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Abstract

Background: Hypoxic-ischemic encephalopathy (HIE) is one of the most important causes of brain injury in
preterm infants. Preterm HIE is predominantly caused by global hypoxia-ischemia (HI). In contrast, focal ischemia is
most common in the adult brain and known to result in cerebral inflammation and activation of the peripheral
immune system. These inflammatory responses are considered to play an important role in the adverse outcomes
following brain ischemia. In this study, we hypothesize that cerebral and peripheral immune activation is also
involved in preterm brain injury after global HI.

Methods: Preterm instrumented fetal sheep were exposed to 25 minutes of umbilical cord occlusion (UCO) (n = 8)
at 0.7 gestation. Sham-treated animals (n = 8) were used as a control group. Brain sections were stained for ionized
calcium binding adaptor molecule 1 (IBA-1) to investigate microglial proliferation and activation. The peripheral
immune system was studied by assessment of circulating white blood cell counts, cellular changes of the spleen
and influx of peripheral immune cells (MPO-positive neutrophils) into the brain. Pre-oligodendrocytes (preOLs) and
myelin basic protein (MBP) were detected to determine white matter injury. Electro-encephalography (EEG) was
recorded to assess functional impairment by interburst interval (IBI) length analysis.

Results: Global HI resulted in profound activation and proliferation of microglia in the hippocampus, periventricular and
subcortical white matter. In addition, non-preferential mobilization of white blood cells into the circulation was observed
within 1 day after global HI and a significant influx of neutrophils into the brain was detected 7 days after the global HI
insult. Furthermore, global HI resulted in marked involution of the spleen, which could not be explained by increased
splenic apoptosis. In concordance with cerebral inflammation, global HI induced severe brain atrophy, region-specific
preOL vulnerability, hypomyelination and persistent suppressed brain function.

Conclusions: Our data provided evidence that global HI in preterm ovine fetuses resulted in profound cerebral
inflammation and mobilization of the peripheral innate immune system. These inflammatory responses were paralleled
by marked injury and functional loss of the preterm brain. Further understanding of the interplay between preterm brain
inflammation and activation of the peripheral immune system following global HI will contribute to the development of
future therapeutic interventions in preterm HIE.
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Background
Hypoxic-ischemic encephalopathy (HIE) is one of the
most important causes of brain injury in preterm infants
[1]. Preterm infants suffering from HIE develop cognitive
disorders in 25 to 50% of all cases and 5 to10% suffer from
severe motor deficits (such as cerebral palsy) [2]. The
hippocampus plays a key role in cognition and several
studies suggest that hypoxia-ischemia (HI)-induced injury
to the hippocampus may predispose to cognitive disorders
later in life [3-7]. Motor deficits in preterm HIE are mainly
attributable to injury of white matter in the immature
brain [1]. Despite the high prevalence of neurological se-
quelae, no therapeutic interventions are available to treat
HIE in preterm infants. Cooling therapy, which has been
shown to improve neurodevelopmental outcome in mild
cases of HIE in term infants, is associated with adverse
outcomes in preterm infants and has therefore not yet
been established as standard clinical care for this vulner-
able patient group [8-10].
White matter injury, the clinical hallmark of preterm

HIE, is caused by injury to the highly vulnerable imma-
ture oligodendrocytes in the preterm brain. HI-induced
damage to immature oligodendrocytes impedes effective
differentiation into mature myelinating oligodendrocytes
leading to hypomyelination of the preterm brain [11-13].
Microglial activation is considered to be involved in the
injury to immature oligodendrocytes [13]. Microglia are
the resident innate immune cells in the brain and play a
central role in the initiation of an inflammatory response
aimed at resolving injury caused by HI [14-16]. Excessive
activation of microglia, however, results in a detrimental
cerebral inflammatory response with neurotoxic conse-
quences [15,16]. In addition to cerebral inflammation,
experimental data from adult rodent models of focal HI
(stroke) suggest a role for the peripheral immune system
in the etiology of cerebral HI. More precisely, several
studies showed that acute brain injury after focal ische-
mia is followed by a massive activation of the peripheral
immune system with rapid mobilization of immune ef-
fector cells from the spleen [17,18]. These mobilized
effector cells can invade the brain and aggravate the
existing injury [17].
Given the importance of cerebral inflammation and per-

ipheral immune system activation in focal HI of the adult
brain, we hypothesized that similar inflammatory responses
are involved in the etiology of preterm brain injury follow-
ing global HI. To test this hypothesis, preterm instrumen-
ted sheep were exposed to 25 minutes of umbilical cord
occlusion (UCO) at 0.7 gestation. At this time of gestation,
neurodevelopment of fetal sheep is equivalent to that of a
preterm human infant of 28 to 32 weeks [19-21]. During
this neurodevelopmental stage of the human and ovine
fetus, the preterm brain is highly prone to develop white
matter injury following global HI [11-13].

Methods
Animal experiments
The study was approved by the Animal Ethics Research
Committee of Maastricht University, The Netherlands.
Fetuses of time-mated Texel ewes were instrumented at
101 ± 1.1 (mean ± SD) days gestation. Before surgery,
ewes received i.v. prophylactic antibiotics (1000 mg
amoxicillin and 200 mg clavulanic acid). Anesthesia was
induced by i.v. thiopenthal (15 mg/kg). After intubation,
general anesthesia was maintained with 1 to 2% isoflur-
ane guided by depth of sedation and supplemented by
remifentanyl i.v. (0.75 μg/kg/min) for analgesia. Vital
parameters and depth of sedation were continuously
monitored by certified personnel. A catheter was placed
in the maternal long saphenous vein to provide access
for a peri-operative saline drip (250 mL/hour) and post-
operative blood sampling and administration of the
prophylactic antibiotics during four days.
Fetuses were catheterized with 3.5 French polyureth-

ane umbilical vessel catheters (Tyco Healthcare Group,
Mansfield, Massachusetts, USA) placed in the femoral
artery and the brachial vein. Three custom-made elec-
trocardiogram (ECG) shielded electrodes (Cooner Wire
Co., Chatsworth, CA, USA) with silver plates (5 mm)
were sewn on the chest for fetal heart rate recordings.
Two pairs of custom-made electroencephalogram (EEG)
shielded electrodes (Cooner Wire Co.) with silver tips
were placed bilaterally on the dura over the parasagittal
parietal cortex (5 mm and 15 mm anterior to point
bregma and 10 mm lateral), with a subcutaneous silver
reference electrode (10 mm) placed in the neck. The
EEG electrodes were secured with cyanoacrylate glue
and covered with fetal skin. All animals were instrumen-
ted with an inflatable vascular occluder (OC16HD, 16
mm, In Vivo Metric, Healdsburg, California, USA)
placed around the umbilical cord. A catheter for amni-
otic pressure recording was placed in the amniotic sac.
Before closure of the uterus 80 mg of Gentamycin was
administered into the amniotic sac. All fetal catheters
and leads were exteriorized through a trocar hole in the
flank of the ewe.
After surgery, ewes were housed in a confined space to

allow handling and continuous perfusion of the catheters
with heparinized saline (25 IU/mL, 0.2 mL/hr). Surgical
wounds were inspected daily and treated with chlortetra-
cycline spray to prevent infection. Animals had ad libitum
access to water and food. The welfare of the animals was
monitored daily by certified personnel.

