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Abstract
Microglia serve as a front-line defense against neuroinvasive viral infection, however, determination of their actual 
transcriptional profiles under conditions of health and disease is challenging. Here, we used various experimental 
approaches to delineate the transcriptional landscape of microglia during viral infection. Intriguingly, multiple 
activation genes were found to be artificially induced in sorted microglia and we demonstrated that shear stress 
encountered during cell sorting was one of the key inducers. Post-hoc analysis revealed that publicly available 
large-scale single-cell RNA sequencing datasets were significantly tainted by aberrant signatures that are associated 
with cell sorting. By exploiting the ribosomal tagging approach, we developed a strategy to enrich microglia-
specific transcripts by comparing immunoprecipitated RNA with total RNA. Such enriched transcripts were 
instrumental in defining bona fide signatures of microglia under conditions of health and virus infection. These 
unified microglial signatures may serve as a benchmark to retrospectively assess ex vivo artefacts from available 
atlases. Leveraging the microglial translatome, we found enrichment of genes implicated in T-cell activation and 
cytokine production during the course of VSV infection. These data linked microglia with T-cell re-stimulation 
and further underscored that microglia are involved in shaping antiviral T-cell responses in the brain. Collectively, 
our study defines the transcriptional landscape of microglia under steady state and during viral encephalitis and 
highlights cellular interactions between microglia and T cells that contribute to the control of virus dissemination.
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Introduction
Microglia are resident immune cells of the central ner-
vous system (CNS) that arise from erythromyeloid 
progenitors, which seed the brain parenchyma dur-
ing embryonic development [1]. They are highly plastic 
in nature allowing them to continually survey the CNS 
milieu and to establish brain homeostasis by regulating 
synaptic wiring, myelination, vasculogenesis, and remod-
eling neuronal circuits [2]. Moreover, microglia are cen-
tral mediators that respond subtly and sometimes grossly 
to various neuropathologies such as injury, inflammation, 
cancer and neurodegeneration [3–6], by instrumentaliza-
tion of signaling mechanisms that are not fully resolved, 
yet. To better understand the diverse multifunctional 
roles of microglia, it is critical to precisely illuminate 
transcriptomic signatures of certain microglial pheno-
types. With the recent advent of novel sequencing tech-
nologies, cell isolation approaches, and computational 
frameworks, a significant expansion of high-throughput 
profiling of different cell types was promoted, which pro-
vided new insights into the biology of cells within their 
tissue context [7, 8]. Furthermore, these large-scale tran-
scriptomic datasets serve as a reference atlas providing a 
high-level overview of expression patterns of cell subsets 
that would otherwise be too costly or time-consuming 
for individual laboratories to generate. These data are, 
however, not without caveats.

A critical step in transcriptomic studies is the isola-
tion and preparation of pure suspensions of the relevant 
cell subset. This is particularly challenging for microg-
lia, since their low abundance in the brain often results 
in little cell yields. Microglia can be enriched from brain 
cell preparations by fluorescence-activated cell sorting 
(FACS) [9]. Combined immunolabeling of core markers 
such as CD11b+ and CD45low allows discrimination of 
microglia from recirculating monocytes [4]. However, 
microglial CD45 levels may change after brain injury 
and during brain disease [10], thus making discrimina-
tion of microglia from monocytes difficult [11]. Substan-
tial efforts have been undertaken to generate inducible 
mouse lines expressing fluorescent markers under the 
control of microglia-specific promoters such as CX3CR1, 
HEXB, TMEM119, and P2RY12 [12–15]. These models 
allow sorting of microglia without the need to immu-
nolabel the cells by antibodies. The ribosomal tagging 
approach (RiboTag) is an alternative way to studying 
microglia-specific gene expression profiles from com-
plex tissue. This method relies on Cre recombinase medi-
ated expression of a haemagglutinin (HA) tag fused to 
the core ribosomal protein 22 (Rpl22) [16], allowing the 
pull-down of mRNA bound to HA-tagged ribosomes and 
determining the translational profile of brain resident 
myeloid cells [17]. In addition, various microglia in vitro 
models, including primary cultivated cell cultures, stem 

cell-derived microglia cultures, organoid, and immortal-
ized microglia cell lines have been developed [18–21]. 
Such in vitro systems are assumed to model microglia 
physiology and function in an experimentally amenable 
manner.

A key pursuit in molecular neuroscience is to gain a 
mechanistic understanding of orchestrated microglial 
responses in health and disease. However, the heteroge-
neity of microglial signatures, as detected in various stud-
ies, the discrepancies between transcriptomic datasets 
and the lack of harmonized microglia isolation protocols 
have made it difficult to achieve a consensus on the main 
features, pathways and effects of microglia responses to 
pathological insults. Here, we performed a side-to-side 
comparative analysis of the transcriptomes obtained 
from in vitro cultivated microglia, sorted microglia, and 
the microglial translatome determined by the RiboTag 
approach, to discern specific molecular triggers and sig-
natures that are defining microglia under homeostatic 
and inflammatory conditions. Our data illustrate that 
conventional bulk RNA transcriptomes of sorted microg-
lia contain ex vivo aberrant activation signatures. Such 
“spurious” signatures were also detected in post-hoc 
analysis of publicly available large-scale single-cell RNA 
sequencing (scRNA-seq) datasets or atlases, underscor-
ing the need to develop approaches that identify, compen-
sate and/or avoid such biases. In brief, we incorporated 
the concept of enrichment of relevant gene signatures 
by comparing immunoprecipitated RNA with total RNA 
in the RiboTag approach and assessing the specificity of 
given transcripts known to be abundantly present in the 
tissue. Transcripts that are enriched are more likely spe-
cifically expressed within microglia, whereas transcripts 
that are depleted are more likely to be expressed in other 
cell types (i.e., non-myeloid) contained within the tis-
sue. This approach allowed generation of accurate in situ 
transcriptional profiles of microglia under homeostatic 
conditions and after vesicular stomatitis virus (VSV) 
infection that will be especially useful in retrospective 
removal of ex vivo artefacts present in existing dataset. 
Leveraging the microglial translatome, we demonstrated 
that upon VSV infection, microglia adopt unique expres-
sion profiles implicated in cytokine production and anti-
gen presentation. We further reported dramatic influx 
of monocytes, neutrophils, B cells, natural killer (NK) 
cells, and T cells in the CNS of VSV-infected animals 
compared to controls, demonstrating substantial shift in 
brain immune cell composition. Indeed, we found that 
infiltrated T cells surrounded the dense conglomerates of 
microglia, suggesting that T cells intimately interact with 
activated microglia. Together, this study investigates pro-
tective mechanisms orchestrated by microglia in severe 
neuroinflammation and CNS infection.
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Fig. 1 (See legend on next page.)
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Results
Adoption of different experimental approaches variably 
impacts microglia gene expression profiles
Microglia are brain resident myeloid cells that can adopt 
a wide range of different functions in health and disease. 
Here, we aimed at determining the bona fide molecu-
lar signatures of microglia under homeostatic condi-
tions and following VSV infection. To address this, we 
studied the transcriptomes of microglia isolated from 
different experimental models and performed a com-
binatorial analysis of the retrieved data. First, we cul-
tivated mixed glial cultures from brain cortices of P3 
mouse pups and harvested in vitro microglia after 10 
days (hereafter denoted “in vitro”) (Fig.  1A). Secondly, 
we exploited the RiboTag approach, i.e., we isolated the 
brain from CX3CR1-CreERT2+/−Rpl22wt/HA mice 8 weeks 
after tamoxifen treatment, prepared tissue lysates, and 
directly immunoprecipitated ribosome-bound RNA from 
brain-resident myeloid cells (hereafter denoted “immu-
noprecipitated [IP]”), or we isolated the total RNA from 
brain homogenates (hereafter denoted “input”). Lastly, 
we included RNA-seq data from our lab [4], which were 
retrieved from isolated brain resident immune cells of 
tamoxifen treated CX3CR1-CreERT2+/−TdTomatowt/ST 
mice and sorted TdTomato positive myeloid cells (here-
after denoted “sorted”). After RNA extraction from mate-
rial obtained by the different approaches, RNA-seq was 
performed. Initially, we analyzed microglia from mock-
treated samples to decipher baseline transcriptional pro-
files of homeostatic microglia. As sample processing and 
sequencing was performed at different times, we first 
used ComBat-seq [22] to model batch effects and other 
latent sources of noise. After batch effect adjustment, we 
performed differential analysis (log2-fold change >|1|, 
padj < 0.05) by employing the likelihood ratio test (LRT) 
and the resulting genes were subjected into k-means 
clustering. This analysis revealed the presence of 7 dis-
tinct expression patterns amongst input, IP, in vitro, and 
sorted samples (Fig. 1B). Cluster I comprised genes that 
were enriched in the transcriptome of sorted microg-
lia, whereas cluster II consisted of 1,668 genes that were 
enriched in IP and sorted microglia and therefore can be 
annotated as CX3CR1-dependent. Cluster III comprised 
1,906 genes that were highly abundant in IP, in vitro, and 

sorted samples, but that were less abundant in input sam-
ples, and therefore these genes were identified as being 
microglia-associated. Cluster IV consisted of genes that 
were prominently enriched in the input, in vitro, and 
sorted samples. In cluster V input, IP, and in vitro sam-
ples displayed 1,480 prominent genes that were absent in 
sorted microglia. Cluster VI comprised 3,484 genes that 
were abundantly expressed in input samples and corre-
sponded to genes that were typically expressed in non-
myeloid cells of the CNS. In cluster VII, 3245 genes were 
enriched in input and IP samples, and de-enriched in in 
vitro and sorted microglia, respectively.

To assess the cell type-specificity of the obtained trans-
latomes, we evaluated the expression of well-known 
neuronal and glia-specific marker genes. Quantification 
of normalized gene counts revealed that the astrocytic 
marker genes Gfap, S100b, and Sox9, the oligodendro-
cytic marker genes Plp1, Mog, and Olig2, and the neu-
ronal marker genes Syn1, Tubb3, and Map2 were highly 
expressed in input samples (Fig.  1C-E). In contrast, the 
core microglia marker genes Cx3cr1, Hexb, P2ry12, 
and Csf1r were abundantly expressed in IP, in vitro, and 
sorted microglia (Fig. 1F), illustrating that all three meth-
ods were suitable to enrich RNA from microglia and that 
they are amendable to investigate microglia RNA expres-
sion profiles.

