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Involvement of NT3 and P75NTR in photoreceptor
degeneration following selective Müller cell
ablation
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Abstract

Background: Neurotrophins can regulate opposing functions that result in cell survival or apoptosis, depending on
which form of the protein is secreted and which receptor and signaling pathway is activated. We have recently
developed a transgenic model in which inducible and patchy Müller cell ablation leads to photoreceptor degeneration.
This study aimed to examine the roles of mature neurotrophin-3 (NT3), pro-NT3 and p75 neurotrophin receptor
(P75NTR) in photoreceptor degeneration in this model.

Methods: Transgenic mice received tamoxifen to induce Müller cell ablation. Changes in the status of Müller and
microglia cells as well as expression of mature NT3, pro-NT3 and P75NTR were examined by immunohistochemistry and
Western blot analysis. Recombinant mature NT3 and an antibody neutralizing 75NTR were injected intravitreally 3 and
6 days after Müller cell ablation to examine their effects on photoreceptor degeneration and microglial activation.

Results: We found that patchy loss of Müller cells was associated with activation of surviving Müller cells and
microglial cells, concurrently with reduced expression of mature NT3 and upregulation of pro-NT3 and P75NTR.
Intravitreal injection of mature NT3 and a neutralizing antibody to P75NTR, either alone or in combination,
attenuated photoreceptor degeneration and the beneficial effect was associated with inhibition of microglial
activation.

Conclusions: Our data suggest that Müller cell ablation alters the balance between the protective and deleterious
effects of mature NT3 and pro-NT3. Modulation of the neuroprotective action of mature NT3 and pro-apoptotic
pro-NT3/P75NTR signaling may represent a novel pharmacological strategy for photoreceptor protection in retinal
disease.
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Background
Neurotrophins are a family of neurotrophic factors in-
cluding at least four neurotrophins: nerve growth factor
(NGF), brain-derived neurotrophic factor (BDNF), and
neurotrophins (NT)-3 and-4 [1]. They are synthesized as
precursors that can be either cleaved intracellularly or
secreted uncleaved as pro-neurotrophins. Neurotrophins
bind to two distinct types of receptors, the Trk receptor
tyrosine kinase family and the p75 neurotrophin re-
ceptor (p75NTR) [1,2]. In the retina, NGF preferentially
binds TrkA, which is almost exclusively expressed by
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ganglion cells. BDNF and NT4 preferentially bind TrkB,
which is widely expressed by ganglion, horizontal, dopa-
minergic amacrine and Müller cells. NT3 preferentially
binds TrkC that is expressed by photoreceptors and
Müller cells. Trk receptors preferentially respond to ma-
ture neurotrophins promoting neuronal survival, diffe-
rentiation and synaptic function [1,2]. The expression of
p75NTR is almost exclusively confined to Müller cells in
the retina [2-4]. In contrast to mature neurotrophins,
pro-neurotrophins exert their apoptotic effect via a re-
ceptor complex containing p75NTR and sortilin [2,5].
Thus, neurotrophins can regulate opposing cellular func-
tions that result in cell survival or apoptosis, depending
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on which form of the protein is secreted and which re-
ceptor and signaling pathway is activated.
Many different types of insult can potently induce pro-

neutrophins and p75NTR. Accumulation of pro-NGF and
upregulation of p75NTR have been found to be positively
correlated with accelerated retinal neurodegeneration in
diabetes [6-8]. Upregulation of p75NTR has been observed
during light-induced photoreceptor degeneration [2], ocu-
lar hypertension [9], ischemic injury [10] and optic nerve
axotomy [3,11]. Genetic ablation of p75NTR or bioche-
mical blockage of p75NTR activation attenuates neuronal
death induced by pro-neurotrophins [2,5]. Binding of pro-
NGF to p75NTR has been reported to induce robust
expression of neurotoxic factors, suggesting that ligand
activation of p75NTR in Müller cells may activate neuro-
toxic pathways through a paracrine mechanism that ne-
gates the protective effect of mature neurotrophins [3,12].
Notably, previous studies indicate that NGF and BDNF
can be secreted as pro-forms in the retina under patho-
logical conditions [2,4,13,14]. However, the involvement of
pathological pro-NT3/P75NTR signaling in photoreceptor
degeneration remains to be elucidated.
Progressive dysfunction and death of photoreceptors is