Experimental design
Fetuses were instrumented at 101 ± 1 (mean ± SD) days
of gestation (experimental day −4). After surgery, the
ewe and her fetus were allowed to recover for four days.
On experimental day 0, fetuses were randomly allocated
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to either be subjected to 25 minutes of umbilical cord
occlusion (HI group, n = 8) or sham occlusion (sham
group, n = 8). In the HI group, the occluder was rapidly
inflated with sterile saline and complete occlusion was
confirmed with a sudden drop in heart rate and subse-
quent arterial blood gas analysis indicating acidemia,
hypoxia and hypercapnia (Figure 1). Such an insult has
been previously shown to result in global HI and subse-
quent cerebral hypoperfusion [19,22]. After (sham) um-
bilical cord occlusion, a reperfusion period of 7 days
followed. At the end of the experiment (experimental
day 7), both ewe and fetus were euthanized by adminis-
tration of pentobarbital (200 mg/kg).

Data acquisition
Blood pressure, amniotic pressure, EEG and ECG data
were acquired and digitized by a custom-made MPAQ unit
(Maastricht-Programmable AcQuisition system, Maastricht
Instruments BV, Maastricht, The Netherlands) with IDEEQ

software (Maastricht Instruments BV). All data were
sampled at 1000 Hz and stored on hard-disk for offline
analysis. Analog filtering was applied to the ECG data, with
a 1 Hz high-pass filter and a 200 Hz low-pass filter. Heart
rate (beats per minute) was extracted from the ECG by
R-top identification. Blood pressure and amniotic pressure
data were not filtered. Fetal mean arterial blood pressure
was calculated by online subtraction of the amniotic fluid
pressure from the femoral artery pressure.
The EEG data were filtered using a 0.5 to 30 Hz 4th

order Butterworth band-pass filter. EEG signal with an
amplitude >1000 μV was considered an artifact and
removed from analysis (<1% of data). After filtering, EEG
background analysis was performed using an amplitude-
and time-threshold based algorithm [23]. Burst activity
was defined as an epoch with an amplitude >30 μV and a
duration >1 s in both channels. Interburst intervals (IBI)
were defined as epochs with an amplitude <30 μV and a
duration >3 s in both channels. Segments not meeting
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Figure 1 Vital parameters and blood gases of sham and hypoxia-ischemia (HI) animals during umbilical cord occlusion (UCO). (A) Fetal
mean arterial blood pressure (MABP), the small deflections (every five minutes) in the MABP curve are caused by arterial blood gas sampling; (B)
fetal heart rate (HR) in beats per minute (bpm); (C) blood gas: arterial pH; (D) blood gas: arterial partial oxygen pressure (pO2); (E) blood gas:
arterial partial carbon dioxide pressure (pCO2). Shaded areas (MABP and HR) and error bars (blood gases) depict standard deviation (SD).
Min/‘ = minutes, d = day.
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above criteria were classified as undefined. Using these cri-
teria, mean IBI length per 30 minutes and per 24 hours
segments was calculated and used as a surrogate for func-
tional brain suppression for all animals during the period
starting two days before UCO (day −2) until the end of
the experiment (day 7).

Immunohistochemistry brain
The fetal brain was removed from the skull and weighed.
The right hemisphere was submersion fixated in ice-cold
4% paraformaldehyde for 3 months. Brain tissue was em-
bedded in gelatin and serial coronal sections (50 μm) were
cut on a Leica VT 1200S vibrating microtome (Leica
Biosystems, Nussloch, Germany). Free floating sections at
the level of mid-thalamus and posterior hippocampus
were stained with a rabbit anti-ionized calcium binding
adaptor molecule 1 (IBA-1) antibody (Wako Pure Chemical
Industries, Osaka, Japan), a highly specific marker for
microglia, to localize resting and activated microglia
[24-26]. A mouse anti-O4 antibody (Merck Millipore,
Billerica, MA, USA) was used to detect late oligodendro-
cyte progenitors and immature oligodendrocytes (hereafter
collectively referred to as pre-oligodendrocytes; preOLs)
and a rat anti-myelin basic protein (MBP) antibody (Merck
Millipore) was used to detect myelin sheaths and mye-
lin producing (mature) oligodendrocytes. A rabbit anti-
myeloperoxidase (MPO) antibody (DAKO A0398, DAKO,
Glostrup, Denmark) was used to detect neutrophils.
Endogenous peroxidase-activity was blocked by incuba-

tion with 0.3% H2O2 in Tris buffered saline (TBS, pH 7.4).
Free floating sections were incubated overnight (anti-
IBA-1, MBP and MPO) or during three days (anti-O4) at
4°C with the diluted primary antibody (1:1000 anti-IBA-1,
1:400 anti-O4, 1:2000 MBP and 1:1000 MPO) followed by
incubation with a secondary donkey-anti-rabbit (anti-IBA-1
and MPO), donkey-anti-rat (MBP) or donkey-anti-mouse
(anti-O4) biotin labeled antibody. The immunostaining was
enhanced with Vectastain ABC peroxidase Elite kit (PK-
6200, Vector Laboratories, Burlingame, CA, USA) followed
by a nickel sulfate-diaminobenzidine (NiDAB) staining.
Sections were mounted on gelatin-coated glass slides, air-
dried, dehydrated in ascending ethanol concentrations and
coverslipped with PerTex.

Brain immunohistochemistry analysis
For the analysis of IBA-1 immunoreactivity (IR), digital
images of the hippocampus, subcortical white matter
(SCWM) and periventricular white matter (PVWM) were
acquired at 100x magnification using an Olympus BX51
microscope (Olympus, Tokyo, Japan). In the regions of
interest (ROIs) areal fraction of IBA-1 IR was determined
with a standard threshold to determine positive staining
using Leica Qwin Pro V 3.5.1 software (Leica, Rijswijk,
The Netherlands). Within the hippocampus IBA-1 IR was

additionally analyzed in the CA1-2, CA3 and dentate
gyrus (DG) sub regions. IBA-1 IR areal fraction in the
ROIs was assessed in six consecutive coronal sections
(posterior hippocampus/mid-thalamus level) per animal
(sham, n = 6; HI, n = 6) by an independent observer who
was blinded to the experimental conditions.
Analysis of the O4 immunohistochemical staining clearly

showed that within the periventricular white matter three
sub-regions had region-specific preOL characteristics in
sham animals that responded differently to global HI.
Therefore O4 staining was assessed in these three different
regions of interest in the PVWM. In addition, O4 staining
was assessed in the SCWM. Regions of interest are indi-
cated in Figure 2.
To assess O4 immunoreactivity, we adapted the me-

thod previously reported by Back et al. [11]. A differential
count was performed, discriminating between immature
(ring-shaped membrane staining, no processes), mature
(ring-shaped membrane staining, extensively branched
processes) and degenerative (fragmented membrane stain-
ing, fragmentation of processes, signs of cell death; nuclear
condensation and apoptotic bodies) phenotype of the O4
positive cells. The sum of the differential count resulted in
the total number of O4 positive cells. Differential counts
were performed in six consecutive coronal sections
(posterior hippocampus/mid-thalamus level) per animal
(sham, n = 3; HI, n = 3). The investigator who performed
the differential count was blinded to the experimental
conditions. In each region of interest, O4 positive cells
were counted in eight randomly chosen fields of view with
a 40× objective equipped with a counting grid (0.0625
mm2) using a Nikon Eclipse E400 microscope (Nikon,
Amsterdam, The Netherlands).
Differential counts of MPO positive cells in the brain

were performed to assess the localization of these cells in
relation to the cerebral vasculature. Numbers of intravascu-
lar, perivascular and interstitial cells were counted in the
hippocampus, periventricular white matter and subcortical
white matter. Six coronal sections per animal (sham, n = 3;
HI, n = 3) were studied at the posterior hippocampus/mid-
thalamus level. In each section, cells were counted in eight
fields of view (focused on the cerebral vasculature) per re-
gion of interest (hippocampus, periventricular white matter
and subcortical white matter) with a 20x objective equipped
with a counting grid (0.25 mm2) using a Nikon Eclipse
E400 microscope (Nikon, Amsterdam, The Netherlands).
Since in the MPO analysis the fields of view were not

randomly chosen, but focused on the cerebral vascula-
ture, the numbers of cells were expressed as cells per
field of view (FOV).
All images of immunohistochemical staining in the

brain (IBA-1, O4, MBP, MPO) presented here were
obtained with an Olympus AX-70 microscope (Olympus,
Tokyo, Japan) equipped with a digital camera.
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White blood cell counts
Automated white blood cell counts were performed in
heparinized arterial blood on experimental days −3, 0, 1,
3, 5 and 7 using a Sysmex XE-5000 hematology analyzer
(Sysmex, Etten-Leur, The Netherlands).

