Cai et al. Journal of Neuroinflammation 2013, 10:131
http://www.jneuroinflammation.com/content/10/1/131

JN JOURNAL OF
NEUROINFLAMMATION

RESEARCH Open Access

Scolopendra subspinipes mutilans attenuates
neuroinflammation in symptomatic hSOD1%%*#
mice

MuDan Cai', Sun-Mi Choi', Bong Keun Song?, llhong Son®, Sungchul Kim** and Eun Jin Yang"™

Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a progressive, adult-onset neurodegenerative disorder
characterized by selective motor neuron death in the spinal cord, brainstem, and motor cortex. Neuroinflammation
is one of several pathological causes of degenerating motor neurons and is induced by activated microglial cells
and astrocytes in ALS.

Scolopendra subspinipes mutilans (SSM) is utilized in traditional Chinese and Korean medicine for the treatment of a
variety of diseases, such as cancer, apoplexy, and epilepsy. However, the mechanisms underlying the effects of SSM
are currently unclear, even though SSM increases immune and antibiotic activity.

Methods: To determine the effects of SSM on symptomatic hSOD1°%*” transgenic mice, SSM (2.5 pe/g) was
injected bilaterally at the Zusanli (ST36) acupoint three times per week for two weeks. The effects of SSM treatment
on anti-neuroinflammation in the brainstem and spinal cord of hSOD1°%** mice were assessed via Nissl and
Fluoro-Jade B (FJB) staining, and immunohistochemistry using Iba-1, CD14, HO1, and NQOT1 proteins was evaluated
by Western blotting.

Results: In this study, we investigated whether SSM affects neuroinflammation in the spinal cord of symptomatic
hSOD1°%** transgenic mice. We found that SSM treatment attenuated the loss of motor neurons and reduced the
activation of microglial cells and astrocytes. Furthermore, we demonstrated that SSM administration in this animal

model of ALS suppressed oxidative stress in the brainstem and spinal cord by 1.6- and 1.8-fold, respectively.

Conclusions: Our findings suggest that SSM, which has previously been used in complementary and alternative
medicine (CAM), might also be considered as an anti-neuroinflammatory therapy for neurodegenerative diseases.
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Background

The neurological disorder amyotrophic lateral sclerosis
(ALS) is characterized by selective motor neuron death
in the brainstem, motor cortex, and spinal cord. Familial
ALS (fALS) is caused by genetic mutations in several
genes, including Cu/Zn superoxide dismutase (SOD1),
alsin, senataxin, fused in sarcoma (FUS), vesicle-asso-
ciated membrane protein-associated protein B (VAPB),
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TAR DNA-binding protein (TARDBP), and dynactin 1
(DCTN1) [1]. In addition, sporadic ALS (sALS), which
accounts for the majority of ALS cases, is characterized
by a toxic gain-of-function [1]. Mutations in SOD1 are
responsible for 10-20% of fALS cases and have been
used to generate an ALS-like animal model [2]. Mice ex-
pressing human SOD1 (hSOD1) recapitulate the paraly-
sis observed in ALS patients. Although a number of
pathogenic mechanisms underlying ALS have been re-
ported, including oxidative stress, glutamate excitotoxi-
city, mitochondrial dysfunction, and protein aggregation
[3], the overall disease etiology remains unclear.
Neuroinflammation is a common pathological process
involved in many neurodegenerative diseases, including
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Alzheimer’s disease (AD), Parkinson’s disease (PD), and
ALS [4]. Under physiological conditions, the inflam-
matory processes that occur in microglial cells promote
innate immunity. However, under conditions of uncon-
trolled inflammatory stimulation, such as abnormal pro-
tein accumulation or stress, activated microglial cells
and astrocytes increase the production of neurotoxic fac-
tors that induce neurodegenerative pathology. Several
studies have demonstrated that the neuroinflammation
caused by activated microglial cells is the hallmark
pathological feature of ALS in animals and human pa-
tients [5-7]. Therefore, research has targeted therapeutic
interventions that can ameliorate the effects of neuroin-
flammation to reduce motor neuron loss and disease se-
verity in animal models of ALS.