the major cause of loss of vision in most retinal diseases.
There is increasing evidence that Müller cells are im-
portant for photoreceptor health [15,16]. We recently
generated an transgenic model using a portion of the
regulatory region of the retinaldehyde binding protein 1
(Rlbp1) gene as a cell-specific promoter along with a
CreER/Lox-P approach for inducible Müller cell-specific
gene targeting [17]. These Rlbp1-CreER transgenic mice
were crossed with Rosa-DTA176 mice, a transgenic line
carrying an attenuated form of the diphtheria toxin frag-
ment A (DTA176) gene, for Müller cell ablation follo-
wing tamoxifen induction [17]. Selective Müller cell
ablation in adult mice led to photoreceptor degene-
ration, blood-retinal barrier breakdown and deep retinal
neovascularisation [17]. These changes are common,
critical features of many retinal diseases such as macular
telangiectasia [18-20], age-related macular degeneration
[21,22], diabetic retinopathy [23,24] and ischemic reti-
nopathy [25]. In this study, we have utilized this unique
transgenic model to examine the roles of abnormal
expression of mature NT3, pro-NT3 and P75NTR in the
photoreceptor degeneration after selective Müller cell
ablation.

Methods
Conditional Müller cell ablation in transgenic mice
Animal studies were performed in accordance with the
Association for Research in Vision and Ophthalmology
statement and were approved by The University of Sydney
Animal Ethics Committee. Rlbp1-CreER mice were
crossed with Rosa-DTA176 mice to produce Rlbp-CreER-
DTA176 transgenic mice, which were used for condi-
tional, selective Müller cell ablation as we have previously
described [17]. Animals were screened by PCR to identify
those carrying both Rlbp1 and DTA176 genes. Selective
Müller cell ablation in transgenic mice was induced by
daily intraperitoneal injection of tamoxifen (TMX, 3 mg
in 0.2 ml sunflower oil) for 4 consecutive days at
6–8 weeks of age [17]. Mice not carrying the Rlbp1 Müller
cell-specific promoter but carrying the DTA176 gene were
used as controls in this study.

Cryosection and flat-mount immunohistochemistry (IHC)
Eyes were briefly fixed in 4% paraformaldehyde for
5 min, and then anterior segments were removed. After
post-fixation in 4% paraformaldehyde for 1 h, eye cups
were either transferred to PBS containing 30% sucrose
and then embedded in optimal cutting temperature
compound for cryosection IHC or placed in PBS for reti-
nal flat-mount IHC. For cryosection IHC, frozen sec-
tions were blocked with 5% normal goat serum and
incubated with an antibody (Ab) to glutamine synthetase
(GS, mouse monoclonal, 1:100; Millipore no. MAB302),
glial fibrillary acidic protein (GFAP, rabbit polyclonal,
1:250; Dako no. Z0334), P75NTR (rabbit polyclonal, 1:250;
a gift from Dr. Moses V. Chao, New York University,
School of Medicine; no. 9651) and ionized calcium bin-
ding adaptor molecule 1 (Iba-1, rabbit polyclonal, 1:500,
Wako no. 019–19741). Bound antibodies were detected
with Alexa Fluor 488 or 594-conjugated goat or donkey
secondary antibodies (1:1,000; Invitrogen).
For flat-mount staining, dissected eye cups were fixed in

4% paraformaldehyde for 1 h and then placed in PBS
at +4°C overnight. On the next day, retinas were isolated,
rinsed in PBS and permeabilized with 1% Triton-X-100
containing 5% normal goat serum blocking solution for
2 h. Retinas were incubated in 100 μl of solution contai-
ning peanut-agglutinin (PNA) conjugated with Alexa
Fluor 488 or 594 (10 μg/ml, Invitrogen, no. L-21409 and
L-32459) to label cone photoreceptor outer segments and
an Ab against Iba1 (1:500, Wako no. 019–19741) for reti-
nal microglia in 0.1 M PBS with 1% BSA and 0.5% Triton
X-100 overnight at +4°C. Retinal whole-mounts were
counterstained with Hoechst for 5 min before mounting
onto slides for confocal laser scanning microscopy. Images
were processed and analyzed using computer-based image
analysis software to determine the percentage of PNA- or
Iba-1 stained area per field of view as described previously
[17,26]. In brief, a gradient detection algorithm was ap-
plied to the original digital image and binary thresholding
performed on the gradient image by selecting its mean
gray value as the threshold. This procedure allowed suf-
ficient identification of the subject profiles to calculate
the percentages of PNA- or Iba-1-stained area per field
of view.
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Intravitreal injection of mature NT3 and an antibody
against P75NTR

Intravitreal injection was performed using a 32-gauge
needle attached to a Hamilton syringe as we have
previously described [17]. Intravitreal injections were per-
formed in transgenic mice 3 and 6 days after TMX-
induced Müller cell ablation, with one eye receiving 2 μl
of testing reagent and the other eye receiving 2 μl of BSS
as a control in each mouse. Doses injected were: (1) NT3,
0.4 μg (R&D Systems, catalog no. 267N3/CF); (2) P75NTR

rabbit polyclonal Ab (no. 9651, 1:1 dilution, a gift from
Dr. Moses V. Chao); (3) 0.4 μg NT3 + 1:1 dilution of P75
Ab. Injected eyes were enucleated 10 days after TMX-
induced Müller cell ablation for retinal whole-mount
staining to examine changes in cone photoreceptor outer
segments and microglial activation as described above.

