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TNF-a promotes cerebral pericyte remodeling
in vitro, via a switch from al to a2 integrins
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Abstract

Background: There is increasing evidence to suggest that pericytes play a crucial role in regulating the remodeling
state of blood vessels. As cerebral pericytes are embedded within the extracellular matrix (ECM) of the vascular
basal lamina, it is important to understand how individual ECM components influence pericyte remodeling
behavior, and how cytokines regulate these events.

Methods: The influence of different vascular ECM substrates on cerebral pericyte behavior was examined in assays
of cell adhesion, migration, and proliferation. Pericyte expression of integrin receptors was examined by flow
cytometry. The influence of cytokines on pericyte functions and integrin expression was also examined, and the
role of specific integrins in mediating these effects was defined by function-blocking antibodies. Expression of
pericyte integrins within remodeling cerebral blood vessels was analyzed using dual immunofluorescence (IF) of
brain sections derived from the animal model of multiple sclerosis, experimental autoimmune encephalomyelitis
(EAE).

Results: Fibronectin and collagen | promoted pericyte proliferation and migration, but heparan sulfate
proteoglycan (HSPG) had an inhibitory influence on pericyte behavior. Flow cytometry showed that cerebral
pericytes express high levels of a5 integrin, and lower levels of al, a2, and a6 integrins. The pro-inflammatory
cytokine tumor necrosis factor (TNF)-a strongly promoted pericyte proliferation and migration, and concomitantly
induced a switch in pericyte integrins, from al to a2 integrin, the opposite to the switch seen when pericytes
differentiated. Inhibition studies showed that a2 integrin mediates pericyte adhesion to collagens, and significantly,
function blockade of a2 integrin abrogated the pro-modeling influence of TNF-a. Dual-IF on brain tissue with the
pericyte marker NG2 showed that while al integrin was expressed by pericytes in both stable and remodeling
vessels, pericyte expression of a2 integrin was strongly induced in remodeling vessels in EAE brain.

Conclusions: Our results suggest a model in which ECM constituents exert an important influence on pericyte
remodeling status. In this model, HSPG restricts pericyte remodeling in stable vessels, but during inflammation,
TNF-a triggers a switch in pericyte integrins from al to a2, thereby stimulating pericyte proliferation and migration
on collagen. These results thus define a fundamental molecular mechanism in which TNF-a stimulates pericyte
remodeling in an a2 integrin-dependent manner.
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Introduction

Pericytes are vascular mural cells that lie in close prox-
imity to endothelial cells of capillaries, arterioles, and ve-
nules [1,2]. Pericytes are regularly positioned along
cerebral microvessels, and ultrastructural studies have
shown that they are located within the abluminal vascu-
lar basal lamina that surrounds vessels [3]. Pericytes are
crucial regulators of vascular development, stability, and
remodeling [4], and increasing evidence suggests that
they also regulate capillary blood flow [5,6]. One area
currently attracting great interest is the role of pericytes
in vascular remodeling. The current view is that pericytes
act as central regulators of angiogenesis, through their
ability to stabilize or destabilize microvessels [7,8].
According to this view, pericytes promote vessel stability
by maintaining close adhesive contacts with both endothe-
lial cells and the underlying ECM, thus locking the vascu-
lar components into place. At an early stage of the
angiogenic program, pericytes undock from endothelial
cells, migrating within the ECM-rich basal lamina [9].
This leads to endothelial cells breaking connections, both
with each other and with the underlying basal lamina, in
order to migrate and proliferate, and to sprout new blood
vessels. Upon completion of endothelial remodeling,
pericytes migrate back to regain contact with endothelial
cells, thereby stabilizing newly formed vessels. This
important role for pericytes in vascular remodeling is best
illustrated by the finding that mutant mice lacking
platelet-derived growth factor beta (PDGE-B) or the
PDGE-P receptor fail to show efficient pericyte coverage
of blood vessels, resulting in perinatal lethality due to
leaky dysfunctional blood vessels [10,11].

The basal lamina of cerebral blood vessels comprises a
number of different ECM proteins and proteoglycans,
the precise make-up of which varies with the vessel-
maturation state. The basal lamina of mature vessels is
comprised of three major constituents: collagen IV,
laminins, and heparan sulfate proteoglycan (HSPG)
[12-14]. In addition, immature vessels of the developing
CNS and those undergoing remodeling in the adult CNS
also contain increased levels of fibronectin and vitronectin,
which are downregulated upon vessel maturation [15,16].
Broadly speaking, the ECM influences many aspects of cell
behavior, including cell proliferation, migration, differenti-
ation, and stabilization [17,18]. These effects are mediated
by the ECM receptors, integrins, which are expressed at
the cell surface as off heterodimers, of which the p1 class is
the major type [19,20]. In a number of studies, we have
highlighted a role for the remodeling protein fibronectin in
driving cerebral angiogenesis after cerebral hypoxia or is-
chemia. In these models, angiogenic cerebral vessels show
strong upregulation of fibronectin and the fibronectin
receptor, o5P1 integrin [21,22]. Furthermore, using
endothelial-specific deletion of the o5 integrin, we showed
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previously that a5B1 integrin plays an important role in
promoting endothelial cell proliferation at an early stage of
the angiogenic response [23].