The centipede, Scolopendra subspinipes mutilans (SSM),
is utilized in traditional Chinese and Korean medicine for
the treatment of a variety of diseases, such as cancer,
stroke-induced hemiplegia, apoplexy, and epilepsy [8,9].
Several studies have demonstrated that water-soluble SSM
extracts decrease tumors and increase immune activity in
tumor-bearing mice [10-12]. Kim et al. reported that SSM
treatment produces a significant increase in antibiotic ac-
tivity against infections of the lung and intestines [13].
However, to date, the role of SSM therapy for neurode-
generative diseases has not been investigated. Our study
assessed the effects of SSM treatment at the ST36 acu-
point in hSOD1%%** transgenic mice, an animal model
of ALS.

We found that SSM treatment attenuated the loss of
motor neurons and reduced neuroinflammation in the
brainstem and spinal cord of symptomatic hSOD1%%4
transgenic mice, in addition to reducing oxidative stress in
these structures. Based on these findings, we suggest that
the administration of SSM may be helpful in reducing the
severity of inflammation in neurodegenerative diseases.

Materials and methods

Materials

SSM were purchased from the Korean Pharmacoacu-
puncture Institute (Seoul, Korea). Cresyl violet acetate
was obtained from Sigma (St. Louis, MO) and diluted
with saline. Fluoro-Jade B was purchased from Chemi-
con (Temecula, CA, USA). An avidin-biotin peroxidase
complex (ABC) kit, 3, 3'-diaminobenzidine tetrahydro-
chloride (DAB), and mounting medium for performing
fluorescence analysis with DAPI were procured from
Vector Laboratories (Burlingame, CA, USA). Alexa Fluor
488 goat anti-rabbit IgG (H+ L) was purchased from
Invitrogen (Carlsbad, CA, USA). Bovine serum albumin
(BSA) was procured from Gendepot (Barker, TX, USA).
The primary antibodies employed for Western blotting
and immunohistochemistry were as follows: anti-Iba-1
(diluted 1:1,000, Wako, Japan), anti-GFAP (diluted 1:3,000,
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Millipore Corp., MA, USA), anti-MAP2 (diluted 1:500,
Millipore Corp., MA, USA), anti-HO1 (diluted 1:1,000,
Abcam, MA, USA), anti-NQO1 (diluted 1:1,000, Santa
Cruz Biotechnology, CA, USA), anti-human SODI1
(diluted 1:2,000, Calbiochem, CA, USA), and anti-CD14
(diluted 1:500, BD Biosciences, CA, USA). Anti-a-tubulin
(diluted 1:5,000, Abcam, MA, USA) was used as a
loading control.

Animals

Hemizygous hSOD1%%** transgenic (Tg) mice were pur-
chased from the Jackson Laboratory (Bar Harbor, ME,
USA) and maintained as described previously [14]. All
mice were allowed access to water and food ad libitum
and were maintained at a constant temperature (21 + 3°C)
and humidity (50 + 10%) under a 12 h light/dark cycle
(light on from 07:00-19:00). In this experiment, the
hSOD1%** Tg mice were divided into two groups: Tg +
Saline (S), n = 12, and Tg + Scolopendra subspinipes muti-
lans (SSM), n = 12. A total of 24 animals were used. All
animals were handled in accordance with the animal care
guidelines of the United States National Institute of
Health and approved by the Institutional Animal Care and
Use Committees of of the Korea Institute of Oriental
Medicine.

Scolopendra subspinipes mutilans (SSM) treatment

SSM was purchased from the Korean Pharmacupuncture
Institute (Seoul, Korea). According to human acupoint
landmarks and a mouse anatomical reference guide [15],
the ST36 acupoint (Zusanli) is located 5 mm below and
lateral to the anterior tubercle of the tibia. In previous
studies, we demonstrated that the ST36 acupoint me-
diates anti-neuroinflammatory effects in the brain and
spinal cord of hSOD19%%4 transgenic mice [14,16]. SSM
(2.5 pt/g) was bilaterally injected (subcutaneously) at
ST36 three times per week for two weeks, beginning
when the mice were 98 days of age. The mice were then
killed at 113 days of age. Control animals (hSOD1%%*4)
were bilaterally injected (subcutaneously) with an equal
volume of saline at the ST36 acupoint.