Western blot
For Western blot, proteins were extracted from retinas
and their concentrations determined by DC protein assay.
Equal amounts of protein were subjected to SDS-poly-
acrylamide gel electrophoresis then transferred to a PVDF
membrane for Western blot. Membranes were probed
with antibodies to GS (mouse monoclonal, 1:1,000; Mil-
lipore, no. MAB302), GFAP (mouse monoclonal, 1:5,000;
Neomarker, no. MS-280-P), P75NTR (rabbit polyclonal, a
gift from Dr. Moses V. Chao, no. 9651), NT3 (rabbit poly-
clonal, 1:1,000, Alomone Laboratory, no. ANT-003), pro-
NT3 (rabbit polyclonal, 1:500, Alomone Laboratory, no.
ANT-012) and rhodopsin (mouse monoclonal, 1:500,
Millipore no. MAB5356), guanine nucleotide-binding pro-
tein subunit alpha-1 (GNAT1, rabbit polyclonal, 1:500,
Santa Cruz no. sc-389) and Gα protein transducin (Gαt,
mouse monoclonal, 1:2,000, BD Transduction Labora-
tories no. 610589). After incubation with secondary anti-
bodies conjugated with horseradish peroxidase, protein
bands were visualized using the G:Box BioImaging sys-
tems and quantified using the GeneTools image scanning
and analysis package. Protein expression was normalized
to α-/β-tubulin (rabbit polyclonal, 1:2,000; Cell Signaling
no. 2148), which serves as a loading control.

Statistics
Results are expressed as mean ± SEM. Data were analyzed
using paired or un-paired t-test with a p value <0.05
accepted as statistically significant.

Results
Patchy loss of Müller cells was accompanied by activation
of surviving Müller cells
We have previously shown patchy loss of Müller cells in
Rlbp1-CreER-DTA176 transgenic mice, which can be
observed as early as 1 day and becomes stable 14 days
after induction with TMX [17]. We performed double-
label IHC for GS and GFAP to examine the status of
surviving Müller cells after selective Müller cell ablation
(Figure 1A-D). In the control retina, strong GS immuno-
reactivity was observed across the neuroretina from the
inner limiting membrane to the outer limiting mem-
brane, with cell bodies localized to the inner nuclear
layer, while GFAP expression was only observed in cells
around the inner limiting membrane and in the outer
plexiform layer (Figure 1A). In transgenic mice, reactive
activation of surviving Müller cells was observed as early
as 1 day after TMX treatment (Figure 1B), became more
profound from 7 days (Figure 1C) and lasted for at least
3 months (Figure 1D) after TMX-induced Müller cell
ablation. Western blot analysis demonstrated significant
reduction in GS expression and upregulation of GFAP
7d after Müller cell ablation (Figure 1E and F). Thus,
patchy loss of Müller cells induces reactive activation of
surviving Müller cells in this model.
Upregulation of P75NTR in transgenic retinas after
selective Müller cell ablation
As P75NTR is predominantly expressed in Müller cells in
the retina [2-4], we next examined whether these activated
Müller cells overexpress P75NTR. Müller cells in the con-
trol retina expressed P75NTR weakly (Figure 2A-C). By
contrast, patchy loss of Müller cells was accompanied by
strong immunostaining for P75NTR in surviving Müller
cells 7 and 14 days after Müller cell ablation (Figure 2D-I).
Western blot results showed significant upregulation of
P75NTR and GFAP in transgenic mice 7 and 14 days after
TMX treatment (Figure 2J and K). These results indicate
that activated Müller cells overexpress P75NTR.
Differential expression of mature NT3, pro-NT3, rod and
cone phototransduction proteins
We next examined changes in mature NT3, pro-NT3,
rod and cone phototransduction proteins after Müller
cell ablation (Figure 3). Western blots were performed
on retinal lysates using antibodies to detect mature
NT3, pro-NT3, rhodopsin, guanine nucleotide-binding
protein subunit alpha-1 (GNAT1) and Gα protein trans-
ducin (Gαt) 7 days after Müller cell ablation (Figure 3A
and F). GNAT1 and Gαt are proteins essential for rod
and cone phototransduction [27-29]. Quantitative ana-
lysis of protein densitometry revealed significant reduc-
tion in mature NT3 and upregulation of pro-NT3,
which resulted in a decreased ratio of NT3:pro-NT3
(Figure 3A-D). The differential expression of mature
NT3 and pro-NT3 was accompanied by significant re-
duction in rhodopsin (Figure 3E), GNAT1 (Figure 3G)
and Gαt (Figure 3H) in TG mice, indicating that selec-
tive Müller cell ablation causes damage to both rod and
cone photoreceptors.