As pericytes lie within the basal lamina ECM of cerebral
microvessels [3], it seems likely that pericytes also respond
to environmental cues provided by the ECM. Because lit-
tle is currently known about the influence of the ECM on
pericyte behavior, the aim of this study was to address the
following questions: 1) how is cerebral pericyte adhesion,
proliferation, and migration influenced by the different
ECM constituents present in the vascular basal lamina; 2)
which integrins do pericytes express; 3) how do cytokines
regulate pericyte remodeling state and expression of
integrins; and 4) are any of the identified integrins re-
quired for pericyte remodeling?

Materials and methods

Animals

The studies described were reviewed and approved by
the Scripps Research Institute (TSRI) Institutional Ani-
mal Care and Use Committee. All cell cultures were
obtained from C57Bl/6 mice, which were maintained
under pathogen-free conditions in the closed breeding
colony of TSRI.

Experimental autoimmune encephalomyelitis
Experimental autoimmune encephalomyelitis (EAE) was
induced using a commercial protocol and materials
(Hooke Laboratories, Lawrence, MA, USA). Briefly,
C57Bl/6 female mice, 8 to 10 weeks old, were immu-
nized with 100 pl of 1 mg/ml MOGs3 35 peptide emulsi-
fied in complete Freund’s adjuvant (CFA) containing 2
mg/ml Mycobacterium tuberculosis by subcutaneous in-
jection in both the base of the tail and upper back. In
addition, on days 0 and 1, mice also received an intra-
peritoneal injection of 200 ng pertussis toxin. Control
mice received CFA not containing the MOG peptide.
This protocol leads to robust induction of clinical EAE
on days 12 to 14 after immunization. Animals were
monitored daily for clinical signs and scored as follows:
0, no symptoms; 1, flaccid tail; 2, paresis of hind limb; 3,
paralysis of hind limbs; 4, quadriplegia; 5, death. At 21
days post-immunization, corresponding to the acute
symptomatic stage of disease, mice were euthanized by
intraperitoneal injection of sodium pentothal.

Cell culture

Pure cultures of mouse brain endothelial cells (BECs) or
pericytes were prepared as previously described [24,25].
Briefly, brains were removed from 8 week-old C57Bl/6
mice, minced, dissociated for 1 hour in papain and DNase
I, centrifuged through 22% BSA to remove myelin, and
endothelial cells cultured in endothelial cell growth media
(ECGM), consisting of Hams F12 supplemented with 10%



Tigges et al. Journal of Neuroinflammation 2013, 10:33
http://www.jneuroinflammation.com/content/10/1/33

EBS, heparin, ascorbic acid, L-glutamine, penicillin/
streptomycin (all from Sigma Chemical Co., St. Louis,
MO, USA) and endothelial cell growth supplement
(ECGS) (Upstate Cell Signaling Solutions, Lake Placid,
NY, USA), on six-well plates coated with type I collagen
(Sigma Chemical Co.). To obtain BECs, puromycin (4 pg/
ml; Alexis GmbH, Grunberg, Germany) was included in
the culture media on days 1 to 3 to remove contaminating
cell types. Endothelial cell purity was >99% as determined
by flow cytometry with CD31. For all experiments, BECs
were used only for the first passage.

Pericytes were obtained using the same approach, ex-
cept that the puromycin step was omitted. The pericyte
cultures were grown in ECGM, with the medium
changed every 3 days. On reaching confluency, cultures
were harvested with trypsin and passaged. During the
first two passages, pericyte cultures were grown in
ECGM, but on the third passage, they were switched to
pericyte medium (PCM; ScienCell Research Laborator-
ies, Carlsbad, CA, USA) containing 2% FBS. In previous
studies we found that, using this approach, cultures of
pericytes become highly purified after the third passage,
at which point these cultures are more than 99%
pericytes as determined by expression of the pericyte
marker NG2 and the PDGEF-f receptor, and contain less
than 1% of contaminating endothelial cells (CD31),
astrocytes (glial fibrillary acidic protein; GFAP), or
microglia (Mac-1), as determined by fluorescent im-
munocytochemistry [25]. All studies were performed on
pericytes at passages 4 to 8. Pericytes were expanded in
PCM containing 2% FBS, but all functional assays were
performed in serum-free DMEM containing N1 supple-
ment, L-glutamine, and penicillin/streptomycin (all from
Sigma Chemical Co.).

