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Abstract 

Background Trauma can result in systemic inflammation that leads to organ dysfunction, but the impact 
on the brain, particularly following extracranial insults, has been largely overlooked.

Methods Building upon our prior findings, we aimed to understand the impact of systemic inflammation on neu-
roinflammatory gene transcripts in eight brain regions in rats exposed to (1) blast overpressure exposure [BOP], (2) 
cutaneous thermal injury [BU], (3) complex extremity injury, 3 hours (h) of tourniquet-induced ischemia, and hind 
limb amputation [CEI+tI+HLA], (4) BOP+BU or (5) BOP+CEI and delayed HLA [BOP+CEI+dHLA] at 6, 24, and 168 h 
post-injury (hpi).

Results Globally, the number and magnitude of differentially expressed genes (DEGs) correlated with injury severity, 
systemic inflammation markers, and end-organ damage, driven by several chemokines/cytokines (Csf3, Cxcr2, Il16, and 
Tgfb2), neurosteroids/prostaglandins (Cyp19a1, Ptger2, and Ptger3), and markers of neurodegeneration (Gfap, Grin2b, 
and Homer1). Regional neuroinflammatory activity was least impacted following BOP. Non-blast trauma (in the BU 
and CEI+tI+HLA groups) contributed to an earlier, robust and diverse neuroinflammatory response across brain 
regions (up to 2–50-fold greater than that in the BOP group), while combined trauma (in the BOP+CEI+dHLA group) 
significantly advanced neuroinflammation in all regions except for the cerebellum. In contrast, BOP+BU resulted 
in differential activity of several critical neuroinflammatory-neurodegenerative markers compared to BU. t-SNE plots 
of DEGs demonstrated that the onset, extent, and duration of the inflammatory response are brain region depend-
ent. Regardless of injury type, the thalamus and hypothalamus, which are critical for maintaining homeostasis, had 
the most DEGs. Our results indicate that neuroinflammation in all groups progressively increased or remained at peak 
levels over the study duration, while markers of end-organ dysfunction decreased or otherwise resolved.

Conclusions Collectively, these findings emphasize the brain’s sensitivity to mediators of systemic inflammation 
and provide an example of immune-brain crosstalk. Follow-on molecular and behavioral investigations are warranted 
to understand the short- to long-term pathophysiological consequences on the brain, particularly the mechanism 
of blood–brain barrier breakdown, immune cell penetration–activation, and microglial activation.
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Introduction
Trauma is a major form of morbidity and mortal-
ity in both civilian and military populations [1–4]. 
Blast-induced trauma caused by exposure to explosive 
devices—a signature pathology of service members 
returning from recent wars and civilians of urban terror-
ist events [5, 6]—can result in primary brain injury and 
extracranial insults. Explosive blasts can cause injury 
via multiple mechanisms, including the transmission 
of shock waves through the body (“primary”), penetrat-
ing or blunt impact by projected objects (“secondary”), 
blast-induced acceleration/impact of the body and/or 
body parts (“tertiary”), and other mechanisms (“quater-
nary”), including toxic fumes, muscle crush, and burn 
injury” [7]. Traumatic brain injury induced by primary 
blast has been documented in a significant fraction of 
reported cases of deployment-related short- and long-
term mental health sequelae [8, 9]. However, sustaining 
life-threatening heterogeneous blast-induced polysystem 
injuries, including comminuted open fractures, neuro-
vascular injury, hemorrhage, soft tissue loss, burns, and 
traumatic amputations, complicate treatment options [7, 
10–13]. Despite their severity, the impact of these poly-
system injuries on brain health outcomes is less empha-
sized in research and clinical practice, underlining a 
significant gap in our understanding and management of 
blast-induced trauma.

Several recent studies highlight this issue. Following 
complex polytraumatic injuries, local tissue damage can 
induce exaggerated local and peripheral innate immune 
responses that lead to multifaceted systemic inflamma-
tory response syndrome (SIRS), resulting in subsequent 
remote multiple organ dysfunction and failure (MOD/
MOF) or even death [14–16]. In polytrauma patients that 
sustain head trauma, ample evidence indicates that pro-
inflammatory mediators in the cerebral microenviron-
ment can exit the brain and enter the bloodstream via 
an altered brain‒blood barrier (BBB), thereby affecting 
remote organs [17–19]. These mediators can alter renal 
perfusion, increase alveolar hemorrhage, which contrib-
utes to acute lung injury, and change cytokine metabo-
lism in the liver, leading to a prolonged inflammatory 
response [20–23]. Such damage initiates a cycle of reac-
tivated immune mechanisms, both local and systemic, 
reinforcing the initial immune response. The cyclical pro-
cesses and fluidity of the immune response underscore 
the importance of understanding the cellular and molec-
ular mechanisms that drive neuroinflammation and sub-
sequent brain tissue damage caused by various modes of 
injury.

Prolonged and exaggerated posttraumatic local and 
systemic immune responses following polytraumatic 
injury are clearly linked to poor outcomes in critically ill 

civilians and combat injured service members [24–28]. 
However, there is a paucity of research evaluating the 
early local and systemic cellular and molecular signal-
ing pathways involved in the development and sequelae 
of trauma-induced neuroinflammation (e.g., heightened 
cellular metabolism, hypoxia, necrosis, inflammation), 
particularly after extracranial injury. Understanding the 
pathophysiology and clinical relevance of neurological 
complications following extracranial trauma is crucial 
for the proper treatment of patients with severe extrem-
ity injuries. Although immune response activation and 
inflammation are core features of virtually all neurode-
generative diseases [29–31], immunological research fol-
lowing severe traumatic injury from a non-blast insult 
has traditionally focused on SIRS, sepsis, and peripheral 
organ damage in the lung, kidney, liver, and gut. How-
ever, research has neglected the potential for cerebral 
injury and its chronic debilitating neurodegenerative out-
comes after extracrainal injury. Currently, physicians rely 
on conventional clinical serum biomarkers of end-organ 
function, such as transaminases (alanine transaminase 
[ALT], aspartate transaminase [AST]), blood urea nitro-
gen to creatinine ratio (BUN:Cr), and serum albumin 
(ALB) concentrations, to evaluate severity and recov-
ery in response to severe trauma [32]. However, this 
approach often ignores the brain, a critical end-organ, 
as evidenced by its exclusion from most modern trauma 
scoring systems and biochemical assays to monitor its 
dysfunction and recovery.