Tissue preparation

At 113 days of age, all mice were anesthetized with an
intraperitoneal injection of pentobarbital and perfused
with phosphate-buffered saline (PBS). For immunohisto-
chemistry and immunofluorescence staining, the spinal
cord tissue was removed and fixed in 4% paraformalde-
hyde for three days at 4°C prior to embedding. Briefly,
the spinal cord was embedded in paraffin, and the pre-
pared tissues were transverse sectioned (5 um thick) and
mounted on glass slides. Before staining, the sections were
de-paraffinized in xylenes and rehydrated in a graded alco-
hol series, followed by dH,O.
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Nissl and Fluoro-Jade B (FJB) staining

Nissl staining was performed to evaluate general neu-
ronal morphology and to demonstrate the loss of Nissl
substance [17-19]; it was carried out as previously de-
scribed [20]. Briefly, following de-paraffinization, the
sections were allowed to dry in an oven and then stained
with 0.1% cresyl violet, dehydrated through a graded al-
cohol series (70%, 80%, 90%, and 100%), placed in xy-
lenes, and covered with a coverslip after the addition of
histomount media.

FJB staining using a novel fluorescent marker with a
high affinity for neuronal cells was conducted as previ-
ously described [21-23]. Briefly, de-paraffinized tissue was
transferred to a solution of 0.1% potassium permanganate
for 30 min, then rinsed with dH,O and transferred to a
0.05% FJB staining solution for 1 h in a darkroom. After
washing, the sections were placed on a slide warmer (ap-
proximately 37°C for 30 min) and subsequently examined
using a fluorescence microscope (Olympus Microscope
System BX51; Olympus, Tokyo, Japan).

For the quantification of Nissl and FJB staining, we
counted two sides of the anterior horn on every third sec-
tion between the L4 and L5 levels of spinal cord. Cells
were counted by a single person who was blinded to the
identity of the treatment groups using the NIH program
Image | (version 1.46j). The following criteria were used:
(1) neurons located in the anterior horn ventral to the line
tangential to the ventral tip of the central canal, (2) neu-
rons with a maximum diameter of 20 um or more, and (3)
neurons with a distinct nucleolus [18,24,25].

Immunohistochemistry and immunofluorescence staining
Following de-paraffinization, the slides were treated with
3% H,0, to inactivate endogenous peroxidases and then
blocked in 5% BSA in 0.01% PBS-Triton X-100 at room
temperature. The sections were then incubated with the
primary antibodies Iba-1 and GFAP overnight. The next
day, the sections were washed with PBS and incubated
in a 1:1,000 dilution of the primary matched-secondary
antibody for 2 h. For visualization, an ABC kit and a
DAB peroxidase substrate kit were used. Finally, the tis-
sue sections were counterstained with cresyl violet, a
Nissl stain, and coverslipped. Immunostained spinal cord
sections were observed with a light microscope.

For immunofluorescence analysis, similar to the im-
munohistochemistry staining, sections were blocked in
5% BSA, followed by overnight incubation with a MAP2
primary antibody in 2% BSA. After three washes, the
sections were incubated with a secondary antibody con-
jugated to FITC (1:1,000 dilution) for 2 h in the dark at
room temperature and then mounted on glass slides
using mounting medium with DAPI for fluorescence
analysis. The slides were examined using a fluorescence
microscope equipped with a filter cube designed for
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the visualization of FITC with green excitation light
(450-490 nm) and a barrier filter.

For the quantification of immunofluorescence, the in-
tensity of MAP2-positive cells were determined using
Image ] software. In each hSOD1%%** mouse, all of the
stained cells found within three spinal cord sections
were counted. In each group, staining was performed in
samples from six mice.

Western blotting

Western blotting was conducted as previously described
[26]. When the mice reached 113 days of age, their spinal
cords and brainstems were dissected and homogenized in
RIPA buffer (50 mM Tris—HCI, pH 7.4, 1% NP-40, 0.1%
SDS, and 150 mM NaCl) containing a protease inhibitor
cocktail. Following homogenization, a 20-ug sample of
protein was quantified via the BCA assay. The samples
were denatured with sodium dodecyl sulfate sampling buf-
fer and then separated through SDS-PAGE, followed by
transfer to a PVDF membrane. For the detection of target
proteins, the membranes were blocked with 5% non-fat
milk in TBS (50 mM Tris—HCI, pH 7.6, 150 mM NaCl)
and subsequently incubated overnight with various pri-
mary antibodies: anti-tubulin, anti-iba-1, anti-GFAP, anti-
CD14, anti-HO1, or anti-humanSODI1. The blots were
next probed with peroxidase-conjugated secondary antibo-
dies (Santa Cruz Biotechnology, CA, USA) and visualized
using enhanced chemiluminescence reagents (Amersham
Pharmacia, NJ, USA). Protein bands were detected with
the Fusion SL4-imaging system (Fusion, Eberhardzell,
Germany). Quantification of the immunoblotting bands
was conducted with the NIH program Image J.