Cytokine treatment and antibodies

To investigate the influence of cytokines on pericyte be-
havior and expression of integrin subunits, pericytes
were cultured on collagen I in the presence of 20 ng/ml
basic fibroblast growth factor (bFGF; Invitrogen Corp.,
Carlsbad, CA, USA), 20 ng/ml platelet derived growth
factor (PDGEF-B) 2 ng/ml transforming growth factor
(TGF)-P1 10 ng/ml tumor necrosis factor (TNF)-a, or
10 ng/ml vascular endothelial growth factor (VEGF) (all
R&D Systems, Minneapolis, MN, USA). These concen-
trations were selected based on the findings of previous
studies [26,27]. The following monoclonal antibodies
(BD Pharmingen, La Jolla, CA, USA) were used: mono-
clonal antibodies reactive for the integrin subunits al
(clone Ha31/8), a2 (clone Hal/29), a4 (clone MFR4.B),
a5 (clone 5H10-27 (MER5), a6 (clone GoH3), B1 (clone
Ha2/5), and Mac-1 (clone M1/170); CD31 (clone
MEC13.3); and isotype control antibodies: rat anti-KLH
(A110-2) and hamster anti-TNP-KLH (G235-1). Other
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antibodies used in this study included Cy3-conjugated
anti-GFAP (Sigma Chemical Co.) and rabbit anti-NG2
and anti-PDGF-B receptor antibodies (both kindly pro-
vided by Dr William Stallcup, Sanford-Burnham Medical
Research Institute, La Jolla, CA, USA).

Flow cytometry

Integrin expression by BECs and pericytes (treated with
different cytokines for 2 days) was examined as de-
scribed previously [26]. Briefly, cells were removed from
the six-well culture plates, and cell-surface expression of
the integrin subunits al, a2, a4, o5, a6, or f1 was ana-
lyzed by flow cytometry using phycoerythrin (PE)-conju-
gated monoclonal antibodies (all BD Pharmingen). The
fluorescent intensity of the labeled cells was analyzed
with a flow cytometer (FACScan; Becton Dickinson, San
Diego, CA, USA), with 10,000 events captured for each
condition. In each experimental condition, the mean
fluorescent intensity was compared with the control (no
factor) condition, and expressed as the percentage
change relative to control. Each experiment was re-
peated a minimum of four times.

Cell-adhesion assays

Adhesion assays were performed as described previously
[28]. Briefly, substrates were prepared by coating the
central area of glass coverslips in 24-well plates (Nunc;
BD Biosciences, San Jose, CA, USA) with 25 ul of ECM
solution (10 pg/ml of collagen I, collagen IV, fibronectin,
HSPG, or laminin-1; all from Sigma Chemical Co.) for 2
hours at 37°C. Substrates were washed twice before
addition of cells. Pericytes were prepared as described
above, centrifuged, and re-suspended in N1 serum-free
media, then 2,000 cells were applied to the substrates in
a 25 pl drop and incubated at 37°C for 1, 4, or 8 hours.
In function-blocking experiments, antibodies were in-
cluded at 5 pg/ml. The assay was stopped by adding 1
ml of DMEM and washing off any loosely attached cells.
Attached cells were fixed in 4% paraformaldehyde in
PBS for 20 minutes, and stored in PBS. Adhesion was
quantified under phase microscopy by counting all at-
tached cells within five fields of view per condition. In each
experiment, each condition/time-point was performed in
duplicate.

Proliferation assays

Glass coverslips were coated with the ECM substrates as
described above, and pericytes plated out in serum-free
N1 medium. Cytokines and/or integrin-blocking anti-
bodies were included at the time of plating. The follow-
ing morning, pericytes were incubated for 3 hours with
bromodeoxyuridine (BrdU; Invitrogen Corp.), fixed in
acid/alcohol, and analyzed by immunofluorescence for
BrdU incorporation, in accordance with the manufacturer’s
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instructions. BrdU-positive cells were expressed as the per-
centage of total cells (Hoechst staining).

Migration assays

Pericyte migration was quantified using the scratch
assay. Pericytes were plated into ECM-coated wells of a
24-well plate, and cultured in PCM. Upon reaching con-
fluence, vertical and horizontal scratches were made in
the monolayer using a 1 ml pipette tip. The PCM and
cell debris were removed, and replaced with serum-free
N1 medium (cytokines and/or integrin-blocking anti-
bodies were included at this time), and the scratch width
was recorded for all samples. The new width of the
scratch was recorded 16 hours later, and the distance of
cell migration calculated. In each experiment, each con-
dition was performed in duplicate.

Immunohistochemistry and analysis
Immunohistochemistry was performed as described previ-
ously [28], on 10 um frozen sections of cold PBS-perfused
brain, using monoclonal antibodies specific for the integ-
rin subunits al (clone Ha31/8) and a2 (clone Hal/29),
and the pericyte marker NG2. Secondary antibodies used
included anti-hamster Alexa Fluor 488 (Invitrogen Corp.)
and anti-rabbit Cy3 (Jackson Immunoresearch, Baltimore,
PA, USA). Images of brain sections were taken using a
x20 objective on a microscope (Imager Ml.m; Zeiss,
Thornwood, NY, USA). Three images were taken, and the
number of integrin-positive vessels per field of view
recorded for each section per subject.