Immunohistochemistry spleen
Spleens were removed immediately following sacrifice
and subsequently weighed. Tissue blocks (5 × 5 mm2)
were snap frozen in liquid nitrogen. Frozen spleen sec-
tions (4 μm) were stained for cleaved caspase-3 (Asp175,
#9661S, Cell Signaling Technology, Boston, MA, USA)
for detection of apoptosis, CD3 (DAKO A0452, DAKO,
Glostrup, Denmark) for detection of T-cells and MPO
(DAKO A0398, DAKO) for detection of neutrophils.
Endogenous peroxidase was inactivated by incubation

with 0.3% H2O2 that was dissolved in methanol. Antigen
specific binding was prevented by incubating the slides
for 30 minutes with 5% bovine serum albumin (BSA).
Slides were incubated overnight at 4°C with the diluted
primary antibody (cleaved caspase-3 1:200, CD3 1:200,
MPO 1:500) followed by incubation with the appropriate
secondary biotin labeled antibody. Immunostaining was
enhanced with Vectastain ABC peroxidase Elite kit (PK-
6200, Vector Laboratories) followed by a NiDAB stain-
ing. Sections were counterstained with 0.1% Nuclear Fast
Red washed, dehydrated and coverslipped. The number
of caspase-3 positive cells in the spleen were counted in
twenty (to accommodate heterogenic distribution) fields
of view per animal (sham, n = 6; HI, n = 6) with a 20×
objective equipped with a counting grid (0.25 mm2)

using a Nikon Eclipse E400 microscope. The number of
caspase-3 positive cells was expressed in cells/mm2.
For the analysis of CD3 and MPO immunoreactivity

(IR), digital images of spleen sections were acquired at
100× magnification using a Leica DM200 microscope
equipped with a Leica DFC295 digital camera (Leica
Microsystems) and Leica Application Suite (LAS) soft-
ware (Leica LAS V 3.7, Leica Microsystems). Areal frac-
tion of CD3 and MPO IR was determined in five
sections per animal (sham, n = 6; HI, n = 6) with a
standard threshold to determine positive staining using
Leica Qwin software (Leica Qwin Pro V 3.5.1, Leica).

Flow cytometry
At the end of the experiment (day 7), the spleen was im-
mediately harvested after sacrifice. Single-cell splenocyte
suspensions were obtained by dissociating freshly
sampled spleen tissues in gentleMACS™ C-tubes (MiltE-
nyi, Leiden, The Netherlands) filled with GibcoW Iscove’s
Modified Dulbecco’s Medium (IMDM) (Life Technolo-
gies, Bleiswijk, The Netherlands) using the gentleMACS™

Dissociator (MiltEnyi). Subsequently, the cell suspen-
sions were passed through a 70 μm cell strainer (BD
Biosciences, Erembodegem-Aalst, Belgium). Splenocytes
were stored in nitrogen in freezing medium containing
IMDM medium with 10% heat-inactivated fetal calf serum
and 10% dimethylsulfoxide (DMSO).
To study the cellular composition of the spleen 7 days

after global HI, 200,000 splenocytes per animal (sham,
n = 8; HI, n = 8) were stained for detection of lymphocytes
(mouse anti sheep CD45-biotin; AbDSerotec, Düsseldorf,
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Figure 2 Overview of regions of interest in the right hemisphere at the posterior hippocampus/mid-thalamus level. (A) Regions of
interest for the detection of IBA-1 immunoreactivity, 1 = hippocampus, 2 = subcortical white matter and 3 = periventricular white matter; (B)
regions of interest for the detection of O4-positive cell density, 1 = medial periventricular white matter, 2 = intermediate periventricular white
matter, 3 = lateral periventricular white matter, and 4 = subcortical white matter. Scale bar = 4 mm. The white dashed box (5) indicates in which
region the myelin binding protein (MBP) images in Figure 7 were obtained.
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Germany/streptavidin-Horizon V450; BD Biosciences),
neutrophils (mouse anti-bovine CD11b-Fluorescein iso-
thiocyanate (−FITC); AbDSerotec, Düsseldorf, Germany),
T-helper cells (mouse anti sheep CD4-AlexaFluorW 647
(−A647); AbDSerotec), cytotoxic T-cells (mouse anti sheep
CD8-R-phycoerythrin (−PE); AbDSerotec) and viability
(7-Aminoactinomycin D (7-AAD); BD Biosciences) accor-
ding to the manufacturer’s protocol. Stained cells were
acquired on a FACS Canto II flow cytometer (BD
Biosciences) equipped with FACS Diva software (BD
Biosciences). The number of CD11b, CD4 and CD8 posi-
tive splenocytes were determined as a percentage of living
CD45-positive lymphocytes. The expression of CD11b,
CD4 and CD8 on living CD45-positive lymphocytes was
analyzed using the mean fluorescent intensity (MFI).

Statistics
Summary statistics of animal characteristics (gestational
age at UCO, body weight) are shown as means with 95%
confidence intervals (CI). For analysis of O4, MPO and
activated caspase-3 parameters, cell counts in each sec-
tion’s region of interest were first averaged per field of
view (n = 8 for O4 and MPO; n = 20 for activated cas-
pase-3). Groups’ comparisons (sham vs. HI) with respect
to all outcome parameters were drawn either with inde-
pendent t-tests, or with random intercept models in case
of repeated measurements per animal (e.g. different sec-
tions per brain). Variables, whose distributions were
positively skewed, were log-transformed previous to stat-
istical testing. To facilitate interpretation, averages on
the log scale were back transformed to the original scale
(antilog) and are presented as geometric means and cor-
responding 95% CIs.
Average (additive) differences on log transformed data

become ‘multiplicative’ on the original scale. Thus, the
displayed geometric means for the sham and HI groups
should be compared in relative terms, not as difference
in averages (mean sham minus mean HI), but rather as a
ratio of the sham geometric mean with respect to the HI
geometric mean (mean sham divided by mean HI). The
interpretation of the geometric means ratio is provided
for example for areal fraction (%) IBA-1 immunoreactiv-
ity in the subcortical white matter (see Results section).
For analysis of the EEG parameter (IBI length), log

transformation also preceded parametric inferences
regarding groups’ comparisons and temporal dynamics
of mean IBI length before and after UCO (or sham). To
accommodate both the interrupted nature of the experi-
mental follow-up, with UCO happening on day 0 of the
experiment, as well as the correlation among longitu-
dinal measurements of individual fetuses, a piecewise
mixed regression model was fitted [27]. This mixed
model approach allowed additionally for heterogeneity
of groups’ variances to be accounted for. In the model,

time (pre and post UCO, measured in days), group
(sham vs. HI), and a dummy for pre and post UCO
times (pre-post), were the fixed effects factors. Fetuses
(subjects) were the random factor. The addition of ran-
dom effects was meant to model individual variability
relative to the group’s average. Variables selection was
carried out via the top-down procedure based on likeli-
hood ratio (LR) tests for fixed effects and tests for the
covariance structure.
Statistical analysis was performed with PASW Statistics

18 (SPSS Inc., Chicago, IL, USA).