Transcriptomic and translatomic analyses of microglia 
reveal confounding gene signatures that are associated 
with cell sorting
To address whether the similarities and differences in 
gene signatures observed in the applied experimental 
models reflected true biological effects, we performed 
unbiased k-means clustering of differentially regulated 
genes in IP, in vitro, and sorted microglia samples. Three 
clusters were detected (Fig. 2A), while cluster I is defined 
by genes that were highly expressed in IP microglia rela-
tive to in vitro and sorted microglia, cluster II comprised 
genes that were enriched in sorted samples including 
genes encoding for chemokines (Ccr7, Ccl4) and inter-
leukins (Il1a, Il1b). Cluster III comprised genes that 
were similarly enriched in in vitro and sorted samples. 
Microglial cluster-specific genes in cluster I and clus-
ter III highlight differences between transcriptomes and 

(See figure on previous page.)
Fig. 1 Comparative analysis of transcriptomes and translatomes reveals diverse cellular profiles of microglia. A, Schematic depiction of the experimental 
models that were used to study the transcriptome and translatome of microglia. In vitro: Mixed glia cultures were prepared from P3 pups and microglia 
harvested after 10 days. IP: The brain of tamoxifen treated CX3CR1-CreERT2+/−Rpl22wt/HA RiboTag mice was extracted, microglia-specific HA-tagged ribo-
somes were pulled down, and the attached RNA was isolated. Input: RNA from whole brain lysate was isolated. Sorted: Immune cells from the brain of 
tamoxifen-treated CX3CR1-CreERT2+/−TdTomatowt/ST mice were isolated and TdTomato-positive microglia were sorted. B, Heatmap representing k-means 
clustering of highly enriched and de-enriched genes in RNA-seq analysis of input, IP, in vitro, and sorted microglia. Red represents enriched and blue 
de-enriched gene expression levels. Boxplots with overlaid dotplots of normalized gene counts for (C) astrocyte, (D) oligodendrocyte, (E) neuron, and 
(F) microglia lineage markers. In each group three individual mice or triplicates of microglia cultures were analyzed (n = 3). Each boxplot represents inter-
quartile range, while dotplots illustrate individual data points. Normalized reads represent read counts that have been normalized by DESeq2 (for details 
see Materials and Methods)
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translatomes. Using Gene Ontology (GO) terms,  we 
identified cluster I and III-specific genes that are impli-
cated in DNA repair, ncRNA processing, mRNA process-
ing, and RNA splicing functions (Fig.  2B). Importantly, 
genes involved in leukocyte migration, cell chemotaxis 
and myeloid leukocyte migration were the most highly 
overrepresented in cluster II. When we probed for spe-
cific genes associated with the aforementioned pathways, 
we detected abundant expression of stress-induced genes 
(Zfp36, Dusp1, Jun) as well as immune-related genes 
(Socs3, Cd74, Ccl4, Nfkbiz, Ccl3) in sorted microglia and 
to a lesser extent in IP and in vitro samples (Fig. 2C and 
Fig. S1A), suggesting a transcriptionally activated state of 
the sorted microglia.

To analyze whether microglial activation signatures 
were also present in large-scale transcriptomics studies, 

we first performed a re-analysis of scRNA-seq data of 
brain resident immune cells published by Van Hove et 
al. [23]. Unsupervised clustering identified 14 transcrip-
tionally distinct clusters representing all immune cell 
types known to be present in the CNS (Fig. S1B). Sub-
clustering of microglia, border associated macrophages 
(BAMs) and monocytes revealed 10 discrete myeloid 
cell subpopulations (Fig.  2D), including three microglia 
clusters that correspond to homeostatic microglia (Hexb, 
P2ry12, Tmem119), chemokine microglia (Il1a, Tnf, Ccl3) 
and IFN-responsive microglia (Ifit3, Isg15, Ccl12) (Fig. 
S1C). The latter represent surveying cells that can rapidly 
respond to any brain dysfunction, infection or damage 
[24]. To visualize the cell types in the dataset that show 
enrichment of cell activation signatures, we performed 
gene module scoring by using UCell [25]. We generated 

Fig. 2 Sorted microglia exhibit artificially induced transcriptional alterations. A, Heatmap representing k-means re-clustering of IP, in vitro, and sorted 
microglia, showing cluster-specific gene enrichment and de-enrichment. B, Gene ontology analysis displaying top five pathways associated with genes 
retrieved from clusters in A. C, Boxplots with dotplot overlays representing normalized gene counts of selected genes from cluster II, revealing high 
expression of activation-related genes in sorted samples (for additional details see caption of Fig. 1). D, UMAP plot of scRNA-seq data [23] from 16,506 
cells that were analyzed from whole brain, depicted are myeloid cell subsets. E, UCell score distribution for cell activation signatures retrieved from bulk 
RNA-seq in cluster II shown in UMAP space. F, UMAP representation of scRNA-seq analysis of 11,850 cells from bone marrow highlighting major cell 
types. G, UCell score distribution in UMAP space for cell activation signatures in bone marrow cells. H, UMAP embedding of scRNA-seq data from 14,146 
cells analyzed from spleen, showing key immune cell types. I, UMAP plot showing UCell score distribution of cell activation signatures in splenocytes. 
DC, dendritic cells; HSC, hematopoietic stem cells; MSC, mesenchymal stem cells; NMP, neutrophil-myeloid progenitor cells; BAMs, border associated 
macrophages; IFN, interferon
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“activation-induced signatures” by applying the consen-
sus of genes that was retrieved from cluster II in Fig. 2A 
as well as previously published data [17, 26–28] (Supple-
mental Table 1). The enrichment analysis projected onto 
UMAP demonstrated that activation-induced signatures 
were mostly enriched in myeloid cell subpopulations, 
albeit to different extents (Fig.  2E). Moreover, marker 
expression analysis revealed that the identified cell acti-
vation genes Jun, Socs3, Nfkbia, Ccrl2, Dusp1, and Zfp36 
were highly expressed in microglia and BAMs and low in 
monocytes (Fig. S1D).

We next asked whether these spurious signals were 
unique to CNS-resident myeloid cells, or whether 
they were also detected in peripheral immune cells. To 
this end, we analyzed a recently published scRNA-seq 
immune cell map that included T and B cells, NK cells, 
and neutrophils from murine bone marrow [29] and 
spleen samples [30]. Clustering of these datasets repro-
duced cell type labels as described in the original publica-
tions (Fig. 2F and H). Unbiased gene module scoring of 
activation-induced signatures on all cell types indicated 
that nearly all hematopoietic cells in the bone marrow 
(Fig. 2G and Fig. S2D) as well as splenocytes (Fig. 2I and 
Fig. S2E) were enriched for cells carrying activation sig-
natures. Thus, aberrant transcriptional signatures are 
prevalent in immune cells from the CNS and the periph-
ery. Moreover, these spurious signals appeared to be sys-
temically present not only in study-specific datasets but 
also in reference atlases that are intended to be used as 
reference-based methods for cell type annotation.

Microglia show induction of transcriptional activation 
following flow cytometric sorting
To pinpoint the causative sources of artefacts in microglia 
transcriptomic profiles, we next leveraged publicly avail-
able scRNA-seq datasets of microglia isolated by differ-
ent protocols with single variations in key experimental 
steps and performed in-silico integration. These data-
sets encompassed samples from (i) Van Hove et al. [23] 
who applied standard enzymatic tissue dissociation and 
flow cytometric sorting, (ii) Tepe et al. [26] who applied 
standard enzymatic tissue dissociation, (iii) Hammond et 
al. [31] who applied mechanical tissue dissociation and 
flow cytometric sorting under ice-cold conditions, and 
(iv) Marsh et al. [27] who used standard enzymatic tis-
sue dissociation, flow cytometric sorting, and included 
transcriptional inhibitors. Datasets from Van Hove et al., 
Hammond et al., and Marsh et al. are based on CD45+ 
cells that were sorted from the mouse brain (Fig. S2A 
and S2B), while Tepe et al. included all CNS resident 
cells in their analysis (Fig. S2C). The integration pipeline 
started by separately processing each dataset and anno-
tating CNS cell types in line with the source study, and 

subsequently selecting the immune cell clusters that rep-
resent microglia.

After quality control, data integration, and regressing 
out the technical noise, single-cell transcriptomic pro-
files for 25,406 putative microglia cells were retained for 
analysis. Visual representation of integrated data pro-
jected onto UMAP revealed that microglia consolidated 
into one single cluster across all the analyzed experimen-
tal setups (Fig.  3A). As expected, using unsupervised 
clustering, the integrated data revealed three microglial 
clusters (Fig. S3A), verifying the earlier observation that 
homeostatic microglia are transcriptionally heteroge-
neous [27, 32, 33]. Depending on the experimental pro-
tocols applied by the authors, we observed qualitative 
differences in the percentages of microglia identified 
amongst the analyzed cells (Fig.  3B). Of note, we found 
that microglia isolated by enzymatic digestion without 
enrichment by flow cytometric sorting yielded lower 
abundance of microglia amongst the analyzed cells than 
other experimental approaches that involved cell enrich-
ment steps. Nevertheless, the composition of the microg-
lia subsets remained relatively similar in all the analyzed 
datasets (Fig.  3C). These observations indicated that 
the distribution of microglia subsets is not significantly 
affected by the different experimental approaches.

To examine the presence of activation signatures in the 
integrated datasets, we performed gene module scor-
ing using activation-induced signatures. By projecting 
this score onto UMAP, we found that microglia isolated 
by standard enzymatic tissue dissociation coupled with 
flow cytometric sorting were enriched for cells that were 
positive for activation signatures (Fig. 3D and Fig. S3B). 
Although to a lesser extent, microglia isolated by sorting 
without enzymatic dissociation also displayed cell acti-
vation signatures. In contrast and consistent with previ-
ous data [27, 31], we found that microglia isolated under 
ice-cold conditions or in the presence of transcriptional 
inhibitors exhibited de-enriched cell activation scores 
(Fig. 3D and Fig. S3B).