Statistical analysis

All results represent the mean + SEM of four experi-
ments, except for immunohistochemistry, which was
performed with three different animals per condition.
The Student’s z-test was used to analyze the results of
the proliferation assays and the immunohistochemistry,
while the paired Student’s ¢-test was used to analyze the
results for flow cytometry, and the cell-adhesion and mi-
gration assays. For all tests, P<0.05 was defined.

Results

Extracellular-matrix constituents differentially regulate
cerebral pericyte behavior

To investigate how pericyte behavior is influenced by
the different ECM molecules present in the vascular
basal lamina, pure populations of cerebral pericytes were
cultured in serum-free N1 medium on glass coverslips
coated with collagen I, collagen IV, fibronectin, HSPG,
or laminin-1.

First, the pericyte adhesion characteristics were inves-
tigated by performing adhesion assays at time-points of
1, 4, and 8 hours. A clear hierarchy among the ECM
proteins quickly became evident (Figure 1A). After 1
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hour, the pericytes were fully attached to fibronectin,
and almost half the cells were also attached to collagen I
and IV, but cells on HSPG and laminin-1 appeared
rounded up and poorly attached. At the 4-hour time-
point, the pericytes on fibronectin and the collagens
were fully attached and spread, and the cells on laminin-
1 had increased their attachment and had begun to
spread whereas the cells on HSPG were still predomin-
antly phase-bright unattached cells. The adhesion kinetic
curves (Figure 1B) show that after 1 hour, fibronectin
had promoted significantly more pericyte adhesion than
any other substrate (91 + 4.9% compared with 41.5 +
7.6% on collagen I, P<0.01), with only 13 + 7.2% cell at-
tachment to laminin-1, and less than 1% of adhesion to
HSPG. After 8 hours, fibronectin and collagen I and IV
had all promoted greater than 90% adhesion of pericytes,
whereas the pericyte adhesion to laminin and HSPG was
significantly less (fibronectin 98.8 + 3.8 versus laminin
51.3 + 7.3 (P<0.01) and HSPG 29.2 + 5.2 (P<0.001)).
Thus, there was a clear hierarchy in the strength of ad-
hesion of pericytes for different vascular ECM substrates
in the order: fibronectin > collagens > laminin-1 >
HSPG.

Next, the influence of different ECM components on
pericyte proliferation and migration was investigated.
Pericyte proliferation was examined by BrdU incorpor-
ation. Pericytes were cultured in serum-free conditions
on the different substrates, then BrdU was added to cells
for 3-hours, followed by BrdU immunofluorescence (IF)
detection. Pericyte proliferation was promoted most
strongly by fibronectin (Figure 1C), with a proliferation
rate four-fold greater than any other substrate (21.1 +
3.4% on fibronectin compared with 5.7 + 0.8% on colla-
gen I, P<0.01). Collagen IV also supported pericyte pro-
liferation (5.7 + 2.2%). However, compared with collagen
I (5.7 + 0.8%), both laminin-1 (2.6 + 1.2%; P<0.05) and
HSPG (1.6 + 0.5%; P<0.01) significantly inhibited
pericyte proliferation.

The influence of the ECM substrate on pericyte migra-
tion was investigated by using the scratch assay.
Pericytes were first grown to confluence in serum-
containing PCM and cultured on ECM-coated 24-well
plates, then horizontal and vertical scratches were made
to the monolayer to produce linear regions devoid of
cells. The medium was then switched to serum-free N1
medium, and migration was measured over the next 16
hours. Pericyte migration was most effectively promoted
by collagen I (0.28 + 0.02 mm versus 0.04 + 0.01 mm on
uncoated plastic, P<0.001), followed by 50% lower levels
on fibronectin (0.14 + 0.02 mm, P<0.01) and laminin-1
(0.14 £ 0.03 mm, P<0.02) (Figure 1D and Additional file
1: Figure S1). Compared with uncoated plastic (baseline),
cells on HSPG showed an anti-migratory trend, although
this failed to reach statistical significance. Taken together,
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Figure 1 Extracellular matrix (ECM) substrates differentially regulate cerebral pericyte behavior. (A) Phase pictures showing pericyte
adhesion and morphology on collagen |, collagen IV, fibronectin, HSPG, and laminin-1 after 1 and 4 hours. Scale bar = 100 pum. Note that
pericytes attached well to fibronectin and the collagens but very poorly to HSPG. (B) Time course of pericyte adhesion to different ECM
substrates over 8 hours. Adhesion assays were performed as described in the text, and all points represent the mean + SEM of four experiments.
Note that after 1 hour, the number of adherent pericytes was >90% on fibronectin, approximately 40% on collagens, approximately 10% on
laminin-1, but less than 1% on HSPG. * P<0.01, ** P<0.001. (C) Influence of ECM substrates on pericyte proliferation. Proliferation assays were