Results
Animal characteristics
Fetal body weight did not differ between the sham and
HI group; sham mean: 1,782 g (1571; 1993) versus HI
mean: 1,742 g (1482; 2002), P = 0.677. There was no sig-
nificant difference in gestational age at the time of UCO
between the sham and HI groups; sham mean: 105.6
days (104.6; 106.5) versus HI mean: 105.5 days (104.7;
106.3), P = 0.717.

Fetal vital parameters
Fetal vital parameters and blood gases during UCO are
depicted in Figure 1. After an initial compensatory rise,
mean arterial blood pressure gradually declined from 40
mmHg to 10 mmHg at the end of 25 minutes UCO
(Figure 1A). Mean fetal heart rate rapidly fell after initi-
ation of UCO from around 200 beats per minute (bpm)
at baseline to below 100 bpm at the end of UCO
(Figure 1B). All vital parameters normalized within 30
minutes of reperfusion time.
Blood gas data (Figure 1C-E) indicate that average pH

dropped from 7.4 at baseline to 6.8 at the end of UCO.
Mean partial oxygen pressure decreased from 20 mmHg
at baseline to values below 5 mmHg at the end of UCO.
Mean partial carbon dioxide pressure increased from
baseline levels of 40 mmHg to values around 90 mmHg at
the end of UCO. Upon reperfusion hypoxemia and hyper-
capnia resolved within minutes. Normalization of pH
values occurred after 60 to 90 minutes (data not shown).

Brain atrophy
Brain weight, corrected for body weight (BW), and hip-
pocampal area, were determined to study HI-induced
brain atrophy. Average brain weight (g/kg BW) was sig-
nificantly decreased in animals exposed to HI compared
with sham (Figure 3A); sham mean: 17.3 g/kg BW (95%
CI 15.2; 19.4) versus HI mean: 14.6 g/kg BW (95% CI
12.9; 16.4), P = 0.037.
Atrophy of the hippocampus was assessed since there

is clinical [3-5] and experimental [19,28] evidence that
this brain region is affected in preterm HIE. Mean area
(mm2) of the hippocampus was significantly reduced in
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animals exposed to HI compared with sham (Figure 3B);
sham mean: 6.1 mm2 (95% CI 5.0; 7.3) versus HI mean:
3.0 mm2 (95% CI 1.9; 4.2), P = 0.002.
In hippocampal sub-regions the analysis of the areas

(mm2) showed significant atrophy of the cornu ammonis
(CA)1-2; sham mean: 1.7 mm2 (95% CI 1.3; 2.0) versus
HI mean: 0.7 mm2 (95% CI 0.4; 1.0), P = 0.001 and CA3;
sham mean: 0.7 mm2 (95% CI 0.6; 0.9) versus HI mean:
0.4 mm2 (95% CI 0.2; 0.6), P = 0.013.
Mean area of the dentate gyrus (DG) was not signifi-

cantly affected by HI; sham mean: 1.2 mm2 (95% CI 1.0;
1.4) versus HI mean: 0.7 mm2 (95% CI 0.6; 1.1), P = 0.060.

Microglial activation and proliferation
Microglia (IBA-1) were studied to determine the local
inflammatory response in the brain. Areal fraction (%) of
IBA-1 immunoreactivity (IR) was studied in the SCWM,
PVWM and hippocampus (Figure 2A). IBA-1 IR was sig-
nificantly increased in the SCWM of animals exposed to
HI compared with sham (Figure 4D-F); sham geometric
mean: 25.6% (95% CI 17.0; 38.4) versus HI geometric
mean: 70.0% (95% CI 46.6; 105.1), P = 0.003. Thus, the
ratio of the two geometric means, HI with respect to
sham is 70.0/25.6 = 2.73. The corresponding interpret-
ation is that the geometric mean of the areal fraction in
the HI group is 2.73 higher (173% increase) than the
geometric mean of the sham group.
In the PVWM the areal fraction (%) of IBA-1 IR was

significantly increased in animals exposed to HI com-
pared with sham (Figure 4A-C); sham geometric mean:
1.3% (95% CI 0.6; 3.0) versus HI geometric mean: 5.2%
(95% CI 2.9; 9.2), P = 0.013.
The areal fraction (%) of IBA-1 IR in the hippocampus

was significantly increased in animals exposed to HI
compared with sham (Figure 4G-I); sham geometric
mean: 1.9% (95% CI 1.0; 3.6) versus HI geometric mean:
22.5% (95% CI 12.1; 41.8), P <0.001.
Analysis of hippocampal sub-region CA1-2 showed

significantly increased IBA-1 IR in animals exposed to
HI compared to sham (Figure 5A-C); sham geometric

mean 1.5% (95% CI 0.7; 3.2) versus HI geometric mean
29.8% (95% CI 14.1; 63.1), P <0.001. IBA-1 IR was also sig-
nificantly increased in CA3 (Figure 5D-F); sham geometric
mean 1.4% (95% CI 0.7; 3.0) versus HI geometric mean
31.4% (95% CI 15.2; 64.8), P <0.001 and DG (Figure 5G-I);
sham geometric mean 1.3% (95% CI 0.6; 3.0) versus HI
geometric mean 5.2% (95% CI 2.9; 9.2), P <0.001.
Microglia in sham animals exhibited a quiescent state

characterized by extensively branched thin processes
(inserts Figure 4E and H, and Figure 5B, E and H). In
contrast, in HI-exposed animals, microglia with thick
cell bodies and retracted processes were observed indi-
cating an activated state (inserts Figure 4F and I, and
Figure 5C, F and I).

Region-specific pre-oligodendrocyte vulnerability
Differential counts of O4-positive preOLs were per-
formed in the medial, intermediate and lateral PVWM
and in the SCWM (Figure 2B). Analysis of the O4 stain-
ing showed that in sham animals the medial and lateral
PVWM were predominantly populated by O4-positive
cells with a mature phenotype (Figure 6A-B and G-H).
In contrast, O4-positive cells in the SCWM and inter-
mediate PVWM were predominantly of immature
phenotype (Figure 6D-E and J-K). Following global HI
all regions showed an increase in preOLs with degenera-
tive morphology (Figure 6A, D, G and J) which reached
statistical significance in the regions which were popu-
lated by mature preOLs in sham conditions (medial and
lateral PVWM). In the medial PVWM, the areal density
of O4-positive cells with degenerative phenotype signifi-
cantly increased in animals exposed to HI compared to
sham (Figure 6A-C); sham geometric mean 4.6 cells/
mm2 (95% CI 1.9; 11.3) versus HI geometric mean 44.2
cells/mm2 (95% CI 17.8; 109.4), P = 0.009. In the lateral
PVWM, the areal density of O4-positive cells with de-
generative morphology similarly increased following HI
(Figure 6G-I); sham geometric mean 8.3 cells/mm2 (95%
CI 3.6; 18.8) versus HI geometric mean 61.6 cells/mm2