Using various models of trauma, we recently demon-
strated that neuroinflammatory gene signatures in the 
brain can be altered as a result of remote extracranial 
trauma [33]. By measuring early neuroinflammatory 
gene signatures in eight distinct regional brain compart-
ments, we previously found that a complex musculoskel-
etal extremity injury (femoral fracture, soft-tissue crush 
over the zone of injury, tourniquet-induced ischemia 
followed by limb amputation) resulted in a rapid neu-
roinflammatory response at 6  h post-injury (hpi). Inter-
estingly, whole-body blast exposure alone (~ 120  kPa), 
while causing changes in similar brain regions, did so to 
a much lesser degree (less diffuse) than extremity injury 
or mild burn trauma. However, blast injury coupled with 
complex extremity injury involving hind limb amputa-
tion significantly augmented the magnitude of the neu-
roinflammatory response across all structural brain 
regions [33]. To build upon these compelling findings, 
in this study, we assessed the extent of neuroinflamma-
tion over a seven-day (168 hpi) window and compared 
gene expression profiles with  circulating cytokines/
chemokines and classical clinical serum markers of 
end-organ damage. Additionally, we incorporated a sec-
ond model of remote trauma, cutaneous thermal burn 
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injury ± blast overpressure exposure, as burns are a major 
injury experienced by combat-personnel and can result 
in a rapid and prolonged systemic inflammatory response 
[34]. Using different models of injury and severity, we 
hypothesized that the trajectory, extent, and duration of 
neuroinflammation post-trauma would correlate with the 
extent of tissue trauma/injury severity and the reported 
rise and fall of established clinical mediators of systemic 
inflammation and end-organ damage during the first 
7 days post-trauma [34–37].

Materials and methods
Animals
Adult male Sprague‒Dawley rats (478 ± 37.72  g; 11 to 
14  weeks old; N = 91) were obtained from Taconic Bio-
sciences (Derwood, MD, USA). Rats were pair-housed 
and maintained on a 12 h light–dark cycle in a vivarium 
accredited by the American Association for the Accredi-
tation of Laboratory Animal Care (AALAC) with ad libi-
tum access to food and water. All animal experiments 
involving rats were performed using approved institu-
tional standard guidelines set forth by the Uniformed 
Service University Institutional Animal Care and Use 
Committee (IACUC) in compliance with the ARRIVE 
Guidelines [38] and all applicable federal regulations gov-
erning the use and protection of animals in research.

Experimental design and surgical procedures
Rats were randomly assigned to one of five trauma model 
groups (n = 5–7): (1) whole-body blast overpressure 
[BOP], (2) cutaneous thermal injury [BU], (3) BOP+BU, 
(4) complex extremity injury involving femur frac-
ture and muscle crush injury plus tourniquet-induced 
ischemia and hind limb amputation [CEI+tI+HLA], or 
(5) BOP+CEI+delayed hind limb amputation [dHLA] 
(Fig.  1). Each injury occurred in a sequential fashion 
while under anesthesia, with the exception of BOP, in 
which the animals were recovered for a period of 30 min 
to 1  h prior to sedation for follow-on surgical proce-
dures. Age- and sex-matched naïve rats (n = 7) served as 
controls.

Whole‑body blast overpressure (BOP)
Rats received head-on non-shielded whole-body blast 
overpressure exposure (peak pressure: 125.76 ± 3.72 kPa) 
using the USUHS Advanced Blast Simulator (ABS) as 
previously described [33, 36]. Following the induction 
of anesthesia using isoflurane (4% in  O2 at 1 L/min) and 
the administration of a subcutaneous (SC) injection of 
prophylactic analgesia (Ethiqa XR, 0.65  mg/kg; Fidelis, 
North Brunswick, NJ, USA), a head wrap constructed 
from heavy duty cardboard and vet wrap was used to 
protect the mucus membranes prior to securing the rat 

forward facing into a mesh pouch approximately 2.9  m 
distal to the driver membrane. Following the blast, the 
rats were immediately removed from the blast chamber 
and allowed to recover in the supine position.

Cutaneous thermal burn injury (BU)
Rats were anesthetized using isoflurane (2–5% in  O2 at 
1 L/min), and the dorsum was shaved and depilated using 
a chemical depilator (Nair; Church & Dwight Co., Inc., 
Ewing, NJ). Anesthetized rats were placed on their dor-
sum in a custom polyvinyl chloride (PVC) cradle with an 
opening of 5 cm × 11.5 cm, corresponding to ~ 10% total 
body surface area (TBSA), based on the Meeh formula 
[39]. Immersion in a 96 ℃ hot water bath was performed 
for 8 s to achieve a deep partial thickness burn [34, 40]. 
The average calculated burn TBSA was 7.96 ± 3.33%.

Complex extremity injury (CEI)
Rats received an intraperitoneal (IP) sedative injection 
containing ketamine (75  mg/kg; Henry Schein Animal 
Health, Dublin, OH, USA) and xylazine (10 mg/kg; Akorn 
Animal Health, Lake Forest, IL, USA) and were admin-
istered prophylactic analgesia (1.2  mg/kg; Buprenor-
phine—SR, ZooPharm, Laramie, Wyoming, USA) via 
subcutaneous injection (SQ). The injury involved a closed 
femoral fracture and soft tissue crush injury of the right 
hindlimb quadriceps. Briefly, a custom lateral long bone 
ballistic system [41] utilizing a drop weight of 581 g from 
a height of 88 cm was used to create a femoral diaphysis 
fracture, followed immediately after fracture by a crush 
injury with a force of 138  kPa (20 psi), which was cali-
brated against a digital force gauge (Ametek, Largo, FL, 
USA), for 1 min [35].

Tourniquet‑induced ischemia (tI)
Immediately following CEI, the injured hind limb was 
elevated for ten minutes prior to tourniquet application 
to reduce venous pooling, reducing the likelihood of 
thrombotic complications following tourniquet release. 
Then, a pneumatic tourniquet (UDC1.6™, Hokanson, 
WA) connected to an aneroid sphygmomanometer 
(DS400, Hokanson, WA) was applied proximal to the 
fracture site [35, 42–44] and controlled using a segmen-
tal cuff selector enabling rapid and independent infla-
tion and deflation (MV10, Hokanson, WA). The inflation 
pressures were maintained at 280–300 mmHg for a total 
duration of 3 h, which exceeded the 220 mmHg pressure 
required to stop vascular flow in a rat limb [42, 43].