Laminin

performed as described in the text, and all points represent the mean + SEM of four experiments. Note that fibronectin strongly promoted (**
P<0.01), whereas laminin-1 (* P<0.05) and HSPG (** P<0.01) inhibited pericyte proliferation. (D) Influence of ECM substrates on pericyte migration.
Migration assays were performed as described in the text, and all points represent the mean + SEM of four experiments. Note that pericyte
migration was promoted most strongly by collagen | (*** P<0.001) and to a lesser degree by fibronectin (** P<0.01) and laminin-1 (* P<0.02).

these results demonstrate that specific ECM substrates have
markedly different effects on pericyte behavior. Consistent
with its upregulation during cerebrovascular remodeling and
its regenerative influence on other cell types [21,22,29], fibro-
nectin supports pericyte remodeling by strongly promoting
pericyte proliferation and migration. Both collagen I and IV
also support pericyte proliferation, but the two collagens have
differential effects on pericyte migration, with collagen I hav-
ing a much stronger effect. Although laminin-1 is only a
weak promoter of pericyte adhesion and proliferation, it does
support migration. Most strikingly, HSPG appears to be

non-permissive for all aspects of pericyte behavior, suggesting
that, within intact blood vessels, HSPG restricts pericyte pro-
liferation and migration, thus preventing excessive and un-
wanted vascular remodeling.

Cerebral pericytes express a limited repertoire of
integrins

Integrins are the major class of cell-surface receptors that me-
diate effects of the ECM [19,20]. To characterize the integrin-
expression profile of cerebral pericytes, flow cyometry was
performed (Figure 2). This showed that pericytes express
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several different B1 integrins, including al and a2 (collagen/
laminin receptors), a5 (fibronectin), and a6 (laminin) integrins,
but pericytes do not express the o4 integrin subunit (data not
shown). Significantly, of all the Bl integrin subunit partners,
a5 had by far the highest expression level, with much lower
levels of the al, a2, and a6 integrin subunits (a5:a6 ratio
of 20:1). By comparison, BECs express equivalent levels of
the a5 and a6 integrin subunits, and higher levels of the
al and a2 subunits. This may explain why pericytes ad-
here strongly to fibronectin, but only weakly to laminin-1.

Tumor necrosis factor-a promotes a pro-modeling
pericyte phenotype

Vascular remodeling is promoted by a number of
different growth factors, including VEGE, bFGE, and

PDGEF-BB [10,30,31]. Cytokines including TGEF-f and
TNE-a also influence this process [32,33]. To investigate
how these factors influence pericyte remodeling, we ex-
amined their effect on pericyte migration and prolifera-
tion. These studies showed that of all the factors tested,
TNF-a had the most dramatic effect on pericyte behav-
ior. TNF-a altered pericyte morphology from a well-
spread, rhomboid phenotype of the control cells into a
predominantly bipolar, polarized morphology (Figure 3A).
Furthermore, this TNF-a-induced switch in morphology
correlated with an increased migration rate. The untreated
(control) pericytes migrated slowly as a wave of well-
spread rhomboid-shaped cells, still displaying a significant
gap between the opposing migrating borders, whereas
TNEF-a-treated cells migrated much faster as a wave of
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Figure 3 (See legend on next page.)
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Figure 3 Tumor necrosis factor (TNF)-a strongly promotes a pericyte remodeling phenotype. (A) The influence of TNF-a on pericyte
morphology. Scale bar = 50 um. Note that TNF-a promoted a switch in pericyte morphology, from a well-spread, rhomboid phenotype into a
predominantly bipolar, polarized morphology. (B) The influence of TNF-a on pericyte migratory capacity. Scale bar = 100 um. Note that TNF-a
enhanced pericyte migration, as illustrated by a rapid closing of the scratch defect. (C,D) Influence of cytokines on (C) pericyte migration and (D)
proliferation. Assays were performed as described in the text, and all points represent the mean + SEM of four experiments. Note that pericyte
migration and proliferation were promoted most strongly by TNF-a * P<0.05, ** P<0.01).

bipolar, elongated cells, which at the same time-point had
almost closed the gap in the monolayer (Figure 3B).
Quantification of this effect demonstrated a strong pro-
migratory influence of TNF-a (0.48 + 0.03 mm versus
0.18 + 0.02 mm under control conditions, P<0.01)
(Figure 3C). Furthermore, BrdU incorporation assays
(Figure 3D) showed that TNF-a was also highly ef-
fective at stimulating pericyte proliferation (404 + 3.1%
for TNF-a versus 5.0 + 2.4% for control cells, P<0.01).
Thus, TNF-a strongly promotes cerebral pericyte
remodeling behavior, stimulating both pericyte prolif-
eration and migration.