Statistical analysis

All data were analyzed using GraphPad Prism 5.0
(GraphPad Software, CA, USA) and are presented as
the mean + SEM, where indicated. The results of im-
munohistochemistry and Western blot were analyzed
using an unpaired ¢-test to compare the significance
of the differences between the SSM and saline treatment
at the ST36 acupoint in the ALS SOD1 transgenic mice.
Statistical significance was set at P < 0.05 level.

Results

SSM treatment attenuates the loss of motor neurons in the
spinal cord of symptomatic hSOD1%%*” transgenic mice

To determine whether SSM treatment affects neuronal
loss in the spinal cord of symptomatic hSOD1%%*# trans-
genic mice, we performed a histochemical assessment of
lumbar spinal cord sections in SSM- and saline-treated
mice. As shown in Figure 1A-B, we demonstrated via Nissl
staining that the administration of SSM attenuated motor
neuron loss in the ventral horn of L4-L5 segments of the
spinal cord by 3.4-fold. To confirm the reduction of motor
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Figure 1 SSM treatment increases motor neuron survival in hSOD1%%** mice. SSM (2.5 p2/g) was administered bilaterally at acupoint ST36
three times per week for two weeks. Photomicrographs of Nissl (A) and FJB (C) staining of the lumbar spinal cord. Each right-hand column
depicts a magnified image of the rectangular region of the corresponding image in the left column. The numbers of viable motor neurons (B)
and degenerating FJB-positive glial cells (D) were counted, as described in the magnified spinal cord column. (E) Photomicrographs of MAP2
staining of the lumbar spinal cord. Each right-hand column depicts a magnified image of the rectangular region of the corresponding image in
the left column. (F) Quantitative analysis of MAP2-positive cells each magnified column. Control (Sal) animals were bilaterally injected with an
equivalent volume of saline at the ST36 acupoint. The data are presented as the means + SEM (N = 6 animals/genotype). Statistical significance
was assessed via t-test. ***P < 0,001 compared to the saline-treated group. Magnification: 100x. Bar = 500 um. Sal: saline-treated hSOD1%** mice,
SSM: Scolopendra subspinipes mutilans (SSM)-treated hSOD1%** mice.
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neuron loss induced by SSM treatment, we quantified the
number of degenerated neurons through FB-] staining. As
shown in Figure 1C-D, compared to age-matched control
mice, the number of degenerated neurons in the ventral
horn of the spinal cord was reduced by 4.6-fold in SSM-
treated hSOD1%%** transgenic mice. In addition, using an
MAP?2 antibody, we observed that neuronal cells were in-
creased by 1.2-fold in the spinal cord of SSM-treated
hSOD1%%*A mice compared to the saline-treated control
mice (Figure 1E-F).

SSM treatment reduces the numbers of microglial cells
and astrocytes in the brainstems and spinal cords of
symptomatic hSOD1%%3# transgenic mice
Neuroinflammation caused by activated microglial cells
and astrocytes is the hallmark pathological feature of
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ALS in animals and patients [5-7,27,28]. To investigate
the effects of SSM treatment on microglial cells and as-
trocytes in the spinal cords and brainstems of symp-
tomatic hSOD1%%** transgenic mice, we examined the
expression of Iba-1 to visualize microglial cells and the
expression of GFAP to visualize astrocytes in the brain-
stems and spinal cords of SSM-treated hSOD1%%** trans-
genic mice and age-matched control mice. As shown in
Figure 2A, SSM administration markedly reduced the
massive activation of microglial cells (Iba-1-positive cells)
and astrocytes (GFAP-stained cells) observed in the ven-
tral horn of the lumbar spinal cord. In addition, biochem-
ical analysis confirmed that the expression of Iba-1 was
significantly reduced by 3.3- and 2.1-fold in the brainstem
and spinal cord, respectively, compared to control mice
(Figure 2C-D). Through Western blotting (Figure 2C- D),
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Figure 2 SSM treatment reduces the expression of Iba-1 and GFAP in 113-day-old hSOD1%93*
Iba-1 (A) and GFAP (B) staining in the lumbar spinal cord. Each column on the right depicts a magnified image of the rectangular region of the
corresponding image in the left column. (C) Representative Western blot showing the activation of microglia using an Iba-1 antibody and the
detection of astrocytes with a GFAP antibody in the brainstems and spinal cords of hSOD
Iba1/tubulin and GFAP/tubulin, respectively. The data are presented as the means + SEM (N = 6 animals/genotype). Statistical significance was
assessed via t-test. **P < 0.01 compared to the saline-treated group. SSM: Scolopendra subspinipes mutilans, BS: brainstem, SP: spinal cord.
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mice. Representative photomicrographs of