(95% CI 31.9; 119.1).
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Figure 3 Global HI induced atrophy of the brain and the hippocampus. This is indicated by a significant reduction of brain weight
(g/kg BW) (A) and hippocampus area (mm2) (B). (A) Means ± 95% CI are depicted. (B) Geometric means ± 95% CI are depicted. *P ≤0.05,
# P ≤0.01, ‡ P ≤0.001, NS, non-significant; HI = hypoxia-ischemia.
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Following global HI, the total number of preOLs signifi-
cantly decreased in those regions which were populated
by immature preOLs in sham conditions (intermediate
PVWM and SCWM). In the intermediate PVWM, the
areal density of total O4-positive cells significantly
decreased following global HI (Figure 6D-F); sham geo-
metric mean 244.2 cells/mm2 (95% CI 171.7; 347.2) versus
HI geometric mean 143.2 cells/mm2 (95% CI 100.7;
203.6), P = 0.041. Loss of total preOLs in the intermediate
PVWM was mainly attributable to loss of O4-positive cells
with immature phenotype (Figure 6D-F); sham geometric
mean 191.9 cells/mm2 (95% CI 137.7; 267.5) versus HI
geometric mean 104.3 cells/mm2 (95% CI 74.8; 145.3),
P = 0.023.

The areal density of total O4-positive cells in the
SCWM significantly decreased in HI-exposed animals
compared to sham (Figure 6J-L); sham geometric mean:
218.3 cells/mm2 (95% CI 169.2; 282.0) versus HI geo-
metric mean: 126.8 cells/mm2 (95% CI 98.0; 164.0),
P = 0.014. Loss of total preOLs in the SCWM was
mainly attributable to loss of O4-positive cells with imma-
ture phenotype (Figure 6J-L); sham geometric mean: 210.2
cells/mm2 (95% CI 133.9; 330.3) versus HI geometric
mean: 117.2 cells/mm2 (95% CI 75.0; 183.1), P = 0.014.
Moreover, in the SCWM a clear disturbance of O4-
positive myelin sheath organization was observed follow-
ing HI (Figure 6L). Remarkably, in the medial PVWM
the total number of preOLs significantly increased
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Figure 4 Global HI induced activation and proliferation of microglia in the hippocampus, PVWM and SCWM. Microglial proliferation and
activation was shown by significantly increased areal fraction (%) of IBA-1 immunoreactivity (IR) and by loss of processes and amoeboid
morphology, respectively. (A) Global HI significantly increased areal fraction (%) of IBA-1 IR in the hippocampus; (B) Sham, hippocampus; resting
microglia, also depicting the analyzed hippocampal sub-regions (see Figure 5); I = cornu ammonis (CA)1-2, II = CA3, III = dentate gyrus (DG); (C)
HI, hippocampus; profound microglial proliferation and activation (scale bar = 500 μm); (D) Global HI significantly increased areal fraction (%) of
IBA-1 IR in the PVWM; (E) Sham, PVWM; resting microglia (scale bar = 200 μm, scale bar insert = 25 μm); (F) HI, PVWM; proliferation and activation
of microglia (scale bar = 200 μm, scale bar insert = 25 μm); (G) Global HI significantly increased areal fraction (%) of IBA-1 IR in the SCWM;
(H) Sham, SCWM; resting microglia (scale bar = 200 μm, scale bar insert = 25 μm); (I) HI, SCWM proliferation and activation of microglia
(scale bar = 200 μm, scale bar insert = 25 μm). (A, D, G) Geometric means ± 95% CI are depicted. *P ≤0.05, # P ≤0.01, ‡ P ≤0.001, NS,
non-significant. HI = hypoxia-ischemia.
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(Figure 6A); sham geometric mean: 169.4 cells/mm2

(95% CI 134.4; 213.4) versus HI geometric mean: 232.1
cells/mm2 (95% CI 184.2; 292.4), P = 0.038.

MBP
Brain sections were stained for myelin basic protein
(MBP) to detect white matter injury following HI. In
sham animals abundant MBP-positive myelin sheaths
and myelin-producing cells (mature oligodendrocytes)
were observed in the subcortical white matter (Figure 7).
Following global HI a marked reduction of both myelin
sheaths and mature oligodendrocytes was observed
(Figure 7). In the PVWM (regions 1, 2 and 3 in Figure 2)
no MBP immunoreactivity was detected in both sham
and HI animals (data not shown) indicating that these
white matter regions were not myelinated at this devel-
opmental stage of the preterm brain.

Cerebral neutrophil invasion
Brain sections were stained for MPO to detect neutro-
phils that invaded the brain following HI. Although
microglia can also produce MPO, neutrophils and
microglia can be easily distinguished by intensity of
staining, localization and morphology [29-31]. Following
global HI the total number of MPO-positive cells inside
or adjacent to the cerebral vasculature significantly
increased in the hippocampus (Figure 8A-C); sham geo-
metric mean: 2.0 cells/field of view (FOV) (95% CI 1.7;
2.4) versus HI geometric mean: 8.5 cells/FOV (95% CI
2.7; 9.9), P <0.001. Similarly, the total number of MPO-
positive cells significantly increased in the PVWM
(Figure 8D-F); sham geometric mean: 2.1 cells/FOV
(95% CI 1.6; 2.9) versus HI geometric mean: 4.5 cells/
FOV (95% CI 3.3; 6.2), P = 0.002; and in the SCWM
(Figure 7G-I), sham geometric mean: 1.6 cells/FOV (95%
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Figure 5 Global HI induced significant proliferation and activation of microglia in the cornu ammonis (CA)1-2, CA3 and dentate gyrus
(DG), sub-regions of the hippocampus. (A) Global HI significantly increased areal fraction (%) of IBA-1 immunoreactivity (IR) in CA1-2; (B) Sham,
CA1-2; resting microglia; (C) HI, CA1-2; profound microglial proliferation and activation; (D) Global HI significantly increased areal fraction (%) of
IBA-1 IR in CA3; (E) Sham, CA3; resting microglia; (F) HI, CA3; profound proliferation and activation of microglia; (G) Global HI significantly
increased areal fraction (%) of IBA-1 IR in DG; (H) Sham DG; resting microglia; (I) HI, DG; proliferation and activation of microglia. Scale bar
images = 200 μm, scale bar inserts = 25 μm. (A, D, G) Geometric means ± 95% CI are depicted. *P ≤0.05, # P ≤0.01, ‡ P ≤0.001, NS,
non-significant. HI = hypoxia-ischemia.
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Figure 6 Global HI induced region-specific vulnerability of O4-positive pre-oligodendrocytes (preOLs; late oligodendrocyte progenitors
and immature oligodendrocytes). Regions of interest are depicted in Figure 2. (A) Global HI significantly increased the density of total and
degenerative preOLs in the medial periventricular white matter (PVWM). (B) Sham, medial PVWM; preOL with mature phenotype (black arrow). (C)
HI, medial PVWM; preOLs with degenerative phenotype (white arrowheads). (D) Global HI significantly decreased density of total and immature
preOLs in the intermediate PVWM. (E) Sham, intermediate PVWM; preOLs with immature phenotype (black arrow heads). (F) HI, intermediate
PVWM; preOLs with degenerative phenotype (white arrow heads) and apoptotic preOL (white arrow). (G) Global HI significantly increased the
density of degenerative preOLs in the lateral PVWM, density of total preOLs was unchanged. (H) Sham, lateral PVWM; preOL with mature
phenotype (black arrow). (I) HI, lateral PVWM; preOL with degenerative (white arrow head) and apoptotic (white arrow) phenotype. (J) Global HI
significantly reduced the density of total and immature preOLs subcortical white matter (SCWM). (K) Sham, SCWM; preOLs with immature
phenotype (black arrow heads). (L) HI, SCWM; reduced density of preOLs with immature phenotype (black arrow heads) and disturbance of
O4-positive myelin sheath organization. Scale bar all images = 50 μm. (A, D, G, J) Geometric means ± 95% CI are depicted. *P ≤0.05, # P ≤0.01,
‡ P ≤0.001, NS, non-significant. HI = hypoxia-ischemia.
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CI 0.7; 2.5) versus HI geometric mean: 4.3 cells/FOV
(95% CI 2.7; 6.9), P <0.001.
All analyzed regions showed an increase of intravascular