Cerebral pericyte integrin expression is regulated by
cytokines

It is now well established that growth factors and cyto-
kines exert some of their effects on cell behavior by
modulating ECM-integrin interactions [34,35]. To ad-
dress whether this occurs in pericytes, we investigated
whether growth factors and cytokines influence integrin
expression by pericytes. Pericytes were cultured in PCM
on collagen I-coated six-well plates in the presence of
different factors for 2 days, before their integrin-
expression levels were quantified by flow cytometry.
Analysis of the ability of each factor to increase or
decrease pericyte expression of given integrin subunits
identified two obvious effects (Figure 4). First,
TNEF-a promoted a switch in collagen-binding integrins,
concomitantly downregulating al (by 49.8 + 8.3% of
control, P<0.01), while strongly upregulating a2 integrin
(1939 + 18.3% of control, P< 0.01). Interestingly, this
TNEF-a-induced switch from al to a2 integrin was
exactly the opposite to that which occurred when
pericytes were induced to differentiate (indicated by in-
creased expression of a-smooth muscle actin) by culture
in DMEM containing 10% FBS (DF). In this system,
DF increased ol expression (to 133.6 + 5.8% of con-
trol, P<0.01), but decreased a2 integrin (by 36.7 *
7.5% of control, P<0.01). Thus, TNF-a and DF exert
antagonistic effects on pericyte remodeling status;
TNF-a promotes pericyte transition into a remodel-
ing phenotype, which correlates with a switch from
al to a2 integrins, whereas DF has the opposite ef-
fect. Second, several factors increased pericyte ex-
pression of the pro-angiogenic o5 integrin subunit.

TGEF-B1 was the most effective at promoting o5 integrin
expression (to 151.6 + 13.4% of control, P<0.01), and
TNF-a also promoted this effect (increasing a5 levels to
134.6 = 9.6% of control, P<0.01). Pericyte a6 integrin-
expression levels were not significantly altered by any of
the factors tested.

Cerebral pericytes use predominantly a2 integrin to
attach to collagens

Our studies reveal that TNF-a promotes transformation
of pericytes into an active remodeling phenotype, and
that this correlates with a switch in expression of
collagen-binding integrins, from al to a2. So what is the
functional significance of this switch in 1 integrins?
One possibility is that upregulation of a2 integrin con-
fers on pericytes additional adhesive or signaling proper-
ties, facilitating increased adhesion to basal lamina
collagen and increasing migratory and mitotic capacity.
In support of this hypothesis, previous studies have
shown that o2 integrin has a much higher affinity than
al integrin for the ECM substrate collagen I [36,37],
raising the possibility that TNF-a-induced upregulation
of a2 integrin might enhance pericyte adhesion to colla-
gen I, and thus increase migration and proliferation. To
test this idea, we first examined the relative contribution
of al and a2 integrins in pericyte adhesion to collagen I
and collagen IV. Adhesion was quantified in the pres-
ence of well-characterized function-blocking monoclonal
antibodies directed against the p1 (Ha2/5), al (Ha31/8)
or a2 (Hal/29) integrin subunits. Pericyte adhesion to
collagen I was significantly inhibited by monoclonal anti-
bodies against the f1 and a2 integrin subunits, but anti-
al antibodies had no significant effect (Figure 5). This is
apparent in the phase-contrast pictures (Figure 5A)
which show that antibodies against f1 and a2 integrins,
but not al integrin, blocked pericyte adhesion at the 1-
hour time-point, and also substantially inhibited pericyte
cell spreading at the 4-hour time-point. Pericyte adhe-
sion to collagen I in 1- hour adhesion assays was
inhibited by anti-B1 (to 16.5 + 5.0% of control, P<0.001)
and anti-a2 (to 28.3 + 5.8% of control, P<0.001) anti-
bodies, and pericyte adhesion to collagen IV was also
inhibited by anti-p1 (to 25.8 + 5.1% of control, P<0.001)
and anti-a2 (to 27.8 + 7.1% of control, P<0.001) anti-
bodies, whereas the anti-al antibodies had no obvious
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Figure 4 Influence of cytokines on pericyte expression of 31 integrins. (A) Pericytes were cultured on collagen I in the presence of different
cytokines as described in Methods. After 2 days of culture, pericyte expression of the al, a2, a5, a6, and 31 integrin subunits was analyzed by flow
cytometry, and the expression level is shown as the percentage change relative to control conditions (no cytokine). All points represent the mean + SEM
of four experiments. Note that tumor necrosis factor (TNF)-a promoted a switch in integrins, downregulating a1l while strongly upregulating a2 integrin,
and this effect was exactly the opposite to that seen when pericytes differentiated (DMEM + FBS; DF condition). In addition, several factors, including
transforming growth factor (TGF)-31 and TNF-a increased a5 integrin expression (** P<0.01). (B) Histogram flow-cytometry plots illustrating the contrasting
influence of TNF-a and DF on pericyte expression levels of al and a2 integrin subunits. Note that TNF-a increased the a2:a ratio, whereas DF had the
opposite effect.