Hind limb amputation (HLA/dHLA)
Either immediately after tI or one-hour post-injury 
(delayed, d), a transfemoral amputation (HLA) was made 
through the fracture site, with hemostasis, debridement 
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of non-viable tissue, and amputation closure completed 
by hamstring and quadriceps myoplasty over the residual 
distal femur. Closure of the residuum was performed 
using 3–0 vicryl figure-of-eight suture in muscle tissue, 
continuous 4–0 monocryl subcuticular closure, and 5–0 
simple interrupted suture wound closure. Wounds were 
observed twice daily. No debridement or surgical revi-
sions were necessary for any animal in this study.

Blood collection and brain procurement anddissection
Whole blood (1.5  mL at 1, 3, and 72 hpi) was collected 
from the lateral tail vein of anesthetized rats using iso-
flurane (2–5% in  O2 at 1 L/min) or via cardiac puncture 
(~ 10  mL) following  CO2 euthanasia at 6, 24, and 168 
hpi. Serum was obtained by centrifugation after coagu-
lation and stored at – 80 ℃ for subsequent downstream 

analysis. Intact brains were removed, flash frozen (liquid 
nitrogen;  LN2), and stored at − 80 ℃ prior to dissection. 
Thin coronal sections (~ 2 mm thick) from the rostral end 
of each brain specimen were made with a razor blade. 
Regional brain biopsy samples (1.5 mm) from each hemi-
sphere were collected and pooled from eight anatomi-
cal sites (prefrontal cortex [PFCX], striatum [STRIA], 
neocortex [NCTX], hippocampus [HPCS], amygdala 
[AMGD], thalamus [THAL], hypothalamus [HYPT], and 
cerebellum [CEREB]) as previously described [33] and 
stored at − 80 ℃ until RNA isolation.

Serological analysis
Serum interleukin-beta (IL-β), interleukin-6 (IL-6), 
chemokine (C-X-C motif ) ligand 1 (CXCL1), tumor 
necrosis factor alpha (TNF-α), monocyte chemoattractant 

Fig. 1 Injury models and experimental design schematic. Adult male Sprague-Dawley rats (400–500 g) either received (1) head-on whole-body 
blast overpressure exposure [120 kPa; BOP], (2) a partial-thickness cutaneous thermal burn [BU], (3) BOP+BU, (4) complex extremity trauma involving 
closed femoral fracture and soft-tissue crush injury, 3 h of prolonged tourniquet-induced limb ischemia and limb amputation through the zone 
of injury [CEI+tI+HLA], or (5) BOP+CEI plus delayed hind limb amputation [BOP+CEI+dHLA]. Age- and sex-matched naïve rats (n = 7) served 
as controls. Following injury, whole blood obtained from tail vein venipuncture was obtained from each cohort (1, 3, or 72 hpi) at the timepoint 
that preceded euthanasia. At 6, 24, and 168 h postinjury (hpi), cohorts of rats (n = 5–7 timepoint/injury paradigm) were euthanized, and eight 
anatomic regions of the brain were dissected and profiled for neuroinflammatory-neurodegeneration gene expression signatures using a custom 
low-density RT‒qPCR microarray. The molecular heterogeneity of the gene profiles of the trauma-induced changes in the brain over time 
was compared with that of the naïve steady state of control animals. This scientific illustration was created in the Biorender web interface
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protein-1 (MCP-1; CCL2) and interferon gamma (IFN-γ) 
levels were assayed at 1, 3, 6, 24, 72, and 168 hpi using 
multiplex protein arrays (n = 5–7/group; Meso Scale Diag-
nostics, Rockville, Maryland, USA). Individual protein 
levels were indexed to the total measured level of protein 
in the sample (pg/mL of protein) and compared to naïve 
baseline samples. The results were acquired and analyzed 
using Methodical Mind software (version MMPR 1.0.27; 
Meso Scale Diagnostics). To evaluate clinically relevant 
serum biomarkers of end-organ damage, the serum levels 
of AST, ALT, BUN, and ALB, which are indicators of liver 
injury, and the concentration of creatinine (Cr), which is 
an indicator of kidney injury and function, were deter-
mined at 6, 24, and 168 hpi by using a fully automated 
clinical chemistry analyzer (Element DC5X Veterinary 
Chemistry Analyzer; Heska, Loveland, Colorado, USA).

RNA isolation and quantification of gene expression
Snap-frozen biopsy samples  (LN2) were thawed on ice 
and homogenized in 500 μL Qiazol solution using a 
ceramic bead tissue homogenization system (VWR, Rad-
nor, PA, USA) and Total mRNA was isolated from each 
sample using the miRNeasy Mini kit (Qiagen, Valencia, 
CA, USA) and DNA contamination was removed using 
the RNase-free DNase Digestion kit (Qiagen, Valencia, 
CA, USA) solution applied to the miRNeasy column. 
cDNA was transcribed from brain biopsy specimens 
using iScript Advanced cDNA Reverse Transcriptase 
Kit (Bio-Rad, Hercules, CA, USA) [12, 44]. Total mRNA 
yields > 1 μg and an A260/280 ratio between 1.8 and 2.2 
were considered sufficient in quantity and quality for fur-
ther analysis. qPCR products were assessed by RT‒qPCR 
SYBR-Green fluorescence (SsoAdvanced Universal SYBR 
Green Supermix; Bio-Rad, Hercules, CA, USA) on cus-
tom low-density PCR arrays comprising 86 genes known 
to be associated with neuroinflammation (cytokines-
chemokines and their receptors), neurodegeneration, 
tissue damage, oxidative stress, apoptosis, and early tran-
scriptional activators, in addition to five (B2m, Gapdh, 
Hprt1, Rplp0, Rplp2) suitable housekeeping genes, using 
a real-time qPCR machine (QuantStudio 7 Pro, Applied 
Biosystems, Foster City CA, USA).

RT‒qPCR analysis
Analysis of gene expression patterns was carried out 
using the  2−ΔΔCt method with normalization to a set of 
internal reference control genes and brain specimens 
from naïve animals. From the initial dataset, 12 genes 
were excluded because they had greater than 20% unde-
termined raw cycle threshold values. The ΔC(t) value for 
each gene was calculated by subtracting the C(t) value of 
that gene from the geometric mean of the three most sta-
ble housekeeping genes across all experimental cohorts 

(B2m, Gapdh, and Hprt1). Outliers in both injured and 
naïve data were identified and excluded using the R pack-
age rstatix [45], wherein any ΔC(t) values either above 
Q3 + 3 × IQR or below Q1—3 × IQR were removed. The 
ΔΔC(t) values were then calculated for each injured and 
naïve gene transcript value by subtracting the mean ΔC(t) 
value of a gene within that brain region in naïve rats from 
the individual ΔC(t) value. These data were converted to 
fold changes by expressing the values as  2−ΔΔC(t). Outli-
ers were removed again at this step as noted above. Any 
missing naïve and injured transcript expression data 
(single outliers or exclusions) were imputed using the R 
package MissForest [46]. This final dataset was used for 
all downstream analyses.