MPO-positive cells following global HI, which reached sig-
nificance in the hippocampus (Figure 8A); sham geometric
mean: 1.0 cells/FOV (95% CI 0.5; 2.3) versus HI geometric
mean: 2.1 cells/FOV (95% CI 0.9; 4.6), P = 0.002; and in
the SCWM (Figure 8G), sham geometric mean: 1.0 cells/
FOV (95% CI 0.3; 2.9) versus HI geometric mean: 1.6
cells/FOV (95% CI 0.7; 4.0), P = 0.009.
The number of perivascular MPO-positive cells was sig-

nificantly increased in the hippocampus of HI-exposed ani-
mals (Figure 8A-C); sham geometric mean: 0.4 cells/FOV
(95% CI 0.3; 0.6) versus HI geometric mean: 4.3 cells/FOV
(95% CI 3.1; 5.9), P <0.001. Likewise, the number of peri-
vascular MPO-positive cells was significantly increased in
the PVWM of HI-exposed animals (Figure 8D-F), sham
geometric mean: 0.4 cells/FOV (95% CI 0.3; 0.7) versus HI
geometric mean: 2.1 cells/FOV (95% CI 1.5; 3.1), P <0.001;
and in the HI-exposed SCWM (Figure 8G-I), sham geo-
metric mean: 0.3 cells/FOV (95% CI 0.2; 0.5) versus HI
geometric mean: 1.8 cells/FOV (95% CI 1.2; 2.6), P <0.001.
All analyzed regions showed an increase of interstitial

MPO-positive cells following global HI, which reached
significance in the hippocampus (Figure 8A), sham geo-
metric mean: 0.4 cells/FOV (95% CI 0.3; 0.5) versus
HI geometric mean: 1.6 cells/FOV (95% CI 1.3; 2.1),
P <0.001; and in the SCWM (Figure 8G), sham geomet-
ric mean: 0.3 cells/FOV (95% CI 0.2; 0.6) versus HI geo-
metric mean: 0.9 cells/FOV (95% CI 0.6; 1.3), P = 0.007.
MPO-positive cells in the brain sections studied were

large round-shaped cells with lobular intracellular struc-
tures situated in and around the cerebral vasculature
(Figure 8B-C, E-F and H-I). These morphological fea-
tures and their localization indicate that these MPO-
positive cells were neutrophils. MPO-positive cells lack-
ing neutrophil morphology were rarely detected (data
not shown).

White blood cell mobilization
One day post-UCO a significant increase in white blood
cell count was observed (Figure 9); sham geometric
mean: 1.5 × 109 cells/L (95% 0.8; 2.2) versus HI geomet-
ric mean: 3.1 × 109 cells/L (95% CI 2.1; 4.5), P = 0.009.
Furthermore, white blood cell counts showed a gradual

increase in the number of circulating white blood cells
during the study period in both sham and HI animals
(Figure 9). When geometric means were compared to
sham day −3 (0.5 × 109 cells/L (95% CI 0.3; 0.9)), white
blood cell counts of sham animals significantly increased at
day 0 (1.4 × 109 cells/L (95% CI 1.0; 2.0); P = 0.027), day 1
(1.5 × 109 cells/L (95% CI 0.8; 2,2); P = 0.024), day 3 (1.6 ×
109 cells/L (95% CI 1.1; 2.3); P = 0.008), day 5 (2.3 × 109

cells/L (95% CI 1.6; 3.4); P <0.001) and day 7 (2.9 × 109

cells/L (95% CI 1.7; 4.8); P <0.001). In HI animals geomet-
ric mean white blood cell counts were significantly elevated
compared to HI day −3 (0.9 × 109 cells/L (95% CI 0.5; 1.4))
at day 1 (3.1 × 109 cells/L (95% CI 2.1; 4.5); P <0.001) and
day 7 (2.5 × 109 cells/L (95% CI 1.3; 3.7); P = 0.002).
Flow cytometry analysis of whole blood showed that the

percentage of living (7-AAD negative) CD45-positive lym-
phocytes expressing CD11b (neutrophils), CD4 (helper
T-cells) or CD8 (cytotoxic T-cells), did not differ between
sham and HI groups in the circulation on day 1 (data not
shown). This indicated that global HI induced non-
preferential mobilization of immune cells 24 hours follow-
ing global HI.

Splenic involution
Seven days after global HI, splenic weight was analyzed as
an indication of activation of the peripheral immune sys-
tem. Spleen weight, corrected for fetal BW, was signifi-
cantly decreased in fetuses exposed to HI (Figure 10A);
sham geometric mean 2.5 g/kg BW (95% CI 1.7; 3.6)
versus HI geometric mean 1.7 g/kg BW (95% CI 1.5; 1.9),
P = 0.033. Consistently, spleen size was markedly reduced
following HI (Figure 10B).

A B

Figure 7 Global HI induced white matter injury. This was shown by marked loss of myelin basic protein (MBP) positive myelin sheaths and
myelin-producing cells (mature oligodendrocytes) in the subcortical white matter. (Region of interest indicated in Figure 2).
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To assess whether splenic involution was caused by
increased apoptotic cell death, spleen sections were
stained for activated caspase-3. The number (cells/mm2)
of activated caspase-3 positive cells in the spleen did not
differ between sham and HI groups (Figure 11A-C);
sham mean: 12.2 cells/mm2 (95% CI 4.4; 20.0) versus HI
mean: 16.4 cells/mm2 (95% CI 6.4; 26.4), P = 0.391.

Splenic cellular composition
Immunohistochemical staining of spleen sections for neu-
trophils showed that areal fraction (%) of MPO immuno-

reactivity (IR) in the spleen did not differ between sham
and HI animals after a reperfusion time of 7 days
(Figure 11D-F); sham mean: 5.3% (95% CI 3.5; 7.1) versus
HI mean: 4.0% (95% CI 2.4; 5.6), P = 0.254. Immunohisto-
chemical staining of spleen sections for T-cells showed
that areal fraction (%) of CD3 IR in the spleen did not dif-
fer between sham and HI animals after a reperfusion time
of 7 days (Figure 11D-F); sham mean: 3.8% (95% CI 1.6;
6.0) versus HI mean: 6.3% (95% CI 4.2; 8.3), P = 0.100.
Similarly, no differences in splenic cell populations