Figure 1 Patchy loss of Müller cells was accompanied by reactive activation of surviving Müller cells after selective Müller cell ablation.
(A-D) Double-label immunostaining for GS (red, right column) and GFAP (green, middle column) in control (Ctl, A) and transgenic (TG, B-D) mice
1 day (1d), 7d and 3 months (3 m) after tamoxifen induction. Reactive activation of surviving Müller cells was observed as early as 1d (B) and
persisted for at least 3 m (D) after Müller cell ablation in TG mice. Small arrows in (C and D) point to areas of Müller cell loss, and large arrows
point to regions of broken outer limiting membrane (OLM). The arrowhead in (C) points to an area with Müller cell loss but the OLM at the
corresponding region seemed intact. GCL = ganglion cell layer, INL = inner nuclear layer, OPL = outer plexiform layer, ONL = outer nuclear layer.
(E-G) Western blots showed significant reduction of GS and upregulation of GFAP expression 7d after Müller cell ablation. N = 8 in each group.
Scale bars: A-D, 50 μm.
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Activation of retinal microglial cells after selective Müller
cell ablation
Microglia and Müller cells are prominent participants in
retinal responses to injury and diseases. There is evi-
dence that the interaction between activated microglia
and Müller cells can initiate a program of bidirectional
microglia-Müller cell signaling that augments initial
inflammatory responses to retinal injury [30]. We per-
formed cryosection IHC using an Ab against Iba1 to
examine microglial activation after Müller cell ablation
(Figure 4). In the control retina, resting microglia cells
were observed in the ganglion cell layer, inner plexiform
layer and, occasionally, in the outer plexiform layer
(Figure 4A). These resting microglia cells showed small
somas with thin and ramified cells processes. They were
predominantly confined to the inner retina but were
found in neither the outer nuclear layer nor in the sub-
retinal space (Figure 4A). Activation of microglia cells
was observed in transgenic mice as early as 1 day after
TMX-induced Müller cell ablation, as evidenced by
expansion of their soma size and thickening of their cell
processes (Figure 4B-F, arrows). Activated microglia cells
were observed in the subretinal space from 1 day and
frequently observed from 7 days after induced Müller
cell ablation (Figure 4B-F, arrowheads).
We further conducted double-label immunostaining

on retinal whole mounts to map microglial activation
with cone photoreceptor damage. Iba1 Ab was used to
identify microglial cells, and lectin PNA was used to
label cone photoreceptor outer segments (Figure 5). The