To determine the overall similarity of each sample 
using the expression of all genes, the data were visual-
ized using t-distributed stochastic neighbor embedding 
(t-SNE) with the R package Rtsne [47]. This allows for 
visualizing multidimensional data in two-dimensional 
space with ellipses highlighting a confidence interval of 
85% for each brain region. Overall, the expression of each 
gene in each region and at each time point after injury 
was visualized by calculating the mean  2−ΔΔC(t) value. To 
determine differences between the treatment timepoints 
and the naïve expression levels, one-way ANOVA with 
Tukey’s HSD to correct for multiple comparisons was 
performed for each brain region/injury using the R pack-
age stats [48]. Trends for each gene in each injury/brain 
region were investigated by determining first whether 
the values for each timepoint were significantly different 
from those of the naïve group (p < 0.05). Visualizations 
were generated using the R packages ggplot2 and ggpubr 
[49, 50]. To gain an understanding of cellular functions 
and biological processes at play involving the 86 genes 
evaluated, protein–protein interactive (PPI) networks of 
differentially expressed genes (DEGs) were constructed 
using the Search Tool for the Retrieval of Interacting 
Genes (STRING; Version 12.0) [51]. A combined score 
of > 0.4 (medium confidence) was set as the cut-off cri-
terion. Gene signature hubs were defined via functional 
enrichment analysis and as having ≥ 3 connections.

Data analysis and statistics
Data analysis and illustration were performed using R 
and GraphPad Prism (version 10.0.3; GraphPad Soft-
ware, San Diego, CA, USA). Parametric data are pre-
sented as the mean ± standard error of the mean unless 
otherwise noted and were analyzed using analysis of 
variance (ANOVA) or Welch’s t test. Noncontinuous 
data, such as gene expression data, were assessed using 
the Mann‒Whitney U test or Kruskal‒Wallis one-way 
analysis. The criterion for statistical significance was set 
to p < 0.05.
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Results
Survival and systemic markers of injury
There were no animal deaths in any of the injury mod-
els. In general, the extent and magnitude of serum IL-6 
correlated with markers of kidney and liver injury and 
injury model severity (Fig. 2). With the exception of BU, 
a marked increase in serum IL-1β was detected at 6 hpi 
in all injury groups post-trauma (Fig.  2a). Compared 
with those in naïve animals, baseline or near-undetect-
able levels of proinflammatory cytokines were detected 
in BOP-treated animals, albeit transient increases in the 
levels of IL-1β, CXCL1, and IFN-γ were detected at 6 
hpi. BU injury resulted in significantly (p < 0.05) elevated 
and persistent IFN-γ concentrations for the duration of 
the study, whereas all other systemic markers of inflam-
mation remained at normal/baseline or near-unde-
tectable levels. BOP+BU injury resulted in significant 
elevations in IFN-γ concentrations early (6 hpi) and late 
(24–168 hpi), but otherwise resulted in normal/baseline 
systemic measurements. CEI+tI+HLA injury resulted 
in significantly elevated levels of IL-1β, IL-6, TNF-α, and 

IFN-γ, which peaked at 6 hpi, and increased MCP-1 con-
centrations from 24 through 168 hpi. BOP+CEI+dHLA 
resulted in the most severe systemic inflammatory 
response, in which IL-1β and IL-6 levels peaked at sig-
nificant concentrations at 6 hpi, TNF-α levels transiently 
increased throughout the experimental window, CXCL1 
levels significantly increased as early as 1 hpi through 24 
hpi, and MCP-1 and IFN-γ concentrations remained ele-
vated through 168 hpi.

The levels of serum clinical markers of kidney and liver 
injury were significantly increased with regard to the lev-
els of ALT, AST, and BUN:Cr and were strongly associ-
ated with injury severity (Fig. 2b). The BUN:Cr ratio was 
heterogeneous among the study groups, with BOP+BU 
injury resulting in the greatest increase in concentrations 
at 6 and 168 hpi. All injury models resulted in a transient 
period of transaminitis between 6 and 24  h; however, 
the concentrations normalized by 168 hpi. Significant 
hypoalbuminemia was observed in the polytrauma mod-
els for the duration of the study. By 168 h, all groups had 
renormalized to the naïve group.

Fig. 2 Clinical indicators of systemic inflammation and remote organ dysfunction. a Changes in serum cytokine/chemokine levels were profiled 
in the naïve and trauma cohorts using a multianalyte MesoScale diagnostic profiling platform. b Serum chemical markers of end-organ damage 
were measured using a Heska Element DCX chemistry analyzer. Serum values from naïve animals (n = 7) were used to construct the 95% confidence 
intervals (gray shading). All the graphs show the mean values (n = 6–7 samples/timepoint/injury model) ± SEMs; significant differences (p < .05) 
in naïve animals are denoted with closed circles, and nonsignificant values are denoted with open circles at the indicated timepoints postinjury. 
The values were compared using one-way ANOVA and Tukey post-hoc analysis. Abbreviations: alanine aminotransferase (ALT), aspartate 
aminotransferase (AST), blood urea nitrogen (BUN), creatinine (Cr)
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Global changes in neuroinflammatory gene signatures
First, we constructed a heatmap to depict the differen-
tial fold changes in the expression of all 74 target genes 
organized into eight different gene classes for each sam-
ple consisting of five injury models, eight brain regions, 
and three timepoints compared to those of naïve con-
trols. As shown in Fig.  3, the differentially expressed 
genes were organized by brain region over time within 
each injury pattern, whereas Supplemental Fig.  1 shows 
the same differential fold changes in expression between 
the injury model and brain region over time; additionally, 
region-specific samples obtained from naïve control ani-
mals were compared. BOP-alone resulted in a progressive 
augmentation of neuroinflammatory-neurodegenerative 
gene signatures that ramped up over the course of the 
168 hpi experimental window, whereas all other injury 
models exhibited an early (within 6 hpi) neuroinflamma-
tory expression response that remained elevated over the 
study duration. Compared with BOP, non-BOP trauma 
(BU and CEI+tI+HLA) primarily results in an earlier and 
more pronounced inflammatory response. Compared 
with BU alone, CEI+dHLA combined with BOP resulted 
in the most profound and heightened response, whereas 
BU combined with BOP resulted in a subtle downregu-
latory neuroinflammatory response. Globally, prosta-
glandins and prostaglandin receptors, which suppress 
acute inflammatory mediators [52], were highly activated 
(> 25-fold) earlier in all models except for BOP. Addition-
ally, early and more prolonged responses of neuronal 
activity markers (Gfap, Grin2b, Homer1) were detected in 
more complex, severe injury models (CEI+tI+HLA and 
BOP+CEI+dHLA) across all brain regions.