1993 mice. (D) Quantitative analysis of the levels of
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we found that, compared to age-matched control 1.4-fold in the spinal cord of symptomatic hSOD1%%%*

mice, the level of GFAP expression was decreased by 1.5-  transgenic mice.
and 1.2-fold in the brainstems and spinal cords,
respectively, of SSM-treated hSOD19%** transgenic  Discussion

mice. In this study, we provided evidence that the adminis-
tration an SSM extract attenuates neuroinflammation in

SSM treatment decreases inflammation and oxidative symptomatic hSOD1%%** transgenic mice. SSM treat-

stress in the brainstems and spinal cords of symptomatic ment significantly reduced the numbers of microglial

hSOD1%9* transgenic mice cells and astrocytes and the loss of degenerated neurons

To confirm the anti-neuroinflammatory effects of in the spinal cords of hSOD1%%** transgenic mice.

SSM treatment in the brainstems and spinal cords of ALS is an adult-onset motor neuron disease caused

hSOD1%%** transgenic mice, we examined the expression by mutations in the genes encoding Cu/Zn superoxide
of CD14, a component of the innate immune system. As  dismutase (SOD1), alsin, senataxin, (FUS), vesicle-
shown in Figure 3A, the expression of CD14 was reduced  associated membrane protein-associated protein B
by 2.3- and 2.7-fold in the brainstems and spinal cords, re-  (VAPB), TAR DNA-binding protein (TARDBP), and
spectively, of SSM-treated hSOD1%%*A mice. Furthermore, dynactin 1 (DCTN1) [3]. Specifically, transgenic mice
we found that the administration of SSM reduced the ex-  bearing a mutant form of human SOD1 have been used to
pression of the HO1 protein by 1.6- and 1.8-fold in the determine the pathological mechanisms of ALS and to
brainstem and spinal cord, respectively. To confirm the ef-  identify effective therapies for ALS patients. Familial ALS
fect of SSM on oxidative stress, we examined the expres-  (fALS), caused by inherited gene mutations, accounts for
sion of NAD(P)H dehydrogenase (quinone 1) (NQO1) in  approximately 5-10% of all ALS cases, whereas sporadic
the brainstem and spinal cord of hSOD19%*# transgenic ~ ALS (sALS), which does not display a genetic component,
mice. SSM treatment reduced the expression of NQO1 by  accounts for the majority of ALS cases. Although several
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Figure 3 SSM treatment regulates the expression of CD14, HO1, and NQOT1 in the brainstems and spinal cords of hSOD1%%** mice.
(A) Representative Western blot showing the expression of CD14, HO1, and NQOT1 in the brainstem and spinal cord following the administration
of SSM. (B) Quantification of the level of CD14/tubulin, HO1/tubulin, and NQO1/tubulin. The data are presented as the means + SEM (N = 4
animals/genotype). Statistical significance was assessed via t-test. ***P < 0,001, **P < 0.01, and *P < 0.05 compared to the non-treated group.
BS: brainstem, SP: spinal cord.
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pathological mechanisms involved in ALS, such as neuro-
inflammation, oxidative stress, mitochondrial dysfunction,
and glutamate excitotoxicity, have been reported [3], it re-
mains unclear how to develop therapies for the treatment
of both fALS and sALS patients. SSM contains many types
of proteins, 5-hydroxytryptamine, histamines, lipids, poly-
saccharides, and various enzymes (e.g., proteinases and
estrases) and has been used to treat various diseases,
including cancer, stroke, and epilepsy in Chinese and
Korean traditional medicine [8,9,29,30]. SSM treatment
has been reported to have many biochemical and physio-
logical effects [8,31]. Especially, Ren et al. [32] have shown
the antiinflammatory effects of SSM in Alzheimer’s di-
sease. In the present study, we showed that SSM adminis-
tration attenuated the loss of motor neurons in the ventral
horn of the spinal cord in symptomatic hSOD1%%** trans-
genic mice (Figure 1). In addition, we found that SSM
treatment significantly reduced the degeneration of neu-
ronal cells in the lumbar spinal cord (Figure 1B), sugges-
ting that the administration of SSM could be a useful
therapy for neurodegenerative diseases.