were found between sham and HI animals using flow
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Figure 8 Global HI induced significant invasion of MPO-positive cells (neutrophils) into the hippocampus, PVWM and SCWM. Invading
neutrophils were predominantly localized in the perivascular zone. (A) Global HI caused a significant increase in the total number of MPO-positive
cells in the hippocampus, mainly attributable to a profound increase in the number of perivascular MPO-positive cells; (B) Sham, hippocampus;
perivascular MPO-positive cell (black arrow head); (C) HI, hippocampus; profound increase in the number of perivascular MPO-positive cells (black
arrow heads); (D) Global HI caused a significant increase in the total number of MPO-positive cells in the PVWM, attributable to a significant
increase in the number of perivascular MPO-positive cells; (E) Sham, PVWM; perivascular (black arrow head) and interstitial (black arrow) MPO-
positive cells; (F) HI, PVWM; marked increase in perivascular MPO-positive cells (black arrow heads); (G) Global HI caused a significant increase in
the total number of MPO-positive cells in the SCWM, attributable to a significant increase in the number of intravascular, perivascular and
interstitial MPO-positive cells; (H) Sham, SCWM; intravascular MPO-positive cells (white arrow heads); (I) HI, SCWM; intravascular (white arrow
heads), perivascular (black arrow heads) and interstitial (black arrow) MPO-positive cells. Scale bar all images = 50 μm. (A, D, G) Geometric means
± 95% CI are depicted. *P ≤0.05, # P ≤0.01, ‡ P ≤0.001, NS, non-significant. HI = hypoxia-ischemia.
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cytometry on splenocytes. The percentage of living (7-AAD
negative) CD45-positive splenocytes expressing CD11b
(neutrophils) did not differ between sham and HI groups
(Figure 12); sham mean: 45.8% (95% CI 28.0; 63.7) versus
HI mean: 44.9% (95% CI 27.1; 62.7), P = 0.936. The per-
centage of living CD45-positive splenocytes expressing
CD4 (helper T-cells) was not changed 7 days following HI
(Figure 12); sham mean: 9.9% (95% CI 7.3; 12.5) versus HI
mean: 9.9% (95% CI 7.6; 12.2), P = 0.996. The percentage of
living splenocytes in the spleen expressing CD8 (cytotoxic
T-cells) remained also unchanged 7 days following HI
(Figure 12); sham mean; 4.1% (95% CI 2.4; 5.8) versus HI
mean: 3.9% (95% CI 2.4; 5.3), P = 0.825. In line with these
data, expression levels of CD11b, CD4 and CD8 on living
CD45+ splenocytes, as measured with mean fluorescence
intensity (MFI), were not changed by global HI after a
reperfusion period of seven days (data not shown).

EEG suppression
The fetal EEG was continuously recorded in HI-exposed
(n = 8) and sham (n = 8) fetuses during the complete

study period. EEG analysis was performed from two days
before UCO until the end of the experiment after a reper-
fusion period of seven days. Interburst interval (IBI) length
was assessed to determine suppression of brain function
following HI. EEG suppression was indicated by prolonged
IBI length. Figure 13A displays the observed IBI length
values over time (background; grey) of two animals, one
sham fetus and one HI fetus, averaged over 30 minutes.
Time point ‘0’ indicates day of UCO. Note the distinct dif-
ference in IBI length between the HI versus sham fetuses
after occlusion, with more prolonged length and larger
fluctuations for the former. Superimposed on the 30 min-
utes data in Figure 13A are also the IBI length values aver-
aged over 24 hours, for the same two animals (foreground;
full circles). For model simplicity, the piecewise regression
model was fitted on the 24 hours data.
Figure 13B displays the IBI length temporal dynamics as

estimated by the final regression model. Its fixed and ran-
dom effect parameters are displayed in Tables 1 and 2.
The predicted lines (according to the model) are superim-
posed on observed 24 hour values (all animals). Note the
greater IBI length variability in the HI fetuses induced by
the occlusion. This more variable responsiveness was cap-
tured in the model by the significant random slope vari-
ance for in the HI group (Tables 1 and 2).
There is a clear upwards shift (increase) in the average

IBI length values (log scale) for the HI group compared
to sham after UCO (significant interaction between pre-
post dummy and group variables, capturing the average
change in IBI length level for the HI group immediately
after UCO). Mean IBI length after UCO remained higher
throughout the measured time span (one week) for the
HI group. With respect to temporal changes, it is note-
worthy to mention that before UCO the averaged values
remain stable over time (pre-UCO time variable did not
reach statistical significance), contrary to post-UCO
time. After UCO, IBI length seemed to change in a
curve-linear pattern for both groups (significant quad-
ratic and cubic post-time parameters in the model). In
summary, IBI length was significantly increased follow-
ing UCO and remained higher in the HI group during

white blood cell count

-3 0 1 3 5 7
0.0

1.0

2.0

3.0

4.0

5.0 #
sham

HI

time (d)

w
hi

te
 b

lo
o

d
 c

el
ls

 (
x 

10
9 / L

)

Figure 9 Global HI induced significant white blood cell
mobilization in the first 24 hours following umbilical cord
occlusion (UCO). White blood cell counts gradually increased
during the study period. Geometric means ± 95% CI are depicted.
*P ≤0.05, # P ≤0.01, ‡ P ≤0.001, NS, non-significant.
HI = hypoxia-ischemia.
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Figure 10 Global HI resulted in splenic involution. Global HI significantly reduced spleen weight (g/kg BW) (A) and size (B, C). (B) Sham,
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the seven day reperfusion time, indicating prolonged sup-
pression of preterm brain function following global HI.

Discussion
In this study we showed that global HI caused profound
inflammation of the preterm ovine brain which was par-
alleled by mobilization of the peripheral innate immune
system. These inflammatory changes were associated
with suppressed brain function, brain atrophy, region-
specific vulnerability of preOLs and hypomyelination,
which are known to correlate with white matter disease,
the clinical hallmark of preterm HIE [13].
Microglial proliferation following global HI was demon-

strated by immunohistochemical staining of IBA-1, a
specific marker for microglia under normal and neuroin-
flammatory conditions [24-26,32,33]. Moreover, we showed

morphological transformation of IBA-1 positive microglia
from ramified into amoeboid state indicating activation of
these cells following global HI in preterm sheep [34,35].
These microglial changes, as seen after global ischemia in
preterm lambs, are in line with the microglial response
after focal ischemia of the adult brain which typically
occurs within 24 hours after the insult [36-38].
Mobilization of the peripheral innate immune system

in our model was demonstrated by a non-preferential re-
cruitment of immune cells into the circulation within 24
hours following global HI as well as a marked influx of
neutrophils into the HI-exposed preterm hippocampus
and white matter seven days after the global HI insult.
This invasion of neutrophils, which is an important
histopathological finding in cerebral ischemia, was pri-
marily localized in the perivascular zone [39-41]. The
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Figure 11 (A) Splenic apoptosis was not affected by global HI as indicated by unchanged numbers (cells/mm2) of activated caspase-3
positive cells in the spleen assessed seven days after umbilical cord occlusion (UCO); (B) Sham, spleen; activated caspase-3; (C) HI,
spleen; activated caspase-3; (D) Global HI did not change areal fraction (%) of MPO immunoreactivity in the spleen seven days after
UCO; (E) Sham, spleen; MPO; (F) HI, spleen; MPO; (G) Global HI did not change areal fraction (%) of CD3 immunoreactivity in the
spleen seven days after UCO; (H) Sham, spleen; CD3; (I) HI, spleen; CD3. Scale bar activated caspase-3 images = 50 μm. Scale bar CD3
and MPO images = 200 μm, scale bar inserts = 50 μm. (A, D, G) Means ± 95% CI are depicted. *P ≤0.05, # P ≤0.01, ‡ P ≤0.001, NS, non-significant.
HI = hypoxia-ischemia.