effect (Figure 5B). These results show that pericytes use  The pro-modeling influence of tumor necrosis

the a2P1 integrin to attach to both types of collagen. In  factor-a is blocked by a2 integrin-blocking antibodies
addition, we also investigated which integrins mediate = Because TNF-a promotes parallel increases in pericyte re-
pericyte adhesion to fibronectin and laminin-1 (Figure 5C).  modeling status and o2 integrin expression, we next exam-
The 1-hour adhesion assays showed that pericyte ined whether a2f1 integrin mediates some of the change in
adhesion to fibronectin was effectively blocked by anti-  pericyte behavior, by measuring pericyte migration and pro-
bodies against B1 (to 16.5 + 5.6% of control, P<0.001) and liferation on collagen I under the influence of TNF-q, in
a5 (to 22.3 + 6.4% of control, P<0.001) integrins, indicat-  the presence of integrin-blocking antibodies. TNF-a signifi-
ing that a5P1 is the major pericyte receptor responsible  cantly promoted pericyte migration and proliferation
for adhesion to fibronectin. Similar experiments showed compared with controls, and the pro-modeling effects of
that pericyte adhesion to laminin-1 was almost totally = TNF-a were significantly blocked by antibodies against the
blocked by anti-f1 antibody (to 2.3 + 2.2% of control, 1 (migration reduced from 0.47 + 0.04 mm to 0.24 + 0.04
P<0.001) and partially blocked by anti-al (to 33.5 + 6.7%  mm, P<0.02; proliferation reduced from 35.8 + 4.7% to 17.6
of control, P<0.001) and anti-a6 (to 67.8 + 8.1% of control,  + 2.2%, P<0.02) or «2 (migration reduced from 0.47 + 0.04
P<0.01) antibodies, but was not significantly affected by =~ mm to 0.23 + 0.01 mm, P<0.01; proliferation reduced from
the anti-a2 antibody, indicating that pericyte adhesion to  35.8 + 4.7% to 20.4 + 3.4%, P<0.05) integrin subunits, but
laminin-1 is mediated by a combination of alfl and were not significantly affected by the anti-al integrin anti-
a6PB1 integrins. body (Figure 5D,E). This demonstrates that TNF-a
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Figure 5 Identifying roles for specific $1 integrins in regulating pericyte behavior. (A) Pericyte adhesion to collagen | is mediated by the
a2(31 integrin. Phase pictures showing that pericyte adhesion to collagen | was blocked by antibodies specific for 31 and a2 subunits but not by the
anti-al integrin antibody. Scale bar = 50 pm. (B) Quantification of integrin blockade studies. Adhesion assays examining pericyte adhesion to collagen |
and collagen IV were performed as described in the text, and all points represent the mean + SEM of four experiments. Note that pericyte adhesion to
collagen I'and IV was blocked by antibodies specific for 31 and a2 subunits but not by the anti-al integrin antibody (** P<0.001). (C) Identifying pericyte
integrins that mediate adhesion to fibronectin and laminin-1. Note that a5@1 integrin mediated pericyte adhesion to fibronectin, whereas adhesion to
laminin-1 was mediated primarily by a1 and to a lesser degree by a6 integrin (* P<0.01, ** P<0.001). (D,E) Examining the role of a2 integrin in pericyte
migration (D) and proliferation (E). Assays were performed as described in the text, and all points represent the mean + SEM of four experiments. Note

affected by the anti-al integrin antibody (* P<0.05, ** P<0.02, *** P<0.01).

that pericyte migration and proliferation on collagen | was significantly blocked by antibodies against the 31 or a2 integrin subunits, but was not

stimulates pericyte migration and proliferation through a
a2 integrin-dependent mechanism.

Pericyte a2 integrin is induced during cerebrovascular
remodeling in vivo

To determine whether pericyte expression of al or a2
integrins is altered during cerebrovascular remodeling
in vivo, we examined these events in the brains of mice
with EAE, an animal model of multiple sclerosis, in
which marked vascular remodeling occurs [38,39]. Using
NG2 to identify pericytes [40-42], dual IF showed that
al integrin had a vascular pattern that strongly co-
localized to NG2-positive pericytes, with no appreciable
difference in the vascular intensity level of al integrin
between control and acute EAE tissue (Figure 6A). Inter-
estingly, a2 integrin expression was undetectable on
cerebral vessels in control tissue, whereas some vessels
in acute EAE brain tissue showed marked induction of
a2 integrin expression (15 + 3.8 vessels/field compared
with 0.9 + 0.5 vessels/field in control tissue, P<0.001),
and this strongly co-localized to NG2-positive pericytes
(Figure 6B,C). This demonstrates that pericytes in re-
modeling vessels in the brain of EAE mice show strong
induction of a2 integrin.