Figure 2 Upregulation of P75NTR in transgenic retinas after Müller cell ablation. (A-I) Double-label immunostaining for GS (A, D and G)
and P75NTR (B, E and H) in control (Ctl, A-C) and transgenic (TG, D-I) mice 7d and 14d after tamoxifen treatment. The retina of control mice
showed weak immunoreactivity of P75NTR (A-C). TG mice showed upregulation of P75NTR predominantly by surviving Müller cells 7d (D-F) and
14d (G-I) after TMX-induced Müller cell ablation. Small arrows in (D and G) point to regions of Müller cell loss, and large arrows in (G) indicate
defects in the outer limiting membrane following Müller cell ablation. GCL = ganglion cell layer, INL = inner nuclear layer, ONL = outer nuclear
layer. (J and K) Western blots showed significant upregulation of GFAP concomitantly with overexpression of P75NTR 7d and 14d after Müller cell
ablation in TG mice. †P < 0.05 and *P < 0.01, TG vs. control, N = 4–8 in each group. Scale bars: A-I, 50 μm.
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control retina showed dense staining for PNA but lack
of microglial infiltration at the level of photoreceptor
outer segments (Figure 5A-C). In TG mice, most mi-
croglia retained slender cell processes, and PNA-staining
showed limited loss of cone photoreceptor outer seg-
ments with only a few photoreceptor nuclei protruding
into the subretinal space 7 days after induced Müller cell
ablation (Figure 5D-F). Pronounced activation of micro-
glial cells was evidenced by expansion of their soma size,
which was clearly observed 11 days after Muller cell ab-
lation (Figure 5G-I). Most microglia 11 days after Muller
cell ablation (Figure 5H) had larger soma than at day 7
(Figure 5E), which is reflected by the increased area
of microglial staining at day 11 compared with day 7
(Figure 5K) when the number of microglia seemed simi-
lar at both time points (Figure 5E and H). This was asso-
ciated with more loss of photoreceptor outer segments
at day 11 than at day 7 (Figure 5J).
Photoreceptor protection after intravitreal injection of
mature NT3 and P75NTR Ab
Since selective Müller cell ablation resulted in reduced
expression of mature NT3 and upregulation of pro-NT3
and P75NTR, we reasoned that intravitreal supplemen-
tation of exogenous mature NT3 and receptor blocking
of P75NTR might protect photoreceptors. We tested this
hypothesis by performing intravitreal injections of recom-
binant mature NT3 and a neutralizing Ab to P75NTR 3
and 6 days after TMX-induced Müller cell ablation.
Changes in cone photoreceptor outer segments were ana-
lyzed 4 days after the last intravitreal injection (Figure 6).
In control mice, intravitreal injection of NT3 in com-
bination with P75NTR Ab neither induced photoreceptor
outer segment loss nor caused microglial infiltration in
the subretinal space (Figure 6A and B). In TG mice, how-
ever, treatments with NT3 and P75NTR Ab, either alone
or in combination, reduced cone photoreceptor outer



Figure 3 Differential expression of mature NT3, pro-NT3, rod and cone phototransduction proteins 7d after Müller cell ablation. (A, F)
Western blots using antibodies to detect mature NT3, pro-NT3, rhodopsin, guanine nucleotide-binding protein subunit alpha-1 (GNAT1) and Gα
protein transducin (Gαt). GNAT1 and Gαt are proteins essential for rod and cone phototransduction [27-29]. (B-D) Quantitative analysis of protein
densitometry showed significant reduction in mature NT3 (B) and upregulation of pro-NT3 (C), which resulted in a decreased ratio of NT3:pro-NT3
(D) 7d after Müller cell ablation. (E, G, H) The reduced expression of rhodopsin (E), GNAT1 (G) and Gαt (H) in transgenic (TG) mice indicates that
selective Müller cell ablation causes damage to both rod and cone photoreceptors. *P < 0.05 and †P < 0.01, TG vs. control (Ctl), n = 8/group in
(B, D and E) and n = 11− 13/group in (C, G and H), respectively.
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segment loss and photoreceptor nuclei protrusion when
compared with eyes receiving BSS (Figure 6C-F). Quanti-
tative analysis of changes in PNA-stained cone photo-
receptor outer segments confirmed the beneficial effect of
NT3 and P75NTR Ab treatments on photoreceptor protec-
tion (Figure 6G).

Inhibition of microglia after intravitreal injection of
mature NT3 and P75NTR Ab
We next examined the extent of microglial activation after
intravitreal injection of mature NT3 and the P75NTR

neutralizing Ab. Consistent with our earlier findings that
severe photoreceptor damage was accompanied by
massive activation of microglia cells in this transgenic
model (Figures 4 and 5), marked activation of microglia
cells and loss of cone photoreceptor outer segments were
observed in eyes receiving BSS (Figure 7A-C). In contrast,
inhibition of microglial activation was observed in eyes
receiving NT3, P75 Ab or both (Figure 7D, G and J). The
extent of inhibition of microglial activation corresponded
well with the extent of photoreceptor protection in eyes
receiving of NT3, P75 Ab or the combined treatment
(Figure 7F, I and L). Quantitative analysis of Iba-1 staining
retinal whole mounts showed that intravitreal injection of
NT3 and P75NTR Ab, either alone or in combination, sig-
nificantly inhibited microglial activation (Figure 7M).