We further examined expression levels of these activa-
tion-induced signatures at the gene level. In concordance 
with gene module scoring, microglia isolated by enzy-
matic digestion and sorting showed significant upregula-
tion of immediate early genes (Jun, Egr1), stress-induced 
genes (Hspa1a, Dusp1) as well as immune-related genes 
(Ccl4, Nfkbiz) (Fig. 3E). Of note, these genes were abro-
gated in microglia isolated under ice-cold conditions or 
treated with transcriptional inhibitors during the tissue 
dissociation step (Fig.  3E). Furthermore, we observed 
negligible differences in the expression levels of these 
activation signatures between the different microglia 
subsets (Fig. S3C).

A key aspect of nearly all scRNA-seq experiments 
involves dissociation of solid tissues, enzymatically or 
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Fig. 3 (See legend on next page.)
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mechanically, to release individual cells and the use 
of sorting to enrich microglia in a final step. We won-
dered whether these two entwined cell isolation steps 
could contribute to cell activation. To address this, we 
performed differential state analysis on the integrated 
microglial datasets using the MAST package [34]. To 
determine whether the sorting procedures induced aber-
rant microglial signatures, we performed differential 
analysis on microglia isolated by enzymatic dissocia-
tion with or without cell sorting (Van Hove et al. versus 
Tepe et al.). Interestingly, we observed that cell activation 
genes (Fos, Jun, Dusp1, Ccl4, Zfp36, Socs3) were signifi-
cantly higher expressed (Coeff > 0.25 and FDR < 0.05) in 
microglia isolated by enzymatic tissue dissociation and 
cell sorting than in microglia isolated by enzymatic dis-
sociation without cell sorting (Fig. 3F and Fig. S3D).

To further assess the impact of enzymatic digestion, 
we carried out differential analysis of microglia isolated 
by cell sorting without enzymatic dissociation versus 
cell sorting with enzymatic dissociation (Hammond et 
al. versus Marsh et al.). Surprisingly, we found complete 
absence of activation-induced gene signatures in microg-
lia that were isolated by either cell sorting without enzy-
matic digestion or cell sorting with enzymatic digestion 
(Fig. 3G and Fig. S3D). Arguably, this implies that the use 
of cell sorting rather than enzymatic dissociation is the 
key factor inducing aberrant cell activation signatures in 
microglia. Furthermore, post-hoc analysis revealed that 
irrespective of the experimental differences that were 
adopted by the authors, expression levels of the canonical 
microglia markers Cx3cr1, Hexb, P2ry12, C1qa, Siglech, 
Csf1r, and Trem2 were rather similar, highlighting that 
these markers are overall stably expressed in microglia 
(Fig. 3H and Fig. S3E).

To corroborate the impact of cell sorting on microglia 
expression profiles on the proteomic level, we isolated 
brain-resident immune cells by standard enzymatic tis-
sue dissociation and analyzed the expression of cell sur-
face markers by flow cytometry on unsorted and CD45+ 
sorted cells. Quantitative analysis revealed that the per-
centage of microglia from the CD45+CD11b+ population 
was similar in unsorted and sorted cells (Fig.  3I; gating 

strategy in S3G). Nevertheless, we observed a significant 
increase in the percentage of microglia expressing CD74, 
MHC I and MHC II in the sorted fraction relative to the 
unsorted cells (Fig. 3J and Fig. S3H). Interestingly, after a 
second sorting of CD45+ cells, we detected a significant 
decrease in the absolute number of CD45+ cells (Fig. 3K), 
which can be explained by cell loss due to cell death that 
was induced by the cell sorting procedure. This control 
experiment highlighted that shear stress or traumatic 
injury is induced during the cell sorting procedure, which 
might be a potential inducer of transcriptional and pro-
teomal alterations of microglia.

Differential state analysis reveals that bona fide microglial 
signatures are confounded by ex vivo induced artefacts
Beyond post-hoc analysis of large-scale datasets, we 
next assessed whether differential analysis would reveal 
aberrant activation signatures on VSV infected samples 
that were processed concurrently by same methods. To 
address this, we performed transcriptomic and transla-
tomic analyses of microglia derived from IP, in vitro, and 
sorting after either PBS treatment or VSV infection. By 
controlling several batches as covariates, principal com-
ponent analysis (PCA) showed a clear separation of IP, 
in vitro and sorted microglia (Fig.  4A). Notably, VSV-
infected samples clearly segregated from uninfected 
controls as shown by PC1 accounting for 59% variance, 
suggesting the induction of substantial transcriptional 
changes of microglia upon virus infection. Among the 
VSV-infected groups, in vitro samples largely segregated 
from IP and sorted samples, whereas this effect was 
much less pronounced when IP and sorted samples were 
compared. This highlighted that microglia from differ-
ent experimental setups display distinct expression pro-
files upon virus infection. On the other hand, uninfected 
samples from IP, in vitro and sorted microglia clustered 
separately (Fig.  4A). It could seem counterintuitive that 
IP, in vitro or sorted microglia from uninfected samples 
were so dissimilar, considering that all microglia were 
analyzed at homeostatic state. However, this observation 
indicated that adoption of different experimental setups 

(See figure on previous page.)
Fig. 3 Meta-analysis of microglia identifies profound effects of cell sorting on microglial transcriptional profiles. A, UMAP plot showing clustering of mi-
croglia from Von Hove et al. [23], Tepe et al. [26], Hammond et al. [31], and Marsh et al. [27] after QC and data filtering using Harmony integration. The cells 
are colour-coded according to the legend shown on the right. B, Bar plot depicting microglia yield in percentages across the integrated dataset. C, Distri-
bution of microglia subsets per dataset displayed on bar plot. D, UMAP plot displaying UCell score distribution for the cell activation signatures within the 
microglia-integrated dataset stratified by experimental setup. E, Heatmap showing differential expression of cell activation genes across the four datasets. 
F, Volcano plot displaying differentially regulated genes in microglia isolated by enzymatic dissociation and cell sorting (blue) versus cell sorting without 
enzymatic dissociation (magenta). Genes with coefficient of <|0.25| and FDR > 0.05 are colour coded in grey. G, Volcano plot highlighting differentially 
regulated genes in microglia isolated by cell sorting without enzymatic dissociation (green) relative to cell sorting with enzymatic dissociation (umber). H, 
Violin plot generated from the integrated dataset displaying characteristic microglial marker genes across the experimental setup. I, Plot of percentages 
of microglia from CD45+CD11b+ cells in unsorted and sorted fractions. J, Boxplot with dotplot overlays displaying percentages of microglia expressing 
CD74, MHC I and MHC II in unsorted and sorted cells. K, Barplot depicting percentages of CD45+ cells after sorting and resorting (n = 4 mice per group, 
two-tailed paired t test; * p < 0.05, ** p < 0.01, *** p < 0.001)
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for transcriptional profiling of microglia have different 
confounding effects.

We performed differential analysis on VSV-infected 
samples and their respective controls. By applying selec-
tion criterion of log2-fold change >|1|, padj < 0.05, we 
identified 2332, 3063 and 3110 genes that were differen-
tially expressed upon VSV challenge in IP, in vitro, and 
sorted microglia, respectively, and 492 differentially 
expressed genes being shared by all three setups (Fig. 
S4A). Of the 492 consensus genes, 20% were induced at 
similar levels as indicated by the log-fold changes of the 
expression in IP and sorted samples (Fig. S4B). These 
genes included interleukins such as Il2rg, Il2ra (Fig. 4B). 
Correspondingly, we identified 15% of the consensus 
genes that had a maximal fold change in in vitro microg-
lia (Fig. S4B). These genes comprised Mx2, Ifnb1, and 
Cxcl9 amongst others (Fig. 4B). Interestingly, interferon-
stimulated genes (ISGs) such as Isg15, Cgas, and Stat2 
were expressed at similar levels in all three microglia 

samples (Fig.  4B). Unbiased k-means clustering of dif-
ferentially regulated genes revealed the presence of five 
different clusters (Fig.  4C). Cluster I and II comprised 
genes that were upregulated upon VSV infection in in 
vitro and sorted microglia. Cluster III was represented by 
genes that were upregulated in IP and sorted microglia 
(Fig.  4C). Notably, cluster IV consisted largely of genes 
that were upregulated under all three experimental con-
ditions, while cluster V comprised genes that were abun-
dantly expressed in in vitro and sorted samples, and that 
were expressed to a lesser extent in IP samples (Fig. 4C). 
To corroborate the functional phenotype associated 
with the identified cluster-specific genes, we performed 
pathway analysis (P value cutoff < 0.05) using GO gene 
sets. Genes in cluster I did not attain the cutoff crite-
ria to infer associated pathways. Nevertheless, cluster 
II exclusively expressed genes associated with positive 
regulation of cell adhesion, leukocyte migration, and 
cell chemotaxis (Fig.  4D). Regulated genes in cluster 

Fig. 4 Microglia bona fide signatures are masked by microglial activation-induced signatures. A, PCA displaying clustering of samples derived from IP, 
in vitro, and sorted microglia after VSV treatment. Each dot represents a single mouse. B, Triwise plot displaying expression strength (log-fold change) of 
overlapping genes in IP, in vitro, and sorted microglia. The internal hexagon corresponds to genes with the same expression in all three samples. Genes 
lying on hexagonal gridline have the same maximal fold change between any two pairwise comparisons. C, Heatmap clustered by k-means clustering, 
comparing VSV-treated with mock controls from IP, in vitro, and sorted microglia samples, revealing five clusters. D, Top five gene ontology terms associ-
ated with differentially regulated genes from heatmap clusters in Fig. 4C. E, Boxplots with dotplot overlays showing normalized gene counts of selected 
genes related to microglial activation regulated upon VSV challenge in IP, in vitro, and sorted samples (for additional details see caption of Fig. 1)
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Fig. 5 (See legend on next page.)

 



Page 11 of 22Mulenge et al. Journal of Neuroinflammation          (2024) 21:203 

III are involved in T-cell differentiation, regulation of 
T-cell activation, and activation of immune responses 
(Fig. 4D). Notably, cluster IV and V contained genes that 
are implicated in responses to virus, positive regulation 
of cytokine production, and pro-inflammatory responses 
such as interleukin-1 (IL) beta, IL-8 production, and 
NF-kB signaling (Fig.  4D). Importantly, the homoge-
nous expression of genes associated with these pathways 
reinforces the idea that microglia are key meditators of 
inflammatory responses during VSV infection. Intrigu-
ingly, we observed that the microglial responsiveness 
to VSV infection was not affected by the experimental 
approaches applied (Fig. 4D).