To determine trends and classify samples into groups 
with similar transcriptional profiles independent of the 
mode of injury, brain region and time, we first applied 
a t-distributed stochastic neighbor embedding (t-SNE) 
visualization and analysis technique. This technique 
was used to analyze relative changes in gene expres-
sion  (2−ΔΔC(t)) measurements of 74 gene transcripts 
across 660 samples collected from eight anatomically 
distinct brain regions, three timepoints, and five injury 
paradigms, including naïve paradigms (Fig. 4). Regard-
less of injury (mode/severity) or time, the gene expres-
sion profiles of the eight brain regions tended to cluster 

based on brain region, suggesting that anatomically and 
functionally collocated brain regions presented simi-
lar neuroinflammatory expression profiles. In general, 
the magnitude and profile of the neuroinflammatory 
response to trauma in the brain are region depend-
ent and independent of the time and injury model. For 
instance, the neuroinflammatory gene expression sig-
natures of THAL and HYPT, as well as those of PFCX 
and NCTX, overlapped with one another. The expres-
sion profile of the STRIA was the most distinct and was 
isolated from all other brain regions across every injury 
pattern and timepoint (Fig. 4).

Compartmentalization differences and key 
neuroinflammatory gene signatures
To compare region-specific changes in neuroinflamma-
tory gene expression across brain regions over time, we 
summed the number of significant DEGs above naïve 
gene expression values at each timepoint for each injury 
model (Fig.  5 and Supplemental Fig.  2). The BOP alone 
group had the least number of DEGs, with the STRIA 
and NCTX groups displaying the greatest number of 
DEGs early (6 hpi) and the CEREB, HPCS, PFCX, THAL 
and HYPT groups at later timepoints (24–168 hpi). In 
contrast, the other four trauma models exhibited sig-
nificantly more DEGs across all brain regions, reflect-
ing more immediate, diverse, and long-term sensitivity/
impact, particularly in the PFCX, NCTX, THAL, and 
HYPT models in the BU, BOP+BU, CEL+tI+HLA, and 
BOP+CEI-dHLA injury groups. Among all the genes, 
Ccl2, a potent chemokine associated with microglia and 
macrophage recruitment [53], was the most commonly 
downregulated gene across all injury cohorts and in 
nearly all brain regions (Fig. 3 and Supplemental Fig. 2). 
Interestingly, Bdnf, a protein important for neuronal 
plasticity [54], was highly upregulated (> 50-fold) in all 
STRIA samples irrespective of injury and timepoint com-
pared to that in naïve controls (Fig. 3 and Supplemental 
Fig. 1).

Based on the heatmaps (Fig.  3, Supplemental Figs.  1 
and   2), we plotted key DEGs at the individual level 
that remained significantly upregulated throughout the 
experiment or were highly expressed in various/mul-
tiple brain regions at 168 hpi (Fig.  6). The significant 

(See figure on next page.)
Fig. 3 Heatmap depicting the expression of 74 neuroinflammatory genes in eight brain regions according to the type of trauma. The values 
reported were calculated based on the  2−ΔΔC(t) method and normalized to the geometric mean of three specific, constitutively active, and stable 
housekeeping genes (B2m, Gapdh, Hprt1) and regional brain biopsy samples from naïve uninjured animals. Blue shading represents a decrease 
in expression compared to that in the naïve group, red shading represents an increase in expression compared to that in the naïve group, and white 
shading represents nonsignificant changes (− 2 to 2 fold-change). The color intensity correlates with the magnitude of gene expression relative 
to that in naïve, uninjured rats
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Fig. 3 (See legend on previous page.)



Page 9 of 21Rowe et al. Journal of Neuroinflammation          (2024) 21:211  

DEGs within the injury models sorted by gene class 
and time postinjury are presented in Table  1. Casp8, 
an initiator protease for apoptotic cell death [55], is 
primarily expressed following severe injury at 168 hpi 
in a number of brain regions. The levels of Il16, a che-
moattractant involved in microglial M1 polarization 
[56], were relatively elevated in the AMGD, THAL, and 
HYPT groups, often exceeding 50-fold. Cxcr2, a neu-
trophil recruitment factor [57], was most frequently 
upregulated across all brain regions within all model 
groups at all timepoints. Cd40, a receptor on antigen-
presenting cells that mediates cellular activation of 
the adaptive immune system and inflammation [58], 

was upregulated in all brain regions, with the excep-
tion of PFCX and NCTX, across injury paradigms and 
timepoints. Vegf, a potent angiogenic factor, was sub-
stantially activated (10–25-fold) in non-blast trauma 
models (BU and CEI+tI+HLA) but less so in animal 
models subjected to BOP+CEI+dHLA. Protein–pro-
tein Interaction (PPI) analysis (Fig.  7) of significant 
DEGs within injury models from Table  1, indicated 
increasing complexity of gene networks correlated to 
injury severity (with the exception of BOP+BU) with 
the majority of clusters related to early innate inflam-
matory molecules (chemokines/cytokines) and neu-
ronal activity.

Fig. 4 The magnitude and neuroinflammatory gene expression response to trauma are brain region dependent, and the mode of injury 
is independent. t-distributed stochastic neighbor embedding (tSNE) data visualization and analysis were used to plot the  2−ΔΔC(t) profiles of 74 
genes for each regional brain biopsy sample, and the results demonstrated that the gene expression profiles of individual samples tended to cluster 
by region as opposed to timepoint or injury model. The dotted area around the clusters represents the circle of best fit at an 85% confidence 
interval for gene expression
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Discussion
Severe trauma triggers extensive local and systemic 
inflammatory responses, leading to secondary end-organ 
damage and even death [59–61]. However, the ramifica-
tions of posttraumatic immune responses in the brain, 
particularly following extracranial injury, have been 
largely overlooked. Building upon our prior findings, 
using well-established military-relevant trauma models 
with increasing severity [33, 35–37], we aimed to under-
stand the impact of trauma-induced systemic inflam-
mation on the evolution of neuroinflammatory gene 
expression in eight distinct brain regions over a seven-
day study window. We then analyzed the gene expression 
profiles in the context of clinical parameters such as sys-
temic inflammatory mediators and clinical biomarkers of 

end-organ damage. Reflecting the profound and systemic 
and neuroinflammatory responses previously reported 
at 6 hpi [33], we reasoned that the extent and duration 
of neuroinflammatory-neurodegenerative expression 
changes would peak at/near 6 hpi and wane/return to 
near-baseline levels by the 168 hpi evaluation window. 
In this study, we investigated the extent of trauma-
induced systemic inflammation (evidenced by increased 
inflammatory mediators and conventional biomarkers 
of end-organ dysfunction), and the kinetics of neuroin-
flammation across brain regions correlated with tissue 
trauma/injury severity (Fig.  8). Collectively, these unex-
pected and insightful findings demonstrate that remote, 
extracranial insults such as extremity polytrauma or burn 
injury caused a more robust neuroinflammatory response 