Discussion
We have demonstrated here that patchy loss of Müller
cells induced photoreceptor degeneration accompanied by
activation of surviving Müller cells and microglia in this
model. Photoreceptor degeneration was concomitant with



Figure 4 Microglial activation after selective Müller cell ablation. Immunohistochemistry was performed using an Ab against ionized
calcium-binding adaptor molecule 1 (Iba-1, green) for microglia and nuclei were counterstained with Hoechst (red) to reveal retinal structure.
(A) Control (Ctl) mice showing “resting” microglia cells in the ganglion cell layer (GCL), inner plexiform layer (IPL) and occasionally the outer
plexiform layer (OPL), but not in the outer nuclear layer (ONL) or the subretinal space (SP). (B-F) Activation of microglia cells was observed in
transgenic (TG) mice as early as 1 day (1d, B) after TMX-induced Müller cell ablation, as reflected by increased soma size and thickened cell
processes in the inner retina (B-F, arrows). Microglia cells were observed in the subretinal space from 1d and frequently seen from 7d after TMX
treatment (B-F, arrowheads). Note: protrusion of photoreceptor nuclei into the subretinal space in (D-F) and obvious thinning ONL in
(F) 3 months (3 m) after TMX-induced Müller cell ablation. Scale bars: A-F, 50 μm.
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reduced expression of mature NT3 and upregulation of
pro-NT3 and P75NTR. We then demonstrated that intra-
vitreal injection of mature NT3 and a neutralizing Ab to
P75NTR, either alone or in combination, attenuated pho-
toreceptor degeneration concurrently with inhibition of
microglial activation. Our results suggest that aberrant
expression of NT3, pro-NT3 and P75NTR is associated
with photoreceptor degeneration and that treatment with
mature NT3 together with inhibition of pro-NT3/P75NTR

signaling may represent a novel pharmacological strategy
for protecting photoreceptors in retinal disease.
The primary role of Müller cells in the healthy retina

is to maintain retinal homeostasis. The importance of
Müller cells for photoreceptor health is indicated by the
photoreceptor degeneration that developed after selec-
tive Müller cell ablation in our transgenic model [17].
We demonstrated that while TMX induction of DTA ex-
pression in Müller cells induced patches of Müller cell
loss, surviving Müller cells were reactively activated. Re-
active activation of Müller cells has been observed in
retinal damage caused by every conceivable insult, in-
cluding ischemia, trauma, degeneration, inflammation or
neuronal excitotoxicity [31-35]. Müller cell activation is
believed to be important for protection or repair of neu-
rons in the early stages of neuronal damage [32-35].
However, activated Müller cells may overreact to the
primary events and mediate secondary injury through
generation of neurotoxic substances such as inflam-
matory mediators, free radicals, lipid peroxidation, in-
creased levels of extracellular calcium and release of
excitatory amino acids [3,12,15,36,37].
The role of p75NTR as an apoptotic receptor is impli-

cated in promoting apoptosis of neurons in the central
nervous system following various injuries [2,38-40]. The
involvement of p75NTR in photoreceptor cell death has
been previously reported in various animal models of
retinal degenerations [2,4,41,42]. In the present study,
we have particularly examined changes in P75NTR ex-
pression 7 and 14 days after TMX treatment because
these are the times at which the rate of photoreceptor
apoptosis peaks in this model [17]. Double-label IHC
showed strong immunoreactivity for P75NTR in surviving
Müller cells, and Western blot analysis showed signifi-
cant upregulation of P75NTR and GFAP at these two
time points. These findings suggest that activated Müller
cells overexpress P75NTR. There is evidence that activa-
tion of the pro-NGF/P75NTR signaling contributes to
retinal neuronal injury through a paracrine mechanism
in the retina [3,12]. It has been reported that activation
of the pro-NGF/P75NTR signaling induced robust ex-
pression of neurotoxic substances such as tumor necro-
sis factor alpha and α2 macroglobulin [3,12]. Whether



Figure 5 Mapping cone photoreceptor outer segment loss with infiltration of activated microglial cells after Müller cell ablation.
(A-I) Double labeling using peanut-agglutinin (PNA)-conjugated with Alexa Fluor-594 for cone photoreceptor outer segments (A, D and G, red)
and an Ab against ionized calcium binding adaptor molecule 1 (IBA-1) for microglia (B, E and H, green) on retinal whole mounts. (A-C) Images
from a control (Ctl) retina. (D-I) Images from transgenic (TG) mice 7 and 11 days after tamoxifen-induced Müller cell ablation. (C, F and I) Merged
images. Arrows in (F and I) point to areas of photoreceptor degeneration where degenerate cell bodies with nuclei stained blue protrude into
the subretinal space. (J and K) Quantitative analysis of changes in PNA-labeled cone photoreceptor outer segments (J) and infiltration of
activated microglial cells (K) 7 and 11 days after Müller cell ablation. *P < 0.01, TG vs. Ctl and †P < 0.01, 11d vs. 7d; unpaired t-test; n = 12–14 at
each time point. Scale bars in A-F: 100 μm.
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this also occurs in our transgenic model warrants further
investigation.
Photoreceptor cell injury in animal models of retinal de-

generations is often accompanied by microglial activation.
We found activated microglial cells in the subretinal space
as early as 1 and 3 days after TMX-induced Müller
cell ablation. Marked activation of microglial cells was
observed as photoreceptors were degenerating, and our