The nervous system consists of neurons and glial cells,
including astrocytes and microglia. Microglia are the
resident immune cells of the nervous system and pro-
vide protection against infection. However, microglial
cells become activated in neurodegenerative disorders
and are involved in neuroinflammation, leading to neu-
ronal cell death. Astrocytes contribute to homeostasis by
providing energy and substances required for neuro-
transmission in the brain. In addition, glia play a role in
promoting neuronal survival by forming a network be-
tween neurons and astrocytes. However, activated astro-
cytes react to various pathological events by releasing
toxic factors and developing excitotoxicity, which kills
motor neurons in individuals with ALS [33,34]. Neuro-
degenerative disorders such as AD, PD, and ALS are
caused by neuroinflammation. In both ALS patients and
animal models of ALS, microglia and astrocytes are
highly activated when motor neuron loss occurs [35,36].
Yamanaka et al. have demonstrated that expression of
the hSOD1 mutation in astrocytes induces motor neu-
ron death and increases the severity of diseases involving
microglial activation [36]. Therefore, we examined whe-
ther SSM treatment affects neuroinflammation in the
brainstems and spinal cords of symptomatic ALS ani-
mals. First, we confirmed the loss of neurons through
Nissl and FBJ staining and then measured neuronal cells
via MAP2 labeling in the spinal cords of ALS mice
(Figure 1). SSM treatment reduced neuronal death in
the ventral horn of the lumbar spinal cord in hSOD15%4
transgenic mice (Figure 1). In addition, we found that
SSM administration decreased the activation of microglia
and astrocytes in the brainstems and spinal cords of mu-
tant hSOD1 mice (Figure 2). Furthermore, we confirmed
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that the level of inflammation-induced CD14 in the brain-
stem and spinal cord of mutant hSOD1 mice was mark-
edly reduced by the administration of SSM (Figure 3).
Although the exact mechanisms underlying the effects of
SSM treatment in ALS animals have yet to be elucidated,
this study suggests that SSM treatment could help to at-
tenuate the neuroinflammation associated with ALS.

The exploitation of antiinflammatory agents is a widely
studied topic in neurodegenerative disease research. The
results of the present study contribute to clarifying the
mechanisms underlying the antiinflammatory effects of
SSM in relation to the effective treatment of neurode-
generative diseases. However, additional studies are ne-
cessary to identify the bioactive components of this
centipede that are responsible for its antiinflammatory
effects. In addition, the effects of SSM on motor func-
tion and the survival of hSOD1%** transgenic mice
should be examined in future studies.

Oxidative mechanisms have been implicated in a num-
ber of pathological states affecting both the central and
peripheral nervous systems. Oxidative stress has also
been implicated in the pathology of some neurodegene-
rative disorders. Several studies have revealed increases
in oxidative stress, including elevated carbonyl levels,
3-nitrotyrosine levels, and lipid oxidation, in ALS cases
[37-39]. Oxidative stress mediates other pathological
mechanisms, such as glutamate excitotoxicity, ROS pro-
duction, and mSOD1 aggregation in ALS [3]. An indu-
cible isoform of hemeoxygenase 1 (HO1) and NAD(P)H
dehydrogenase (quinone 1) (NQOI1) are expressed as a
response to stress, including oxidative stress, as are cyto-
kines [40-42]. To determine the effect of SSM on oxida-
tive stress in ALS animals, we examined the expression
level of HO1 and NQOI1 in the brainstems and spinal
cords of saline- and SSM-treated hSOD1%%** mice. Com-
pared to age-matched control mice, we found that SSM
treatment significantly reduced the expression of HO1 and
NQOI1 in the spinal cords of symptomatic hSOD1%%**
transgenic mice (Figure 3), suggesting that the antiinflam-
matory effect of SSM may occur through the reduction of
oxidative stress in the brainstems and spinal cords of
hSOD19%* transgenic mice. Therefore, to develop ef-
fective ALS therapies in the future, it will be necessary
to determine whether SSM can penetrate the CNS.

Conclusions

SSM treatment at acupoint ST36 reduced the neuroin-
flammation and HO1 and NQO1 expression induced by
oxidative stress in the ventral horn of the spinal cord of
symptomatic hSOD1%%** transgenic mice. Furthermore,
motor neuron loss in the spinal cord was attenuated by
SSM administration. Based on these findings, we suggest
that SSM treatment could be useful as an anti-neuroin-
flammatory therapy for neurodegenerative diseases.
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