Fig. 5 Brain region-specific changes in neuroinflammatory gene transcript levels over time correlate with injury severity. Stacked bar charts are 
used to illustrate the number of differentially expressed genes (DEGs; up- or downregulated) in eight anatomical brain regions for each injury 
pattern. The data quantitatively reflect the number of genes with significant expression changes compared to those in naïve, uninjured control 
animals. The brain regions are displayed in ascending order based on the aggregate number of significantly altered genes (DEG counts irrespective 
of injury pattern and timepoint: cerebellum: 87, hippocampus: 96, amygdala: 98, striatum: 106, prefrontal cortex: 116, neocortex: 138, thalamus: 170, 
and hypothalamus: 180)

Fig. 6 Neuroinflammatory gene signatures remain elevated at 168 hpi following various forms of trauma. The mean relative expression 
of individual genes across brain regions at 168 hpi, depicted by injury mode, was normalized to the geometric mean of three specific, constitutively 
active, and stable housekeeping genes (B2m, Gapdh, Hprt1) and regional brain biopsies from naïve uninjured animals. Two-way ANOVA was used 
to assess the main effect of injury on each of the brain regions. Tukey‒Kramer post hoc analyses were used to assess differences between injured 
and naïve expression changes. Asterisks (*) indicate significant differences from naïve uninjured controls. *p < .05, **p < .01, and ***p < .001

(See figure on next page.)
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Fig. 6 (See legend on previous page.)
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across more brain regions than did BOP (Fig.  8a). Fur-
thermore, following all forms of trauma, the neuro-
inflammatory-neurodegenerative gene signatures we 
profiled either increased or remained elevated over the 
study duration, while classical clinical measurements of 
systemic inflammation and end-organ damage decreased 
or resolved (Fig.  8b-c). These findings underscore the 
brain’s sensitivity to mediators of systemic inflammation 
derived from extracranial forms of trauma, hence por-
traying a critical link between systemic inflammation and 
trauma-induced neuroinflammation.

The trauma models used in this study result in graded 
levels of systemic inflammation and end-organ dysfunc-
tion [35–37]. The degree of trauma-induced neuroin-
flammation appears to correlate with injury severity and 
systemic inflammation levels—with more robust injuries 
triggering a stronger systemic inflammatory response 
early postinjury, as observed in the CEI+tI+HLA and 
BOP+CEI+dHLA models—and resulting in prolonged 
and heightened global neuroinflammation in the brain. 
Others have demonstrated connections between the 

immune peripheral systemic inflammatory response 
and neuroinflammation in the brain. The production 
of a variety of cellular and systemic proinflammatory 
mediators that regulate inflammation-related signaling 
pathways appears to be a key requirement for the devel-
opment of immune-neuroinflammatory activity and neu-
rological dysfunction [62, 63] following trauma [64, 65], 
infection (pneumonia, LPS challenge and sepsis) [66, 67] 
and a number of systemic autoimmune disorders [30, 
68]. Within a few hours of trauma, evidence from stud-
ies involving primary brain injury has demonstrated that 
peripheral immune–brain crosstalk can contribute to a 
“leaky-disturbed” blood–brain barrier (BBB), immune 
cell penetration–activation, and activation–recruitment 
of microglia–astrocytes, leading to multifaceted neuro-
inflammation, cell death and exacerbated brain injury 
[69–71]. These induced inflammatory cascades in the 
brain reportedly result in demyelination and neuronal 
and axonal cell loss, ultimately contributing to impaired 
brain function and culminating in long-term behavioral 
perturbations, psychological conditions and irreversible 

Fig. 7 Protein–protein interaction networks of the differentially expressed genes in each trauma model. STRING protein–protein interaction (PPI) 
software was used to construct the gene networks of the differentially expressed genes (DEGs) determined in different brain regions for each injury 
group to highlight gene–gene interactions. Each color represents a different gene cluster
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neurocognitive side effects [72]. We speculate from our 
findings that the level of extracranial-induced neuroin-
flammation is primarily regulated by the time of onset, 
scale, complexity and persistence of the acute inflamma-
tory response at the injury site in conjunction with the 
provoked peripheral systemic inflammatory response 
and its impact on secondary organ pathology. Further-
more, we believe that some undefined threshold of per-
sistent low-grade chronic inflammation is necessary 
to initiate and sustain neuroinflammation in the brain. 
However, the duration and impact on functional/behav-
ioral outcomes remain to be determined. These findings 
are consistent with studies showing that neuroinflamma-
tion may be caused by inflammation (acute or chronic) 
and injury to peripheral organs [73].

Despite the resolution of classical markers of systemic 
inflammation and end-organ dysfunction (Fig. 8a, b), we 
detected near peak levels of neuroinflammatory gene 
expression across the majority of brain regions at 168 hpi 
(Fig.  8c). These results are consistent with other studies 
suggesting that persistent neuroinflammation is not due 
simply to a prolonged acute systemic proinflammatory 
state [74]. We suspect that early immune regulatory pro-
cesses that prevent exaggerated adaptive response-based 

compensatory mechanisms [75] that exist in the periph-
ery may be missing in the brain or have reduced potency 
in regulating the activity of resident immune cells 
(microglia, perivascular macrophages, Tregs) and repair-
ing cell processes [76, 77]. Tregs have been reported to 
play opposing dichotomous immunoregulatory func-
tions (neuroinflammatory and neuroprotective) in mod-
ulating local and systemic innate and adaptive immune 
responses as well as pathologies in the periphery and tis-
sues/organs, including the brain [76, 78]. The depletion 
of Tregs has been shown to enhance neuroinflammation 
and microglial activation, while the adoptive transfer of 
ex  vivo-expanded Tregs suppresses proinflammatory 
cascades and attenuates neuroinflammatory pathologies 
[78]. There is no doubt that crosstalk between the nerv-
ous system and the immune system plays an important 
role in regulating acute and chronic neuroinflamma-
tion, albeit via regulatory mechanism(s) that at this point 
remain unclear.