Figure 6 Intravitreal injection of recombinant NT3 and
blockage of P75NTR protected photoreceptor degeneration.
Intravitreal injection was performed in transgenic mice 3d and 6d after
tamoxifen induced Müller cell ablation, with one eye receiving the
testing reagent and the contralateral eye receiving balanced salt
solution (BSS). Doses of injection: (1) NT3, 0.4 μg; (2) P75NTR rabbit
polyclonal Ab (1:1 dilution) and (3) 0.4 μg NT3 + 1:1 dilution of P75NTR

Ab. Eyes were enucleated 10d after TMX treatment for flat-mount
staining using fluorescence-conjugated peanut-agglutinin (PNA).
(A and B) PNA-labeled cone photoreceptor outer segments (green)
and nuclear counterstaining in a control (Ctl) retina. (C-F) Images from
transgenic (TG) mice showing changes in cone photoreceptor outer
segments and protrusion of photoreceptor nuclei into the subretinal
space (red, indicated by asterisks) in eyes receiving BSS (C), NT3
(D), P75NTR Ab (E) and a combination of NT3 and P75NTR Ab (F).
(G) Quantitative analysis of PNA staining showed that intravitreal
injection of NT3 and P75 Ab protected the loss of cone photoreceptor
outer segments, with a combined treatment more effective than either
alone. N = 9 − 11/group. Scale bars in A-F: 100 μm.
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further analysis revealed a close association between
microglial infiltration in the subretinal space and loss of
photoreceptor outer segments. This close spatial relation-
ship between the activated microglial cells and photo-
receptor damage in this study suggests that microglial
cells might be involved in photoreceptor degeneration.
Microglial cells are the resident tissue macrophages and
primary immune cells of the central nervous system and
retina. Under basal conditions, “resting” microglia demon-
strate ramified morphologies and extend fine processes
through nearby neural parenchyma. Resting microglial
cells play key roles in housekeeping functions such as
pruning excess or dysfunctional synapses [43,44], dis-
tributing supportive growth factors to active neurons
[45] and regulating synaptic function [46,47]. However,
activated microglial cells phagocytose cell debris and
aggregated proteins while concurrently secreting toxic
compounds during injury in the central nervous system
[48]. Activated microglial cells are reported to secrete
cytotoxic factors including free oxygen intermediates,
proteases and excitatory amino acids, which may induce
neuronal degeneration [48-50]. Microglial cells also
secrete tumor necrosis factor-α [51,52], interleukin-1
[30,53,54] and the pro-forms of NGF, BDNF, NT3 and
NT4 [4]. It has been reported that microglia-derived
pro-NGF promotes photoreceptor cell death via activa-
tion of pro-NGF/P75NTR signaling [4]. Recent studies
indicate that activated microglia and Müller cells can in-
fluence each other to initiate a program of bidirectional
microglia-Müller cell signaling, thereby contributing to
the neuroinflammatory response and photoreceptor
death [30,55]. Therefore, it is conceivable that activated
Müller cells and microglia may contribute to photo-
receptor degeneration via release of neurotoxic com-
pounds in our transgenic mice. Our observations are



Figure 7 Inhibition of microglial activation after intravitreal
injection of recombinant mature NT3 and blockage of P75NTR.
Transgenic mice received twice intravitreal injections of NT3 (0.4 μg),
P75NTR rabbit polyclonal a polyclonal Ab to P75NTR (1:1 dilution), a
combination of both or balanced salt solution (BSS) 3d and 6d after
tamoxifen (TMX)-induced Muller cell ablation. Eyes were enucleated
10d after TMX treatment for retinal flat-mount staining using an Ab
against ionized calcium binding adaptor molecule 1 (IBA-1) for
microglia (A, D, G and J, green) and peanut-agglutinin (PNA)-conjugated
with Alexa Fluor-594 for cone photoreceptor outer segments (B, E, H
and K, red). (C, F, I and L) Merged images. (M) Quantitative analysis of
IBA-1 stained retinal whole mounts shows intravitreal injection of NT3
and P75NTR blockage, either alone or in combination, protected
photoreceptors concurrently with inhibition of microglial activation.
*P< 0.05 and †P< 0.01, all vs. BSS injected group, n= 9 − 11/group.
Scale bars in A-L: 100 μm.
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consistent with a previous study that reported that accu-
mulation of activated microglia in the outer retina occurred
concurrently with the wave of photoreceptor degeneration
in a mouse model of subretinal hemorrhage [56].
The photoreceptor degeneration after Müller cell abla-