The identification of GO terms corresponding to (i) 
leukocyte migration, (ii) the ERK1 and ERK2 cascade, 
and (iii) cell chemotaxis in cluster II (Fig. 4D) prompted 
us to ask whether the identified aberrant signatures in 
sorted microglia could be misinterpreted as being dif-
ferentially expressed upon exposure to VSV. To address 
this, we sorted and filtered genes based on the afore-
mentioned GO terms. Remarkably, genes associated 
with pro-inflammatory signaling (Ccl3, Tnf, Ccl4, Il1r2), 
antigen processing and presentation (Tap2, Cd74), oxida-
tive stress (Hspa1a), and IFN-induced response (Socs3) 
were highly elevated in sorted microglia relative to in 
vitro or IP microglia under basal conditions, and were 
further upregulated in sorted microglia after VSV infec-
tion, albeit to different extents in in vitro and IP microg-
lia (Fig.  4E). Collectively, these data highlighted that 
activation-induced signatures are masked as being “dif-
ferentially expressed” in samples with disease status, thus 
jeopardizing attempts to delineate bona fide microglia 
disease signatures.

Microglia develop transcriptional heterogeneity in 
response to VSV-induced encephalitis
Thus far, our data demonstrated that the RiboTag 
approach not only allows for the analysis of microglia-
associated mRNA expression profiles, but also precludes 
non-specific microglia activation and concurrent upregu-
lation of early response genes [35]. We therefore focused 
on IP samples for in-depth profiling of microglia to assess 
the nature of innate response to viral infection. We iden-
tified 2037 genes (1322 up- and 715 downregulated) 
that were differentially expressed in response to VSV 

infection (Fig. S4C). Correlation of functional relevance 
of the identified genes using gene set enrichment analy-
sis (GSEA) demonstrated significant enrichment of genes 
that are mostly associated with T-cell activation and cyto-
kine production (Fig.  5A). Among these, genes encod-
ing for the MHC complex (Tap1, B2m, H2-Q6, H2-K1, 
H2-D1), co-stimulation (Cd86), Fc receptor (Fcgr4), and 
phagocytosis (Lgals3) showed enhanced expression in 
microglia derived from VSV-infected animals (Fig.  5B). 
Given that MHC I expression usually is very low or even 
undetectable on cells in the CNS under homeostatic con-
ditions, the pronounced expression of MHC I on microg-
lia from VSV-infected mice indicated an inflammatory 
status of the cells that is presumably associated with 
enhanced antigen cross-presentation. To explore this 
observation beyond the translatomic level, we performed 
re-analysis of scRNA-seq data of CD45+ cells isolated 
from the brain of mice that recovered from West Nile 
virus (WNV) infection and the respective mock controls 
[33]. Notably, infection with an attenuated WNV strain 
induces self-limiting brain inflammation accompanied 
by microglia activation that is similarly observed dur-
ing VSV-induced encephalitis. In accordance with Rosen 
et al. [33], we identified six distinct clusters comprising 
four microglia subsets (homeostatic, immediate early 
gene, chemokine, and IFN responsive clusters) and two 
T cell subsets (CD4+ and CD8+ T cells) (Fig. 5C and Fig. 
S4D). Closer examination of the microglia clusters for the 
expression of genes that are associated with MHC com-
plexes and phagocytosis revealed pronounced expression 
of the genes Tap1, B2m, H2-Q6, H2-Q7, H2-K1, H2-D1, 
Fcgr4, and Lgals3 in IFN-responsive microglia, whereas 
these genes were induced to a lesser extent in chemokine 
microglia, emphasizing that microglia exhibit transcrip-
tional heterogeneity in response to viral infection (Fig. 
S4E). In transcriptomic analyses of whole tissues, RNAs 
from all cells are analyzed en masse and therefore cel-
lular heterogeneity can be missed. To circumvent this 
and to analyze distinct microglial subtypes, we imple-
mented an in-silico deconvolution method that leverages 
scRNA-seq data to infer cell subtype proportions in bulk 
samples [36]. Since deconvolution methods often under-
perform when used to compare the proportions between 
different cell types [37, 38], we selected microglia clus-
ters from the above scRNA-seq data [33] as a reference. 

(See figure on previous page.)
Fig. 5 VSV-induced inflammation causes significant changes in the microglial transcriptome. A, GSEA displaying top two enriched GO terms associated 
with differentially expressed genes in the microglia translatome. B, Boxplots with dotplot overlays representing normalized gene counts of selected 
genes associated with above enriched pathways in microglia translatome (additional details in caption of Fig. 1). C, UMAP representation of scRNA-seq 
analysis of 4,010 cells from brain highlighting major myeloid and T-cell subsets. D, Barplot representing the observed proportion of microglia clusters 
in mock and WNV-infected groups. E, Barplot highlighting the in-silico predicted proportion of microglia subtypes in PBS and VSV-infected samples. F, 
UMAP plot showing segregation of immune cell subtypes within the brains of uninfected and VSV-infected mice at 6 dpi (n = 3 mice per group). G, Barplot 
representing percentages of immune cell composition within the brains of PBS and VSV-infected mice. H, Representative images of OB immunolabeled 
for IBA1 and CD3. VSV-infected OB show influx of CD3+ cells on day 6 after infection. The white arrows denote IBA1+ cells engaged with CD3+ cells (n = 3 
mice per group, N = 2; combined data; Scale bar 200 μm)
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Within the computed proportions of scRNA-seq microg-
lial sub-clusters in the mock control or in WNV-infected 
samples (Fig. 5D and Fig. S4D), we predicted significant 
abundance of homeostatic, immediate early gene (IEG), 
chemokine and IFN responsive microglia subtypes in our 
bulk microglial translatome (Fig. 5E). Intriguingly, 19.4% 
and 17.2% of the microglia translatome from the PBS 
control were enriched for IFN-responsive and chemokine 
microglia subtypes, respectively, which under conditions 
of VSV infection increased to 38.0% and 24.0%, respec-
tively (Fig.  5E). Unexpectedly, the translatome of PBS 
microglia was highly enriched for homeostatic microglia 
(59.1%), whereas this subset was decreased to 33.8% in 
VSV infected microglia, suggesting elimination or pheno-
typic transformation of activated microglia during viral 
encephalitis. As expected, the microglia subtype express-
ing immediate early genes was present at low abundance 
in PBS and VSV-infected microglia translatome (4.2%) 
(Fig.  5E). Taken together, the expression deconvolution 
analysis revealed the presence of microglia subtypes at 
different abundancies in mock vs. VSV infection at the 
bulk RNA level.

VSV-induced encephalitis is associated with massive T-cell 
infiltration and close interaction of T cells with microglia
Recent studies demonstrated that VSV titres in the OB 
are controlled by day 6 post-infection, which coincides 
with activation of microglia and influx of monocytes [4]. 
Although the immune cell dynamics are very complex 
in the infected brain and can vary significantly during 
the course of infection, we previously reported robust 
recruitment of CD45+ cells as early as day 4 after infec-
tion, and that infiltration further exacerbated by day 6 
after infection [39]. To provide a snapshot of the diversity 
of infiltrating immune cells in the brain, we performed 
flow cytometric analysis of immune cell populations in 
the brain of C57BL/6 mice 6 days after VSV infection. 
For unbiased analysis of the samples, we gated on CD45+ 
cells and performed clustering and dimensionality reduc-
tion by using UMAP (Fig. S3G). This approach revealed 
the presence of 7 distinct clusters including lymphocyte 
populations comprising CD4+ and CD8+ T cells, B cells, 
NK cells, granulocytes (neutrophils), and myeloid subsets 
such as monocytes and microglia (Fig. S4F). However, a 
minor population of an undefined cluster was detected 
that corresponded with cells for which the analyzed 
marker combination did not allow further specification 
(Fig. S4F). Nevertheless, segregation of samples based 
on the treatment revealed clear stratification of immune 
cell populations (Fig.  5F). The proportions of cell types 
varied considerably across the treatment groups with 
high percentages of microglia detected in the control 
group (75.8%) that declined to 24.2% after VSV infection 
(Fig. 5G). In VSV-infected samples we detected dramatic 

influx of monocytes, neutrophils, B cells, NK cells, and T 
cells when compared with PBS treated controls. Specifi-
cally, in the mock-treated group, the percentage of CD8+ 
and CD4+ T cells amongst CD45 + cells was low with 
3.4% and 8.9%, respectively, whereas under conditions of 
VSV-infection a profound increase of both CD8+ (96.7%) 
and CD4+ (91.1%) T cells was detected (Fig. 5G). These 
data demonstrated that the uninflamed CNS contained 
very few adaptive immune cells, whereas following VSV 
infection, T cells were massively recruited into the brain.

Our translatomic analysis revealed that, unlike homeo-
static microglia, VSV-experienced microglia express 
MHC and co-stimulatory molecules, which would allow 
the microglia to closely interact with infiltrating T cells. 
To further analyze the microglia-T cell interaction on 
the protein level, we inoculated C57BL/6 mice intrana-
sally with either PBS or VSV and performed histological 
analysis of the OB at 6 dpi. As similarly detected by flow 
cytometry, histological analysis of OB samples labeled 
for IBA1 and CD3 revealed a dramatic influx of CD3+ 
cells into the OB of infected mice when compared with 
PBS treated controls (Fig.  5H). Interestingly, CD3+ and 
IBA1 + cells were located in close proximity, suggest-
ing that T cells interacted with the myeloid cells. Dense 
IBA1+ conglomerates being surrounded by CD3+ cells 
further supported the hypothesis that microglia pres-
ent antigen to the T cells. In summary, our histological 
data showed that CNS infiltrating T cells enter into close 
interaction with microglia in the virus infected CNS.