Applicable to this line of research, acute brain injury 
and cognitive dysfunction have been documented follow-
ing acute infections and prolonged sedation [17, 79]. The 
degree of injury and nature of neuroinflammation appear 
to lie along a spectrum, as our findings as well as others 

Fig. 8 Systemic inflammation elicited persistent acute neuroinflammation following non-blast or blast-associated trauma. The mean levels 
of serum cytokines (IL-1β, IL-6, CXCL1, TNF-α, MCP-1, and IFN-γ) and clinical chemistry markers of end organ damage (BUN:Cr ratio, AST, ALT, 
and Albumin) normalized to those of naïve uninjured controls of individual animals were used to compute the relative intensity of (a) systemic 
inflammation and (b) level of end organ damage following three types of injury: cranial trauma (as represented by BOP), noncranial trauma (as 
represented by BU and CEI+tI+HLA), or combined cranial/noncranial trauma (as represented by BOP+BU and BOP+CEI+dHLA) over time. The 
number of significantly differentially expressed genes was utilized to compute the (c) relative intensity of trauma-induced neuroinflammation gene 
expression profile for each type of trauma over time. Serum systemic inflammation and circulating clinical biomarkers of end-organ damage peak 
at 6 h postinjury (hpi) and wane or return to baseline/naïve levels by 168 h postinjury, whereas the neuroinflammatory gene expression profiles 
in the context of various forms of trauma remain elevated by 168 hpi compared to those in the naïve steady state
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on acute inflammatory markers of chronic activation 
of microglia in the CNS indicate. In intensive care unit 
(ICU) settings, where prolonged sedation is often needed, 
the phenomenon of ICU-induced delirium is attributed 
to multiple factors, including neurotransmitter toxicity, 
an aberrant stress response, and neuroinflammation [79]. 
Delirium, usually described as “acute partial brain fail-
ure,” is often reversible through the avoidance of trigger-
ing events and treatment of the underlying critical illness 
but can have long-lasting sequelae such as mild cogni-
tive impairment or dementia, particularly in the elderly 
population [17]. Reports of neurological and psychiatric 
symptoms associated with severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), coronavirus infec-
tious disease 2019 (COVID-19), have become a pertinent 
example of immune-brain crosstalk. COVID-19 is ini-
tially characterized by severe systemic infection initiated 
by a systemic inflammatory “cytokine storm” produc-
ing immunopathogenic damage, primarily in the lungs, 
which presents as acute respiratory distress syndrome 
followed by MODs, MOF, sepsis, and even death. Among 
survivors, “long-COVID” manifests as profound fatigue 
and gastrointestinal, cardiovascular and neuropsychiatric 
symptoms [80–83]. Approximately one-third of hospital-
ized COVID-19 patients develop persistent neurological 
sequalae [84], an array of symptoms ranging from head-
ache to depression, fatigue, seizures, delirium, ischemia 
or hemorrhage [85]. Although there is no current clini-
cal evidence that the COVID-19 virus impacts the brain 
directly, the general consensus is that serum cytokines, 
triggered by systemic inflammation from the initial viral 
infection, can influence BBB function, leading to its dis-
ruption and the onset of neurological disease [85]. For 
example, early innate proinflammatory mediators such as 
IL-6 or IL-1β disrupt the BBB via endothelial cell activa-
tion and may also play key roles in modulating sickness 
behaviors and CNS function post-acute phase recovery 
[86, 87]. In one Dutch study, nearly one-third of adults 
with bacterial meningitis suffered cognitive impair-
ment following resolution of infection. In addition to the 
cytotoxic impacts of bacterial meningitis, there is also 
disruption of the BBB and potentiation of resultant neu-
roinflammation as a result of peripheral leukocyte infil-
tration into the CNS [65, 88]. Collectively, these findings 
demonstrate a direct relationship between immune and 
brain crosstalk and reveal a potential role for systemic 
inflammation following non-BOP trauma and its impact 
on the brain.

Although nervous system susceptibility to systemic 
inflammation-induced damage is well documented [89], 
research on region-specific brain changes following vari-
ous traumatic injuries have been limited given the het-
erogeneity of injury and the tendency of investigators 

to specialize in a single brain area rather than adopting 
a holistic brain approach. In contrast, we provide mul-
tidimensional insights into the gene expression changes 
in numerous brain regions following various forms of 
trauma over the course of seven days. Specifically, our 
data demonstrated that HYPT and THAL are highly 
vulnerable to inflammation after trauma, irrespective of 
the trauma mode, although the response following BOP 
was delayed at 168 hpi. The THAL is critical for relaying 
motor and sensory signals, circadian sleep/wake aware-
ness, and cognition to the cortex and subcortical nuclei 
and is implicated in several neurodegenerative disorders, 
such as multiple sclerosis (MS), Alzheimer’s disease, Par-
kinson’s disease, and PTSD [90]. BOP-associated trauma 
can induce damage to the THAL, which is mediated by 
heightened and prolonged microglial activity in the white 
matter, with symptoms sometimes manifesting up to 
17 years after the initial injury [90]. The HYPT is essential 
for regulating homeostasis, acts as a surveillance center 
for crucial changes in the body, and responds to stress 
by stimulating various glands and organs to release hor-
mones [91]. BOP-associated trauma and systemic inflam-
mation have been shown to provoke stress-mediated 
release of cortisol and catecholamines via the hypothala-
mus–pituitary–adrenal (HPA) axis. In turn, the release 
of stress hormones can promote further activation of 
chemokines and adhesion molecules via a feed-forward 
mechanism, ultimately worsening the neuroinflamma-
tory environment [92–94]. Therefore, a multiregional 
assessment of the brain following injury is invaluable for 
understanding clinical outcomes because it helps iden-
tify the specific regulatory systems of the brain involved 
in various aberrant and compensatory processes and 
thereby guides further molecular and physiologic studies.