Jellema et al. Journal of Neuroinflammation 2013, 10:13 Page 14 of 19
http://www.jneuroinflammation.com/content/10/1/13



influx of neutrophils, which typically occurs as a second hit
within 48 to 72 hours after cerebral ischemia, is considered
to further aggravate acute inflammation of the brain that
was initiated by immediate cell death and microglial activa-
tion by enhanced free radical attack [36-38].
A permeable blood brain barrier (BBB) is a prerequisite

for the influx of neutrophils such as seen following global
HI [41,42]. Clinical [43] and experimental [44-46] evi-
dence showed disruption of the BBB in perinatal HI. The
influx of neutrophils also indicates that the immature im-
mune system is capable of responding to an inflammatory
stimulus induced by global HI. This concept is in line with
recent literature challenging the dogma that the preterm
immune system is naive [47-49]. However, the fact that
neutrophils were predominantly observed in the perivas-
cular zone following HI, and to a lesser extent in the inter-
stitium, indicated that the capacity of fetal neutrophils to
transmigrate was immature [48].
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Figure 12 Global HI did not affect the number of splenocytes
expressing CD11b, CD4 or CD8 seven days after umbilical cord
occlusion (UCO). Means ± 95% CI are depicted. *P ≤0.05, # P ≤0.01,
‡ P ≤0.001, NS, non-significant. HI = hypoxia-ischemia.

Figure 13 Global HI resulted in prolonged profound suppression of preterm brain function. (A) Observed mean IBI length (log scale) per
24 hours of two animals, one sham and one HI, superimposed on observed mean IBI length per 30 minutes; (B) Values predicted by the mixed
linear model are superimposed on observed IBI length per 24 hours of all animals. IBI = interburst interval length, log = natural logarithm,
s = seconds, UCO = umbilical cord occlusion, 30’ = 30 minutes, 24h = 24 hours, d = day.
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We postulate that the cerebral neutrophils, as seen in
our model, were derived from the spleen, since this
organ is considered to be the predominant source of in-
vading neutrophils following focal ischemia of the brain
[18,50,51]. This concept is further supported by work of
Ajmo et al. who showed in a rat model of focal cerebral
ischemia that splenectomy reduced neutrophil influx
and microglial activation, ultimately diminishing ische-
mic brain injury [17]. In line with this hypothesis, we
observed that neutrophil invasion into the preterm brain
following global HI was associated with marked splenic

involution. Since splenic apoptosis was not affected by
global HI, we suggest that involution of the spleen was
caused by mobilization of neutrophils and other immune
cells rather than HI-induced splenic cell death. However,
7 days after global HI we did not detect changed im-
mune cell composition in the spleen. The latter is in line
with a neonatal mouse study of Winerdal et al. which
showed an altered splenic cellular response between 24
and 72 hours after HI, subsequently neutrophil invasion
into the brain peaked 7 days after ischemia [52]. To-
gether these findings suggest that splenic cellular
changes in our model occurred within hours after the
global HI-insult. This shows an important limitation of
the current study in which temporal dynamics of the
splenic cellular immune response were not studied. Not-
ably, HI-induced involution of the spleen may have clin-
ical postnatal consequences since splenic involution has
been associated with an increased risk of postnatal infec-
tious complications such as early onset sepsis [21,53].
Splenectomy in our model of global HI is required to
confirm the role of the spleen as a source of neutrophils.
The cerebral and systemic inflammatory changes

observed in our study were accompanied by prolonged
suppression of preterm brain function. The persistent re-
duction in brain activity as observed in our study is in
line with previous studies in comparable ovine models
of global HI [22,54]. Clinical evidence showed that per-
sistent suppression of EEG activity is associated with
poor outcome, indicating the severity of the HI-insult
applied in this study [55,56]. Furthermore, global HI
induced severe brain atrophy in our study which has
previously been associated with neuronal injury [57,58].
Our findings showed that HI-induced cerebral inflam-

mation was paralleled by region-specific preOL vulner-
ability. In the SCWM, loss of morphologically immature
O4-positive preOLs was associated with hypomyelination,

Table 1 Estimated fixed and random effect parameters of
the piecewise (mixed) regression model

Parameters (95% CI)

(Fixed and random effects) n = 16

Intercept 2.60 (2.19, 3.00) ‡

Group (Sham) −7.14 (−1.39, -0.03) *

Dummy pre-post UCO (pre-time) −0.63 (−0.95, -0.32) ‡

Group*pre-post dummy 0.65 (0.27, 1.02) ‡

Pre-UCO time −0.01 (−0.20, 0.18) NS

Post-UCO time 0.29 (0.12, 0.46) ‡

Post-UCO time (2) −0.12 (−4.84, 1.73) ‡

Post-UCO time (3) 0.01 (0.00, 0.02) ‡

Residual variance 0.03 (0.02, 0.05) ‡

Random intercept variance, pre-UCO time 0.29 (0.12, 0.68) *

Random slope variance, pre-UCO time 0.03 (0.01,0.10) *

Random slope variance, post-UCO time HI 0.007 (0.002, 0.20)*

Estimated fixed and random effect parameters of the piecewise (mixed)
regression model (Outcome variable: mean IBI length, on the log scale.
Covariance structure: diagonal). The fixed effect regression coefficients β for
the continuous time variables indicate average changes in mean IBI length per
day. For nominal variables, β represent average changes in the highlighted
category (in brackets) with respect to the reference group (omitted). *P ≤0.05,
# P ≤0.01, ‡ P ≤0.001, NS, non-significant.

Table 2 Interpretation of model parameters

Group (Sham) Captures IBI length differences in means between SHAM and HI averaged over all time points

Dummy pre-post UCO (pre-time) Captures the (vertical) shift of mean IBI values, induced by the interrupted treatment (UCO)

Group*pre-post dummy Captures the differential shift of mean IBI length values immediately after UCO - significant only for the HI group

Pre-UCO time Captures a linear increase of mean IBI length over time before UCO Note: Non-significant

Post-UCO time All 3 time associated parameters capture curve-linear changes of mean IBI lengths over time after UCO

Post-UCO time (2)

Post-UCO time (3)

Residual variance Captures within subjects variability (noise)

Random intercept variance, pre-
UCO time

Captures between subject variability at the outset

Random slope variance, pre-UCO
time

Captures between subject variability with respect to linear IBI changes over time before UCO (each animal has its
own slope)

Random slope variance, post-
UCO time HI

Captures heterogeneity of between subject variability with respect to linear IBI changes over time after UCO;
larger variable responsiveness for the HI group
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which is in concordance with previous results in a similar
model of HI sheep [22,54]. In the PVWM, we observed
loss of morphologically immature preOLs as well as
increased numbers of morphologically mature preOLs fol-
lowing global HI. These findings suggested that the preOL
response following global HI varied from degeneration to
proliferation and depended on the region and the morpho-
logical maturity of preOLs. This concept is supported by
recent studies suggesting that myelination failure of the
preterm brain following HI may be caused by a combin-
ation of preOL degeneration, regeneration and arrested
maturation [59-61]. The observed white matter injury and
functional impairments following global HI are typical
findings in preterm infants with HIE underlining the trans-
lational character of the preterm sheep model.

Conclusions
This study provides evidence that cerebral inflammation
and mobilization of the peripheral innate immune sys-
tem are paralleled by injury and functional loss of the
preterm brain following global HI. We postulate that the
spleen plays a key role in preterm HIE by providing im-
mune effector cells to the circulation and subsequently
to the injured brain. Further studies should focus on the
interplay between preterm brain inflammation and the
activation of the peripheral immune system following
global HI. Better understanding of the involvement of
cerebral and systemic inflammation in the course of glo-
bal HI will contribute to the development of future
therapeutic interventions in preterm HIE.
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