Discussion
Microglia are resident myeloid cells of the CNS that 
are implicated in numerous physiological and patho-
logical processes [9, 40, 41]. Here, we exploited several 
approaches, including in vitro generated microglia, the 
myeloid cell-selective RiboTag approach, and cell sorting 
of brain resident myeloid cells, to decipher bona fide sig-
natures of microglia under conditions of health and viral 
encephalitis. All three models revealed a common set of 
core microglial transcripts, highlighting the suitability for 
the applied approaches to investigate microglia biology. 
However, we discovered that sorted microglia showed 
aberrant transcriptional alterations that were associated 
with the cell sorting procedure. Interestingly, such sig-
natures we detected also in large-scale transcriptomic 
atlases that are commonly used for reference-based cell 
type annotations. Analysis of the translatome of virus-
experienced microglia revealed pronounced expression 
of genes encoding for components of the MHC complex 
and co-stimulatory receptors, implying that microglia 
exhibit an enhanced potency to present antigen. Cyto-
metric analysis revealed the massive influx of peripheral 
immune cells into the infected brain, including lympho-
cytes and myeloid cells, by day 6 after infection. At the 
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protein level, we uncovered that infiltrating T cells sur-
rounded the dense conglomerates of microglia, sug-
gesting that T cells intimately interact with activated 
microglia.

A major challenge in transcriptomic analysis of microg-
lia is contamination of sorted cell preparations with other 
CNS-resident cells that might occur during conventional 
whole-cell preparation procedures [42, 43]. Our results 
demonstrated efficient enrichment of myeloid cells in 
IP and sorted microglia when compared with the input 
cells (Fig. 1C-E), as indicated by the absence of astrocytic, 
neuronal, and oligodendrocytic markers in the RNA-seq 
data. Although these data emphasize the specificity of the 
CX3CR1-CreERT2+/− model in inducing efficient recombi-
nation in myeloid cells, we cannot rule out targeting of 
other long-lived non-parenchymal brain macrophages. 
Although there are other mouse lines showing induc-
ible Cre expression in microglia such as HEXB-CreERT2 
[14], TMEM119-CreERT2 [15] and P2RY12-CreERT [213] 
as well as binary Cre models [44], they are less efficient 
in recombining all microglia [45] and their utility in the 
context of infectious and non-infectious encephalitis 
models remains to be proven. The absence of core gene 
signatures of other brain-resident cell types in in vitro 
cultivated microglia indicated that also this approach was 
appropriate and effective in generating highly pure prep-
arations of microglia that are suitable for transcriptomic 
studies.

Comparison of the gene expression profiles derived 
from IP, in vitro, and sorted microglia revealed com-
monalities and differences in gene expression. Consistent 
with prior reports [17], we detected exclusive expression 
of several bona fide stress-regulators (Zfp36, Dusp1, Jun, 
Ccl4) in sorted microglia (Fig.  2C and S1A). Notably, 
Zinc finger protein 36 (Zfp36) is involved in regulating 
immune responses through mRNA destabilization and 
alternative splicing [46], whereas dual-specificity phos-
phatase-1 (Dusp1) is a key component in regulating anti-
inflammatory responses that is expressed in response to 
stressors, such as heat shock or oxidative damage [47]. 
Kinetics evaluation of chemokine ligand-4 (Ccl4) previ-
ously revealed this gene to be expeditiously expressed 
following stimulation [48], and as such, it is likely that 
detection of this gene in sorted microglia is an ex vivo 
activation artifact. Noteworthy, given the prevalent 
nature of Dusp1, Zfp36, and other genes identified here 
(Supplemental Table 1), these are useful proxy markers 
for evaluating aberrantly activated microglia. A long-
standing concern is whether such ‘spurious’ signatures 
are unique to microglia, or whether they are also preva-
lent in peripheral immune cells. Our post-hoc analysis 
on published scRNA-seq datasets revealed a widespread 
existence of aberrant transcriptional signatures in CNS-
resident myeloid cells and non-CNS cell types, calling 

into question whether findings reported in those stud-
ies fully reflect the in vivo status of the analyzed cells 
[23, 29, 30]. In an era when biologists increasingly rely 
on scRNA-seq to discern cellular functions, ex vivo tran-
scriptional alterations constitute a major technical chal-
lenge for many studies. Moreover, these spurious signals 
appeared to be present not only in study-specific datas-
ets but also in reference atlases, underscoring the need 
for benchmarking to assess the quality and accuracy of 
single-cell reference atlases. Furthermore, with the emer-
gence of large-scale consortia such as Human Cell Atlas 
project [49] and murine cellular atlases [50] that are aim-
ing at establishing comprehensive transcriptional maps 
for multicellular tissues, the development of approaches 
that compensate or avoid such transcriptional biases is 
crucial.

A critical step in transcriptomic studies is the isolation 
of intact single cells from tissue with the highest possible 
purity. The isolation of microglia represents a major chal-
lenge. Due to their elaborate and long processes entwined 
with other cell types within the CNS, separation of 
microglia from neighboring cells requires extensive tissue 
degradation, which increases the likelihood of rupturing 
the microglial cell membrane. Notwithstanding, enzy-
matic digestion or mechanical dissociation of the brain 
tissue combined with cell sorting is a standard method 
for obtaining sufficiently high cell numbers of microg-
lia that are required for omics applications [23, 51]. We 
found that microglia yields were lower using enzymatic 
digestion protocols without cell sorting (Fig.  3B), re-
emphasizing the importance of cell enrichment in tran-
scriptomic analyses of low abundant cell types of the 
CNS such as microglia. However, we uncovered that 
cell sorting is a harsh procedure that elicits fundamental 
alterations of the microglial transcriptome or proteome. 
Specifically, we found that hydrodynamic stress and/or 
traumatic injury encountered during cell sorting are key 
inducers of ex vivo microglial activation. Such aberrant 
signatures not only distort baseline transcriptional pro-
files of microglia, but also confound expression patterns 
that are truly induced by pathological insults. Indeed, we 
detected elevated expression of genes associated with 
pro-inflammatory signaling (Ccl3, Tnf, Ccl4, Il1r2), anti-
gen presentation (Tap2, Cd74), oxidative stress (Hspa1a) 
and IFN-induced response (Socs3) which are concealed 
as being ‘differential’ in sorted microglia upon VSV infec-
tion (Fig.  4E). Induction of Cd74, Ccl3, Tnf, and Ccl4 
genes that are well documented in neuroinflammation 
and disease states [52–54], indicates microglia switching 
from a homeostatic to a more inflammatory state. This 
is in contrast to the view that microglia which are polar-
ized towards an activation state (i.e., response to disease) 
are less responsive to new stimuli (i.e., cell isolation) [27]. 
Therefore, it appears that ex vivo activation signatures 
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associated with cell sorting are confounded by biological 
treatment. In conclusion, our results underscore the need 
for recognizing cell sorting-related signatures, which 
have substantial implications in obscuring the identifica-
tion of true biological states of cells in health and disease. 
Moreover, we re-emphasize the importance of validating 
RNA-seq results from cell sorted tissues to disentangle 
these aberrant signatures from bona fide in vivo derived 
signatures of tissue resident cells such as microglia that 
are particularly sensitive to removal from their in situ 
microenvironment.

Efforts to circumvent cell-specific transcriptional 
biases are indispensable not only for enhancing the 
comparability of the findings, but also to avoid data 
misinterpretation and drawing false conclusions. Cold 
isolation protocols and transcriptional inhibitors have 
both emerged as potential strategies for preserving in 
vivo cellular signatures [27, 31]. In line with previous 
studies [27, 31], we found that scRNA-seq of microglia 
generated with inclusion of transcriptional inhibitors, 
or processing tissue under ice-cold conditions, invari-
ably diminishes aberrant microglial activation signatures. 
Although transcriptional blockers are effective in pre-
venting de novo gene expression, it must be highlighted 
that they do not prevent degradation of pre-existing 
RNAs [55]. Thus, the expression of genes such as Ubc, 
Rac1, and Tgfb1 under conditions of Actinomycin D 
treatment most probably reflects the activation status of 
microglia (Fig. S3F). Unfortunately, the above-mentioned 
strategies can have unintended consequences on cellular 
functions beyond gene expression. By blocking protein 
synthesis, transcriptional inhibitors can disturb normal 
cellular processes that potentially impact cell viability, 
proliferation, and metabolism. Moreover, transcriptional 
inhibitors were reported to interfere with the ability of 
cells to respond to stimuli, impairing their capacity to 
mount appropriate immune or stress responses [56]. 
Several studies have demonstrated that exposing mam-
malian cells to sub-physiological temperatures invokes a 
coordinated cellular response involving the induction of 
cold-shock proteins and the modulation of translation, 
metabolism, cell cycle, and the cytoskeleton [57]. There-
fore, we strongly urge the selection of appropriate cell 
isolation methods to favor accurate biological profiling in 
studies involving stress-responsive immune cells.

Considering the immense effort put into the genera-
tion of transcriptomic atlases, it is essential to retrospec-
tively attenuate or completely remove ex vivo activation 
signatures from existing datasets. Indeed, unprecedented 
numbers of computational strategies that entail complex 
machine-learning algorithms to detect and remove ex 
vivo activation genes have been developed [58]. However, 
this comes with major caveats: Firstly, the expression 
levels and dynamics of different activation genes vary 

substantially between cell types and brain regions [59]. 
Thus, pre-selecting one or few genes without a systematic 
survey may limit the detection of activated cell popula-
tions. Secondly, computational removal of ex vivo activa-
tion genes can eliminate ‘real’ signals thus jeopardizing 
studies that intend to examine biologically relevant acute 
gene expression changes. Lastly, ex vivo transcriptional 
changes may not always be restricted to early response 
genes and determining which genes to exclude from the 
analysis could be difficult or impractical.