Organ-specific biomarkers are utilized to monitor the 
onset, progression, and resolution of end-organ dysfunc-
tion/damage, making their sensitivity and specificity cru-
cial for understanding a patient’s clinical status. Although 
serum biomarkers have traditionally been used to char-
acterize ongoing inflammatory responses in extracranial 
organs, our findings show that the brain undergoes a pro-
found inflammatory shift after remote trauma, suggesting 
that the brain should be assessed as an end-organ. Clini-
cally, functional recovery after BOP-associated injury is 
heterogeneous and unpredictable, with prolonged recov-
ery resulting in significant patient morbidity and sub-
stantial healthcare burdens. At present, the scarcity of 
reliable brain-specific fluidic biomarkers and the typically 
silent imaging effects of brain injury complicate the accu-
rate determination of recovery timelines. Drieu et al. [95] 
reported that rats that sustained mild TBI exhibited signs 
of ongoing neuroinflammation 3  weeks postinjury, as 
indicated by significantly elevated GFAP and TPSO levels 
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on imaging, suggesting the presence of active microglio-
sis and astrogliosis. Similarly, increased microglial acti-
vation has been observed in patients with moderate to 
severe brain injury up to 17 years after initial injury, sug-
gesting a transition from an acute to chronic inflamma-
tory response [15]. Although organ-specific biomarkers 
are effective in characterizing the inflammatory state, 
the absence of neuroinflammatory biomarkers creates 
an incomplete inflammatory picture that potentially con-
tributes to poor outcomes. Therefore, the identification 
and/or potential linkage of systemic biomarkers to local 
brain mediators would be transformative to clinical care 
for patients presenting with potential for overt trauma-
induced neuroinflammation, mitigating behavioral per-
turbations, and central nervous system manifestations. 
Furthermore, understanding the molecular mechanisms 
and key cell types is important for identifying and devis-
ing targeted therapies for the short- and long-term 
sequelae that follow trauma-induced brain injury [96].

This exploratory study is not without limitations. 
First, we acknowledge that a study with a relatively 
small sample size, with only 5–7 replicates per injury/
timepoint cohort, may not have the statistical power to 
detect small effects. Despite this limitation, the regional 
and temporal effects observed in rats subjected to vari-
ous injury modes alone or in combination were repro-
ducible. Although a larger sample size would increase 
the internal and external validity of our study, our 
power analysis indicated that five subjects per injury 
group would be sufficient for understanding differ-
ences between cohorts. Second, this study included 
only adult male rats; therefore, our analysis does not 
account for potential sex differences in gene expression 
in either naïve steady-state or posttraumatic injury. A 
plethora of studies implicate sex as a biological variable 
in brain pathophysiology, neurological recovery, and 
protection [97–100]. Current epidemiologic data sug-
gest that males are approximately forty percent more 
likely to suffer from head trauma [100]. This pattern is 
similarly replicated in the military [101], likely due to 
the overwhelming male predominance in combat roles. 
Currently, women constitute less than three percent of 
combat arms and subsequently represent only 2.5% and 
2.9% of primary brain injury diagnoses in Afghanistan 
and Iraq, respectively [102]. We hypothesize that over 
the next decade, we may observe a shift in these pat-
terns as more women enter combat roles. Given the 
growing number of women in the armed forces, the sex 
differences that exist in neurologic sequelae, and the 
sexually dimorphic expression of brain injury, it is cru-
cial to include sex differences in future studies [103]. 
Third, while our study models include blast injuries and 
the post-injury immune sequelae, they do not perfectly 

recapitulate the simultaneous nature of these injuries, 
as observed in real-world scenarios. Instead, the rats 
were injured in a sequential manner. Fourth, brain 
specimens were not perfused with DPBS at necropsy 
prior to tissue collection. As such, it is probable that 
some of the gene expression changes noted could be 
due to the presence of blood cells present in the speci-
men. Last, the animals randomized to the CEI+tI+HLA 
group were subjected to a sequence of soft-tissue crush 
injury, mid-shaft femur fracture, and hind limb ampu-
tation, followed by 3 h of tourniquet-induced ischemia 
prior to immediate amputation. This contrasts with 
the concomitant BOP+CEI+dHLA group, which did 
not undergo tourniquet application, as those samples 
were unfortunately lost during the storage process and 
unable to be salvaged. Furthermore, each injury model 
utilized a different anesthetic condition to include drug 
type/route, timing and dosage, which were not indi-
vidually controlled for. However, both ketamine and 
isoflurane have been shown to have downregulatory 
properties to reduce inflammation following trauma in 
animal model systems [104, 105].

Modeling acute trauma in a research setting using in 
vivo systems is complex, highlighting the need for bet-
ter tools to appropriately score and quantitatively assess 
the posttraumatic injury state, predict outcomes, and 
compare the results against human traumatic injuries. 
Currently, in the preclinical setting, no such scoring sys-
tem exists to quantify the severity of injury post-trauma 
in animal models, with only a few reports extrapolat-
ing Injury Severity Scores (ISS) to animal models [106]. 
The limitations of current clinical injury severity scor-
ing systems have become increasingly apparent when 
considering their inability to assess the immediate 
and long-term impacts of trauma, specifically regard-
ing the posttraumatic systemic inflammatory response 
and potential end-organ dysfunction. However, prevail-
ing evidence has demonstrated a positive relationship 
between injury severity, worsening neurologic injury, and 
mortality [107]. Martin et al. demonstrated that patients 
who sustained combined brain and burn injury have sig-
nificantly increased mortality compared to burn patients 
alone and even burn with trauma but without neurologic 
injury [108]. As such, inadequate diagnostic tools may 
contribute to the consistently poor outcomes observed 
in patients with SIRS and MODS [109–112], particu-
larly the reliance on nonspecific macroparameters such 
as heart rate, respiration rate, Glasgow coma scale, and 
serum clinical measurements (transaminases, creatinine) 
in the diagnosis of cell-mediated syndromes. Moreover, 
the present scoring systems largely overlook the brain, 
either as an initial organ of traumatic insult or as an end-
organ susceptible to remote inflammatory processes and 
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modulating systemic inflammation. In light of these limi-
tations, a future direction of preclinical modeling studies 
should include the development of new diagnostic and 
prognostic measurements that could be modeled to cre-
ate a more comprehensive and accurate scoring system.

Conclusion
This study demonstrated the profound effect of extrac-
ranial trauma plus/minus BOP exposure on neuroin-
flammatory processes in eight anatomical regions of the 
brain. In conjunction with our prior study [33], these 
data emphasize the vulnerability of the brain to remote 
humoral and/or cellular immune responses, normally 
considered to be an “immune privileged” environment. 
Independent of the mode of trauma, neuroinflamma-
tion steadily increases over 7 days, while classical clinical 
measurements of systemic inflammation and second-
ary organ damage are worsening or have resolved. These 
findings further emphasize the vulnerability of the brain 
to systemic immune responses, as blast exposure exacer-
bates the neuroinflammatory response to remote extrem-
ity injury. Future molecular and behavioral investigations 
are warranted to understand the short- to long-term 
pathophysiological consequences on the brain, with a 
particular focus on the mechanism(s) of blood–brain 
barrier breakdown, immune cell penetration–activation, 
and microglial activation.
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