) in combination 
with small molecule contrast agents show potential [376]. 
In animal studies, a wider range of dyes, diffusible tagged 
molecules, and in  vivo and ex  vivo imaging techniques 
are available [377]. In cell culture, trans-epithelial elec-
trical resistance (TEER) and immunocytochemistry of 
tight junction proteins are common ways to study barrier 
integrity [378]. Stem cell-derived BBB-on-a-chip models 
are also under development [379].

Finally, the addition of pharmacological interventions 
into animal and cell culture-based models can be very 
powerful. Combined use of antimicrobials and anti-
inflammatory drugs, such as resveratrol [380–382], cur-
cumin [383], or omega-3 fatty acids [384], should tell us 
more about the role of each component in neurodegen-
eration. However, some compounds, such as resveratrol 
[382] and some antifungals [385], display both antiviral 
and anti-inflammatory properties. Thus, any experimen-
tal procedures need to be carefully planned.

Conclusions
The current literature shows that a broad range of 
pathogenic CNS and extra-CNS infections are linked 
to AD, PD, ALS, and MS. While some pathogens seem 
to be more strongly associated with certain diseases 
than others (e.g. EBV and MS), no direct causality can 
yet be assigned. Instead, the current data suggests that 
the neurodegenerative potential of CNS pathogenic 
infections is tied to the neuroinflammation which fol-
lows. The current understanding of the antimicrobial 
effects of neurodegeneration-associated aggregating 

proteins supports this view. Furthermore, many of us 
carry CNS infections without ever developing neuro-
degenerative disease, which suggests that a combina-
tion of genetic susceptibility factors and environmental 
triggers, such as infections, are needed for the develop-
ment of neurodegenerative pathologies. Going forward, 
more research on the interplay between genetic risk 
factors and CNS infections is needed, as well as on the 
cumulative effect of multiple simultaneous or subse-
quent infections. While it is impossible to stop people 
from ever getting infections again, antimicrobial and 
anti-inflammatory drugs and dietary supplements have 
shown some promise in the treatment of neurodegen-
erative diseases. Thus, better understanding of the role 
of CNS infections in neurodegenerative diseases could 
help us detect vulnerable individuals and to target a 
combination of antimicrobial and anti-inflammatory 
therapies to those that could most benefit from them.
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