Using the RiboTag approach, we discerned cell-type 
specific transcripts that were actively translated by 
microglia, herein referred to as ‘translatome’. Since the 
RiboTag approach inherently relies on the enrichment of 
ribosomes from selected cell types rather than the purifi-
cation of cell types from whole tissues [16, 60], we incor-
porated the concept of a log2-fold change as enrichment 
factor between the IP and input to assess the cell-type 
specificity of a given transcript. As previously described 
by Sanz et al. [16], we adopted the stringent cut-off of 
1-fold higher or lower for transcript enrichment or deple-
tion, respectively. With this approach, transcripts that are 
enriched are more likely specifically expressed within the 
cell type of interest, whereas transcripts that are depleted 
are more likely to be expressed in other cell types con-
tained within the tissue. Of note, by direct comparison of 
input, IP, in vitro, and sorted microglia, our study high-
lighted unique signatures of homeostatic microglia as 
being represented in cluster II and III (Fig. 1B). Specifi-
cally, unlike scRNA-seq or conventional bulk RNA-seq, 
RiboTag does not require cell dissociation and/or cell 
sorting [16]. Therefore, this unified set of genes accu-
rately reflects in situ microglia profiles. Indeed, deter-
mining the degree of ex vivo activation artefacts has been 
challenging because the field lacked a resting cell type-
specific reference, i.e., absence of any ex vivo activation as 
a comparator in building an accurate and complete CNS 
atlas. It is conceivable that the microglial translatome 
identified here provides a comparator to deconvolute ex 
vivo artefacts in publicly available scRNA-seq datasets. 
More broadly, the RiboTag approach represents a unique 
methodology to discover transcripts expressed by rare 
and difficult-to-isolate cell populations such as tissue 
macrophages and other resident leukocyte-derived cells.

In the context of viral infections, microglia are often 
the first responders that are critically needed to protect 
the host against lethal encephalitis [61, 62]. We exploited 
the RiboTag approach to illuminate microglia expres-
sion profiles in a more complex inflammatory scenario 
than neuroinflammation induced by intraperitoneal 
LPS administration [17]. It is worth pointing out that 
the choice of an infection model such as intranasal VSV 
infection relies mainly on the fact that VSV infection 
causes a high infiltration of lymphoid and myeloid cells 
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into the brain. Furthermore, by fate mapping experiments 
we have previously observed that several microglia can 
shift into the CD45high gate of monocytes [4]. By analysis 
of the translatome of microglia, we uncovered the induc-
tion of gene signatures implicated in T-cell activation 
and cytokine responses upon VSV infection (Fig.  5A). 
The very abundant expression of genes encoding ele-
ments from MHC I and II complexes, cell activation, and 
Fc receptors (Fig. 5B) further supported the concept that 
microglia are involved in the regulation of T-cell medi-
ated antiviral responses within the CNS. Previous studies 
reported synergistic roles of T cells and microglia in CNS 
viral infection [63, 64]. Depletion of CD4+ and/or CD8+ 
T cells was shown to impede VSV containment within 
the OB and to promote development of lethal encepha-
litis in infected mice [39, 63], suggested that T cells exert 
antiviral functions during CNS infection. Furthermore, 
microglia depletion was reported to accelerate enceph-
alitis, and alter T cells dynamics as well as cytokine 
responses during viral CNS infection [64, 65]. Cytokine 
signaling has different effects depending on the cell type 
that receives the signal. The IFN-γ released by infiltrating 
T cells was shown to induce microglia activation, as evi-
denced by upregulation of MHC II on these cells, which 
is normally expressed at lower levels [66]. However, Klein 
et al. [67] and Garber et al. [66] demonstrated that in the 
context of WNV and Zika virus encephalitis prolonged 
IFN-γ secretion that persists beyond viral clearance leads 
to microglia-mediated synaptic stripping and memory 
impairment. Since CNS entry of immune cells is tightly 
regulated [68], the influx of monocytes, neutrophils, B 
cells, and NK cells affirms their importance in controlling 
viral infection. However, the interplay between these cells 
and microglia remains to be in depth investigated.

Following VSV infection, IBA1+ cells were surrounded 
by, and some were in direct contact with, CD3+ cells 
(Fig.  5H) indicating close T cell-microglia interaction. 
Given that microglia are antigen presenting cells, it is 
conceivable that infiltrating T cells recognize cognate 
viral peptides displayed on the surface of microglia and 
that this way T cell-mediated immunity is orchestrated in 
the brain. Indeed, Moseman and colleagues [63] observed 
an overall decline in the calcium flux of cytotoxic T lym-
phocytes in mice deficient of MHC I in the CNS resident 
compartment, supporting the notion that antigen presen-
tation to VSV-specific CD8+ T cells primarily relies on 
radiation resistant brain cell populations such as microg-
lia. Considering the dramatic influx of CD4+ T cells in 
the inflamed brain (Fig. 5G) it is likely that MHC II-pos-
itive microglia take up viral antigens and present antigen 
fragments to infiltrating CD4+ T cells. Recent studies 
reported a critical role of CD4+ T cells in viral infection 
of the CNS. For instance, Wheeler et al. [64] revealed 
diminished virus-specific CD4+ T cell responses in the 

absence of microglia and decreased survival upon mouse 
hepatitis virus (MHV) infection of mice. Nevertheless, in 
CNS auto-immune disorders, microglial MHC II antigen 
presentation appears obsolete for the establishment of 
EAE [69, 70].

In conclusion, the RiboTag approach reveals accu-
rate bona fide signatures of homeostatic as well as viral 
encephalitis microglia. Such signatures serve as a com-
parator that can be used to re-evaluate the presence 
of aberrant microglial signatures that are associated 
with cell isolation procedures in other bulk RNA-seq or 
scRNA-seq datasets. We further illuminated transcrip-
tional changes associated with virus-induced inflam-
mation in microglia and deciphered microglia-T cell 
interaction in shaping distinct antiviral response of the 
brain. Taken together, this study provides comprehensive 
molecular insights in the biology of microglia and their 
interplay with peripheral innate and adaptive immune 
cells, which makes it possible to identify novel genes, 
pathways, and regulatory factors that are critical for 
microglia functions in health and disease.

Methods
Mouse lines
Experiments to investigate functional traits of microg-
lia were conducted with C57BL/6J that were referred 
to as wild type (WT), CX3CR1-CreERT2+/− [71] and 
Rpl22HA/HA [16] mice on the C57BL/6 background. 
To selectively label ribosomes of microglia in vivo, 
CX3CR1-CreERT2+/−, which express a Cre-ERT2 fusion 
protein under the CX3CR1 promoter, were crossed with 
Rpl22HA/HA, in which exon 4 of the Rpl22 gene is floxed 
and followed by a modified exon 4 to which a HA tag is 
fused. Upon tamoxifen injection of CX3CR1-CreERT2+/− 
Rpl22wt/HA offspring, the floxed exon 4 is deleted and the 
tagged exon 4 is expressed selectively in myeloid cells. 8 
weeks after tamoxifen injection, only long-lived myeloid 
cells including microglia carry HA-tagged ribosomes. All 
experiments randomly included both male and female 
mice aged between 8 and 10 weeks. Mice were housed 
in ventilated cages on 12-hour light: dark cycles under 
specific pathogen-free condition. All animal experiments 
were approved by local administration in Germany 
and were performed in strict conformity to respective 
national, federal and institutional regulations and the 
guidelines of the Federation of European Laboratory Ani-
mal Science Association (Identification number: 22/0055 
and 18/2899).

Preparation of microglial cultures
Microglia were generated from cortices of day 3 post-
natum newborn pups as previously described [72]. 
Briefly, cortices were extracted in ice-cold Hanks Bal-
anced Salt Solution (Gibco, 14065-056) containing 
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4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 
(HEPES; Gibco, 15630-056) and the meninges were 
removed under the stereomicroscope. The cortical tissue 
was finely minced and digested with 0.1% trypsin (Cap-
ricorn, TRY-1B10) for 10  min at 37  °C on a shaker and 
0.25% DNase (Roche, 11284932001) was added. Mixed 
glial culture progenitor (MGP+; Capricorn, DMEM-
HXA) medium supplemented with 10% fetal bovine 
serum (Capricorn, FBS-11 A) and 1% penicillin/strepto-
mycin (Capricorn, PS-B) were added. The homogenate 
was centrifuged, and the supernatant was removed. The 
pellet was re-suspended in triturating solution, tritu-
rated several times with 100 µm strainer and seeded into 
poly-L-lysine pre-coated flasks with MGP + medium at 
37  °C and 5% CO2. The medium was changed at day 1 
and 5. After 10 days of mixed glial culture, microglia were 
harvested by shaking the flasks (125  rpm) for 40  min 
at 37  °C. Microglial cells were re-plated at a density of 
2.0 × 105 cells per well in 24 well plates and incubated at 
37 °C and 5% CO2. Microglia were used the following day 
for experiments.

Tamoxifen administration
To induce expression of HA epitopes in microglial ribo-
somes, CX3CR1-CreERT2+/− Rpl22HA/wt mice were sub-
cutaneously injected with 4  mg of tamoxifen (Sigma, 
T5648) suspended in 200 µL of corn oil (Sigma, C8267) 
for two consecutive days. All animals were tamoxi-
fen-treated first at age of 6 weeks. Mice were ready for 
experiment 8 weeks after initial tamoxifen injection, thus 
allowing complete turnover of CX3CR1+ circulating cells.

VSV infection
For in vivo VSV infection, mice aged 14 weeks were 
intranasally instilled with 10 µL of 103 PFU VSV-Indi-
ana (Mudd-Summers isolate). Control animals received 
the same volume of vehicle solution (PBS). Six days post 
infection, the animals were sacrificed by cervical disloca-
tion prior to brain harvesting.

For in vitro VSV treatment, culture microglia were 
inoculated at MOI of 0.5 with VSV diluted in DMEM 
medium for 1 h at 37 °C in 5% CO2. At 8 h post infection, 
supernatant was removed, and the adherent cells were 
lysed by TRIzol (ThermoFischer, 15596018), harvested 
and stored at -80 °C until further use.