tion could be due to either reduced NT3/TrkC signaling
or enhanced pro-neurotrophin/p75NTR signaling or both
[2,13,57]. It has been reported that Müller cells, RPE
cells and ganglion cells express mature NT3 [58-61] and
activated microglial cells express pro-NT3 [4]. As Muller
cells are the major source of neurotrophic factors such
as NT3 [60], basic fibroblast growth factor and ciliary
neurotrophic factor [62-64], loss of neurotrophic support
from Muller cells would affect the survival of photore-
ceptors. Our previous study showed that intravitreal
supplementation of ciliary neurotrophic factor attenuates
photoreceptor injury in this transgenic model [17]. In
the present study, we found that activation of microglial
and surviving Müller cells was concomitant with signi-
ficant overexpression of pro-NT3 and P75NTR and
reduction in mature NT3 after Müller cell ablation. We
hypothesized that supplementation with exogenous ma-
ture NT3 and inhibition of pro-neurotrophins/P75NTR

signaling would protect photoreceptors. We tested this
hypothesis by intravitreal injections of recombinant ma-
ture NT3 and a neutralizing Ab against P75NTR. Quanti-
tative analysis of PNA-stained cone photoreceptor outer
segments showed intravitreal injection of NT3 and
inhibition of P75NTR, either alone or in combination,
attenuated photoreceptor degeneration. These results
further confirm a potentially critical role of abnormal ex-
pression of NT3, pro-NT3 and P75NTR in photoreceptor
degeneration. Previous studies have shown that activa-
tion of pro-NGF/P75NTR signaling contributes to retinal
neuronal damage in animal models of glaucoma, retinal
degenerations and diabetes [2-4,6,8,9,65]. A recent study
reported that exogenous delivery of the NT-3 gene can
be neuroprotective in an animal model of focal cerebral
injury [66]. There is evidence that mature NT3 stimu-
lates Müller cells to produce bFGF, and this effect can
be blocked by a NT3 neutralizing Ab [2]. Dorrell et al.
have reported that targeted delivery of NT4 to activated
Müller cells protects retinas from neuronal degeneration
in Vldlr−/− mice [67]. To our knowledge, our study is
the first to show direct evidence that overexpressions of
pro-NT3 and P75NTR as well as downregulation of ma-
ture NT3 are associated with photoreceptor degene-
ration and that regulation of pro-NT3/P75NTR signaling
is effective in photoreceptor protection.
We also found that intravitreal injections of NT3 and

inhibition of P75NTR resulted in reduced microglial
activation when they were given individually or together.
In eyes receiving BSS injection, massive migration of
activated microglial cells was accompanied by loss of
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photoreceptor outer segments. A recent study indicated
that migration of activated microglial cells into the sub-
retinal space transforms the environment of the outer
retina from an immune-privileged zone into a highly
proinflammatory region, which, in turn, potentiates cel-
lular apoptosis and photoreceptor degeneration [56]. We
found that the degree of microglial inhibition appeared
to map well with the extent of photoreceptor protection
after intravitreal injection of mature NT3 and the
P75NTR Ab. Since microglial cells can be activated by
cell debris and aggregated proteins released from dam-
aged tissue, the inhibition of microglia that we observed
after treatment with mature NT3 might be due to a pro-
tective effect of NT3 on photoreceptors that would have
limited the extent of damage. For eyes receiving the
P75NTR neutralizing Ab, it is possible that blocking
P75NTR reduced the production of inflammatory cyto-
kines, chemotactic cytokines and adhesion molecules
from activated Müller cells, thus preventing microglial
activation and protecting photoreceptors [3,12,30,56,68].
The combined treatment by NT3 and P75NTR Ab is
likely to result in dual effects on neuroprotection and
microglial inhibition.

Conclusions
We have shown that patchy loss of Müller cells induces
photoreceptor degeneration, which is accompanied by ac-
tivation of surviving Müller cells and microglia. These
changes were associated with reduced expression of ma-
ture NT3 and upregulation of pro-NT3 and P75NTR. The
ability of intravitreal treatment with NT3 and the P75NTR

neutralizing Ab to protect photoreceptors and inhibit
microglial activation indicates that manipulation of
neuronal-Müller cell-microglial interactions may be a
novel strategy for neuroprotection in retinal disease.
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