Tissue immunoprecipitation
Immunoprecipitation of ribosomes in CX3CR1-Cre-
ERT2+/− Rpl22HA/wt mice was performed as previously 
described, though with minor modifications [17]. In brief, 
the brain tissue was placed in a prechilled 2 mL Dounce 
homogenizer and 500 µL lysing buffer was added con-
taining 50 mM Tris-HCl (pH 7.4), 12 mM MgCl2 (Ther-
moFischer, AM9530G), 100 mM KCl (ThermoFischer, 

AM9640G), 1 mM DTT (Sigma, D9779), 200 U/mL RNa-
sin (Promoga, N2515), 1% NP-40 (Sigma, CA-630), 1× 
protease inhibitor cocktail (Merck, 4693159001), 100 µg/
mL cycloheximide (Sigma, C7698) and 1  mg/mL hepa-
rin (Sigma, H3149). Samples were centrifuged at 4 °C at 
10,000xg for 10  min, and supernatant was collected. 50 
µL of the lysate was aliquoted and was kept as “input 
fraction”. 10% v/v of re-suspended HA-specific antibody 
beads (ThermoFischer, 88836) was added to the remain-
ing supernatant, and RiboTag-IP fractions were rotated at 
4 °C overnight. Afterwards, samples were washed 3 times 
with high salt-buffer (50 mM Tris-HCl (pH 7.4), 300 mM 
KCl, 12 mM MgCl2, 100  µg/mL Cycloheximide, 1 mM 
DTT and 1% NP-40), 5 min per wash in the cold room on 
end-to-end rotator. After washes, ribosome-RNA bound 
complexes were magnetized and excess buffer removed. 
The beads were re-suspended in 350 µL RLT buffer sup-
plemented with 1% β-mercaptoethanol (Sigma, M6250).

RNA isolation
RNA from “input” and RiboTag-IP fractions was 
extracted using Qiagen RNeasy Mini Kit following man-
ufactures instruction. For in vitro cultured microglia, 
RNA was isolated using Direct-zol RNA Miniprep Plus 
Kit (Zymo Research). RNA quality and concentrations 
were accessed using Bioanalyzer RNA kit (Agilent) and 
samples with RIN value > 8.0 were selected for further 
processing.

Bulk RNA sequencing and analysis
Library preparation of selected samples was performed 
with NEBNext Low input RNA Library Prep Kit for Illu-
mina (NEB, E6420) following manufacturer’s instruc-
tions. Constructed cDNA libraries were sequenced on an 
Illumina NovaSeq-6000 platform with a 50 bp paired-end 
read configuration. Quality of raw fastq-files was assessed 
using FastQC software (version 0.11.9) and mapped to 
reference genome assembly of Mus musculus (GRCm38) 
from Ensembl using STAR v2.5.4b software [73]. Only 
reads with unique mapping were considered for down-
stream analysis. Gene-level read counts were obtained 
with FeatureCounts [74]. Prior to differential analysis, 
batch effect adjustment was performed using ComBat-
seq [22]. Differential expression analysis was performed 
using DESeq2 package [75] in R environment (version 
1.26.0). We used both Wald test of the negative binomial 
model coefficients (DESeq2-Wald) as well as likelihood 
ratio test compared with reduced model (DESeq2-LRT) 
to test significance of gene expression differences as 
a function of samples at an absolute log2-fold change 
threshold of 1. To control false discovery rate (FDR), test 
p-values were adjusted to multiple comparisons using 
the Benjamini-Hochberg procedure. To display expres-
sion levels of selected gene signatures between samples, 
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raw counts were normalized based on median of ratios 
method in DESeq2. In brief, DESeq2 generates normal-
ized reads by dividing counts with sample-specific size 
factors that were determined by the median ratio of gene 
counts relative to the geometric mean per gene [76]. We 
exploited this approach to enable accurate comparisons 
of gene expression levels between different samples, 
ensuring that the differences observed reflect true bio-
logical variability rather than technical artifacts. Visual-
izations of differentially expressed genes represented as 
heatmaps were generated using standardized functions 
of normalized counts from DESeq2 analysis. Optimal 
k-means clusters were obtained using elbow method.

Exploration of the underlying biological characteristics
Functional annotation of differentially expressed gene 
signatures was performed in Gene Ontology (GO), sub-
category “Biological process” using clusterProfiler Bio-
conductor package [77]. Specifically, over representation 
analysis (ORA) implemented in the package was used to 
determine enrichment of GO terms with FDR of q < 0.05. 
The p values were calculated using hypergeometric test 
and adjusted for multiple comparison with the Ben-
jamini–Hochberg method. Gene set enrichment analysis 
(GSEA) [78] was performed to determine whether a pre-
defined set of DEGs that associated with GO terms shows 
statistical significance by ranking normalized enrichment 
score (NES). GO term was considered enriched with a 
NES > 1 and was predicted de-enriched with NES <-1.

Processing and analysis of archived datasets
We assembled a compendium of seven published scRNA-
seq studies and one-bulk RNA-seq study. For scRNA-
seq, raw count matrices or loom files containing count 
matrices were obtained from Gene Expression Omnibus 
(GEO) database or laboratory websites. Datasets that 
composed of different genotypes, treatments and gender, 
only samples from WT, controls, or mixed gender mice 
were selected for downstream analysis.

Von Hove et al. [23], full aggregated raw gene-cell 
count matrix consisting of dura, choroid plexus, enriched 
subdural meninges, macrophages and whole brain of 
WT mice were obtained from GSE128855. The study 
used 10X genomics sample preparation protocol, anti-
body-based cell sorting to cells and sequenced with 10X 
genomics platform. Metadata, including cell type annota-
tions, were retrieved from Brain Immune Atlas.

Zhong et al. [29], processed digital gene expression 
matrix from the whole bone marrow of healthy WT 
mice were downloaded from GEO (GSE182986). Femur 
and tibia were dissociated with enzymatic digestion and 
libraries of resulting cell suspensions were constructed 
with the Singleron protocol. Sample and cell-level 

metadata, including cell type annotations, were retrieved 
from the authors.

Kimmel et al. [30], sparse matrices from the spleen of 4 
adult WT mice (7–8 months) were obtained from GEO 
(GSE132901). Spleen was mechanically dissociated and 
each tissue cell suspension from each animal was pro-
cessed in two technical replicates using the 10X protocol. 
Metadata and cell type annotations were retrieved from 
the original publication.

Tepe et al. [26], raw digital gene expression matrix from 
the olfactory bulb of adult WT mice were downloaded 
from GSE121891. Tissues were dissociated according to 
10X genomics sample preparation protocol. Metadata 
was obtained from the same source.

Hammond et al. [31], processed digital gene expression 
matrices from whole brain of 2 male and 2 female adult 
WT mice (P100) were retrieved from GEO (GSE121654). 
Tissues were mechanically dissociated under ice cold 
conditions, cells enriched via FACS and sequenced using 
10X genomics. Metadata, including cell type annotations, 
were obtained from the supporting information files 
accompanying the publication.

Marsh et al. [27], raw count matrices from whole 
brain of 4 adult mice (P89-P90) were downloaded from 
GSE152183. The study used modified 10X genomic sam-
ple preparation protocol with inclusion of transcriptional 
inhibitors. Metadata, including biological replicates, 
experimental conditions and cell type annotations, were 
obtained from the supporting information files accompa-
nying the published manuscript.

Rosen et al. [33], raw sparse count matrix from murine 
cortical and hippocampal tissues were downloaded from 
GSE212199. Tissues were dissociated using Miltenyi dis-
sociation protocol and the resulting cell suspensions were 
processed with Chromium Single Cell 3′ Library Kit. 
Meta files including experimental conditions and biologi-
cal replicates were obtained from the same source.

For bulk RNA-seq from Chhatbar et al. [4], raw paired-
end fastq-files from CX3CR1-CreERT2+/−TdTomatowt/ST 
adult mice (P100) challenged with VSV and matched con-
trols were obtained from GEO (GSE110188). Brain 
tissues were processed using Miltenyi dissociation pro-
tocol and pre-sorted td-tomato+ cells via FACS. Meta-
data including biological replicates and experimental 
conditions were aggregated from the publication. Data 
processing and differential expression analysis was per-
formed with aforementioned bulk RNA-seq analysis 
pipeline.

Seurat version 4 was used for the single-cell analysis 
[79]. For scRNA-seq datasets, an initial round of clean-
ing and clustering was performed using dataset-specific 
parameters described in the original publications. Clus-
ter identities were determined by calculating enriched 
markers using the FindAllMarkers () function implement 
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in Seurat. Cell types were assigned by identifying genes 
that were unique to each cluster and through cross-ref-
erencing to known markers of each cell type and existing 
published datasets.

To study microglia, we applied a uniform process-
ing pipeline to process each dataset. Microglia clusters 
were identified in each dataset with canonical markers 
and selected for downstream analysis. A second round of 
microglial clustering was performed on each dataset sep-
arately using defined set parameters. In brief, SCTran-
form () function was used to normalize and scale data, 
then UMIs and mitochondrial gene percentages per cell 
were regressed out. Principal component analysis (PCA) 
was performed with the first 30 PCs, and a by shared 
nearest neighbor (SNN) graph was build using 10 dimen-
sions. Clusters were identified using the Louvian-cluster-
ing algorithm at a resolution of 0.8, and a graph of all cell 
populations was generated through uniform manifold 
approximation and projection (UMAP) using 10 PCs.

Data correction and integration
Prior to integrative analysis, we first performed normal-
ization of pre-selected microglia cell clusters from Van 
Hove et al. [23], Tepe et al. [26], Hammond et al. [31], 
Marsh et al. [27] datasets with Seurat. All datasets were 
merged, and low-quality cells were filtered out based 
on threshold cut-off for minimum numbers of genes 
detected at 200 genes per cell and maximum mitochon-
drial percentage of 10. Gene expression of split datasets 
was normalized and transformed using SCTransform () 
function to identify highly variable genes (HVG). The 
top 3000 HVG were used as input to identify cross-
dataset pairs of cells that are in matched biological state 
(anchors) to integrate the datasets together. Due to dif-
ferences in cell isolation and handling protocols, library 
preparation technology, and sequencing platforms across 
the datasets, we then performed iterative linear correc-
tion based on soft clustering implemented in Harmony 
[80] to integrate technical covariates in a low-dimen-
sional space. The output was used for linear dimension-
ality reduction using 11 PCs, followed by application of 
the non-linear UMAP dimensionality reduction with 
resolution of 0.8. UMAP plots and gene expression plots 
were generated using built-in Seurat/ggplot2 plotting 
functions.

Differential gene expression analysis
The significance of inter-dataset gene expression of 
microglia was determined using the MAST package 
[34]. In brief, the integrated Seurat object was log trans-
formed and converted into SCA object. Genes expressed 
in less than 10% of cells were filtered out and identity of 
each dataset (batch) was assigned as predictor. We fit-
ted a hurdle model, modelling the batch and centered 

‘ngeneson’ factor to adjust for the cellular detection rate. 
Likelihood ratio test (LRT) was performed to test the 
differences across the datasets. Only genes that attained 
cutoff criteria of FDR < 0.05 and log2-fold change >|0.25| 
were selected for downstream analysis.

Gene signature scoring
To define cell type enrichment of cell activation signature 
identified from bulk RNA-seq analysis, the UCell package 
was used [25]. UCell is a gene signature scoring method 
based on Mann-Whitney U statistics. In brief, the algo-
rithm calculates the relative gene expression in individual 
cells and ranks genes for each cell for each gene set to 
generate UCell scores. In the end, UCell scores depend 
only on the relative expression of genes in each cell and 
are not dependent on dataset composition. UCell enrich-
ment scores were projected on UMAP using FeaturePlot 
function implemented in Seurat.

In silico deconvolution
For deconvolution analysis, we utilized scRNA-seq data-
sets of microglia from Rosen et al. [33] as reference. We 
evaluated cell-type proportions in IP microglia using Sin-
gle-cell RNA Quantity Informed Deconvolution (SQUID) 
[36], which combines bulk RNA-seq transformation 
and dampened weighted least squares deconvolution 
approaches to predict the composition of cell mixtures.

Immunohistochemistry
Mice were anesthetized with a ketamine/xylazine and 
transcardially perfused with ice cold 1x PBS followed by 
ice cold 4% PFA. Brains were harvested, post-fixed in 4% 
PFA for 4 h and dehydrated in 30% sucrose overnight at 
4  °C. Brains were then embedded in Tissue-Tek optimal 
cutting temperature compound (Sakura, 4583) and cut 
into 7  μm sagittal sections. Prior to immunolabeling, 
slices were rehydrated with 0.5% Triton-X100 in PBS for 
15 min. Tissue slices were blocked in tissue blocking solu-
tion (PBS containing 5% donkey serum [Sigma, S30M] 
and permeabilized with 0.5% Triton-X 100 [BioRad, 
1610407]) for 1  h at room temperature (RT). Primary 
antibodies: CD3 (1:100; Biolegend, 100202) and IBA1 
(1:500; Abcam, ab5076) were added and incubated over-
night at 4  °C. Excess antibodies were removed through 
3 washing steps with 0.5% Triton-X100 in PBS for 5 min 
followed by secondary antibodies labeling with donkey 
anti-rat AF568 (1:500; Abcam, 175475) and donkey anti-
goat AF647 (1:500; Invitrogen, A21447) for 1 h at RT. Fol-
lowing secondary staining, sections were washed 3 times 
with 0.5% Triton-X100 in PBS. Nuclei were stained with 
DAPI (1:1000; Sigma D9542) for 2 min, dried and cover-
slips were mounted using Dako fluorescence mounting 
medium. Fluorescent images were acquired with Olym-
pus FV3000 and analyzed with ImageJ.
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Cell sorting and flow cytometry
Mice were euthanized and perfused with ice cold 1x PBS. 
Brains were isolated and dissociated by enzymatic diges-
tion in a 2 mL RPMI (Capricorn, RMPI-XA) containing 
20% collagenase (Sigma, C9263), 40% DNase and 5% FBS 
in gentleMACS C tubes 3 times for 8  min at 37°C. The 
homogenates were loaded on a three layered Percoll gra-
dient (30, 37 and 70%; Sigma, P1644) and centrifuged at 
500 g for 30 min. Immune cells were collected at 37% and 
70% Percoll interphase, washed in PBS and immediately 
processed for downstream analysis. For sorting experi-
ments, freshly isolated cells were incubated with anti-
FcγIII/II receptor antibody (CD16; Biolegend, 156603) 
for 10  min and thereafter immunolabeled for CD45.2 
PacBlue (Biolegend, 109820). An aliquot of 250  µl was 
kept aside as “unsorted” fraction. After cell sorting, both 
the “sorted” and “unsorted” fractions were immunola-
beled with the following flourochrome-conjugated anti-
bodies: CD11b APC-Cy7 (Biolegend, 101226), P2RY12 
APC (Biolegend, 848006), CD74 AF647 (Biolegend, 
151004), LY6C AF700 (Biolegend, 128024), CX3CR1 
BV510 (Biolegend, 149025), MHCI FITC (Biolegend, 
125508), LY6G PE-Cy7 (Biolegend, 127618) and MHCII 
PE-Cy5 (Biolegend, 107611). Samples were incubated 
for 20 min at 4°C, washed and re-suspended in 300 µL of 
FACS buffer.

For flow cytometric analysis of brain immune cells 
during VSV infection, the freshly isolated cells were 
incubated with anti-FcγIII/II receptor antibody (CD16; 
Biolegend, 156603) to prevent unspecific binding of 
the antibodies. Thereafter, cells were further labeled 
with the following flourochrome-conjugated antibod-
ies against cell surface markers in FACS buffer: CD45.2 
PacBlue (Biolegend, 109820), CD11b APC-Cy7 (Biole-
gend, 101226), LY6C AF700 (Biolegend, 128024), LY6G 
PE-Cy7 (Biolegend, 127618), CX3CR1 BV510 (Biolegend, 
149025), MHCI BUV661 (BD, 749702), MHCII BV785 
(Biolegend, 107645), CD4 BV570 (Biolegend, 100541), 
CD8b BV711 (Biolegend, 126633), CD11c BV605 (BD, 
563057), TCR-β PE-dazzle (Biolegend, 109240), B220 
PE-Cy5 (Invitrogen, RM2618) and NK1.1 BV421 (Bioleg-
end, 108732). Samples were incubated for 20 min at 4 °C, 
washed and re-suspended in 300 µL of FACS buffer. All 
samples were acquired on a Sony ID7000 flow cytometer 
equipped with 405, 488, 561 and 633 lasers. Obtained 
data were analyzed with FlowJo software (Tree Star).

Dimensional reduction and clustering analysis of flow 
cytometry data
Unsupervised clustering of flow cytometry data was per-
formed with FlowSOM in R environment. First, non-
lymphocyte cells and doublets were excluded based on 
FSC/SSC parameters. Then, fcs files containing both 
CD45+CD11b+ and CD45+CD11b− cells from each 

sample were exported for further analysis. Marker inten-
sities were transformed with biexponentialTransform () 
function, scaled and reduced into low-dimensional space 
using BuildSOM () function in FlowSOM algorithm. 
FlowSOM clusters cells with similar phenotypic appear-
ance into subpopulation or subsets, which are depicted 
in special proximity on the UMAP plot. Optimal clusters 
were iteratively estimated based on delta area generated 
by ConsensusClusterPlus.

Statistics and reproducibility
Statistical analysis and data visualization in the pres-
ent study was performed by using the R software (ver-
sion 4.1.1, http://www.r-project.org). Unless specifically 
stated, p or FDR values < 0.05 were considered statisti-
cally significant.
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Supplemental Fig. 1: Expression of cell activation signatures in bulk RNA 
and scRNA-seq. A, Box plot with overlaid dotplot of normalized counts 
revealing prominent expression of aberrant activation signatures in sorted 
microglia (for additional details see caption of Fig. 1). B, Violin plots of basic 
scRNA-seq quality metrics and UMAP embedding of 21,463 cells from Van 
Hove at al. [23], highlighting major cell types. C, Heatmap depicting the 
scaled and log-normalized expression values of the top three most highly 
enriched genes in microglia clusters. A maximum of 100 cells per cluster 
are displayed. D, Cell-specific expression of selected cell activation genes 
overlaid on the UMAP coordinates. Color scale represents gene-weighted 
kernel density estimates.

Supplemental Fig. 2: Integrative analysis of publicly archived large-scale 
transcriptomic datasets. Basic quality metrics and UMAP embedding 
of scRNA-seq datasets of brain immune cells from (A) Hammond et al. 
[31], (B) Marsh et al. [27], and (C) Tepe et al. [26]. Violin plot displaying 
distribution of cell activation enrichment score in cell types from (D) bone 
marrow and (E) splenocytes. OPC, oligodendrocyte progenitor cells; OEC, 
olfactory epithelial cells; RBC, red blood cells; DC, dendritic cells; HSC, 
hematopoietic stem cells; MSC, mesenchymal stem cells; NMP, neutrophil-
myeloid progenitors.

Supplemental Fig. 3: Expression of cell activation signatures in integrated 
scRNA-seq with key experimental variations. A, UMAP plot of 25,406 
integrated microglia cells depicting three microglial clusters. Violin plot 
displaying distribution of cell activation enrichment score in integrated 
microglia grouped by (B) dataset and (C) microglia subtypes. D, Abun-
dance of selected key cell activation genes in the integrated microglia 
datasets. E, Average expression of canonical microglial markers across the 
integrated datasets. F, Violin plot showing expression of key cell activation 
genes in microglia treated with transcriptional inhibitors. G, Contour plots 
representing the gating strategy for myeloid cells. Gates are indicated in 
blue. Doublets and dead cells were excluded before. Both CD45+CD11b+ 
and CD45+CD11b− populations were exported for dimensionality reduc-
tion and clustering, whereas CD45+CD11b+ were further gated for the 
microglia population. H, Contour plots representing CD74+, MHCI+ or 
MHCII+ expressing microglia.

Supplemental Fig. 4: Viral infection of the brain induces transcriptional 
shift of microglia. A, Venn diagram showing intersection of differentially 
regulated genes between VSV versus PBS in IP, in vitro and sorted samples. 
B, Roseplot showing directional distributions of overlapping genes 
regulated in IP, in vitro, and sorted microglia based on expression changes. 
C, Volcano plot highlighting fold change of differentially regulated genes 
between VSV versus PBS from IP microglia. Genes with up- or downregu-
lated expression are highlighted in amber and pink, respectively. D, UMAP 
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plot of scRNA-seq datasets from Rosen et al. [33] depicting segregation 
of immune cells based on treatment. Microglia isolated from controls 
segregated from microglia isolated from WNV-infected mice. E, UMAP 
plot displaying density expression levels of genes encoding for MHC 
complexes and phagocytosis in Cx3cr1 expressing microglia. F, UMAP 
depicting immune composition in the brain following VSV infection (left) 
and surface maker expression associated with identified clusters (right).

Supplemental table 1: Cell activation gene signatures of microglia and 
consensus gene list for the gene scoring module.
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