Discussion

Pericytes have an extremely close relationship with the
ECM components of the basal lamina of blood vessels
[3,7]. In this study, we took an in vitro approach to deter-
mine how different vascular ECM substrates influence
pericyte adhesion, migration, and proliferation, and to de-
fine the integrin receptors that mediate these effects. We
then examined the interplay between cytokines and ECM—
integrin interactions in regulating pericyte behavior. Our
studies showed that fibronectin and collagen I promote
pericyte proliferation and migration, whereas the proteogly-
can HSPG had an overall inhibitory influence on pericytes.
Of the cytokines tested, TNF-a had the strongest pro-mod-
eling influence, stimulating pericyte proliferation and mi-
gration, concomitantly triggering a marked switch in
pericyte integrins, from al to o2 integrin, the exact oppos-
ite to that seen in differentiated pericytes. Inhibition studies

showed that a2 integrin mediates pericyte adhesion to col-
lagen I and IV, and function blockade of o2 integrin
prevented the pro-modeling influence of TNF-a. To our
knowledge, these are the first studies to demonstrate that
ECM constituents are a major influence on pericyte remod-
eling. Specifically, they suggest a model in which HSPG re-
stricts pericyte remodeling in stable vessels, but during
inflammation, TNF-a triggers a switch in pericyte integrins,
from al to o2, thereby promoting pericyte proliferation
and migration on collagen. These studies thus identify a
fundamental molecular mechanism that mediates pericyte
transformation into an active remodeling phenotype.

The extracellular matrix regulates pericyte functions
Several factors that regulate pericyte behavior including
PDGF-BB and VEGE, are known [10,43], although surpris-
ingly, the influence of ECM components has not been dir-
ectly addressed. In this study, we found that fibronectin
and collagen I drive cerebral pericytes towards a pro-
modeling phenotype, which is in keeping with the influence
of these ECM proteins on other cell types. Fibronectin is a
strong promoter of endothelial cell proliferation and migra-
tion [29,44], and is a strong promoter of vascular remodel-
ing under different conditions including development,
tumor-associated neovascularization, and hypoxia-induced
cerebrovascular remodeling [21,23,45,46]. Likewise, colla-
gen I promotes angiogenic endothelial remodeling both
in vitro and in vivo [47,48]. Our finding that fibronectin
and collagen I also stimulate pericyte remodeling sug-
gests that endothelial cells and pericytes use common
mechanisms to switch from a quiescent stable pheno-
type into an active remodeling one. In stark contrast, we
found that the proteoglycan HSPG was non-permissive
for all aspects of pericyte behavior, consistent with the
finding that HSPG inhibits mesangial adhesion to fibro-
nectin [49]. Our data suggest that within stable cerebral
blood vessels, HSPG might restrict pericyte prolifera-
tion and migration, thus preventing unwanted vascu-
lar remodeling. These results are consistent with the
idea that the positive/negative balance of ECM cues
may play an important role in determining vascular
remodeling status.
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on pericytes in the acute EAE brain. P<0.001.

Figure 6 Pericyte a2 integrin is induced during cerebrovascular remodeling in vivo. Pericyte expression of (A) al and (B) a2 integrins (both
Alexa Fluor-488, green) was analyzed by dual immunofluorescence (IF) with the pericyte marker NG2 (Cy3, red) in frozen brain sections taken
from mice with acute experimental autoimmune encephalomyelitis (EAE) or control mice. Scale bar = 50 pm. (C) Quantification of this data. Each
point represents the mean + SEM of three different experiments. Note that al integrin strongly co-localized to NG2-positive pericytes, both in
control and acute EAE tissue, whereas a2 integrin expression was undetectable on cerebral vessels in control tissue, but showed strong induction

Tumor necrosis factor-a strongly promotes a

pericyte remodeling phenotype

Evidence suggests that TNF-a promotes vascular remod-
eling in vivo. Exogenous TNF-a was shown to promote
angiogenic sprouting in the rat cornea and the chick
chorioallantoic membrane [50]. In a mouse model of air-
way inflammation, TNF-a and endothelial expression of
TNF receptor 1 (TNF-R1) were increased, and inhibition
of this pathway blocked remodeling [32]. At the cellular
level, TNF-a promotes endothelial cell proliferation [27],
migration, and tube formation [50]. In the current study,
we found that TNF-a also promoted pericyte prolifera-
tion and migration, consistent with recent data that
TNEF-a stimulates cerebral pericyte migration and matrix
metalloproteinase-9 production [51]. Together, these ob-
servations support a fundamental role for TNF-a in me-
diating vascular remodeling.

Switching of B1 integrins by remodeling pericytes

A major finding to emerge from this study is that the pro-
modeling influence of TNF-a correlated with a switch in
pericyte expression of 1 integrins, from al to a2, whereas
differentiating pericytes showed the opposite switch. A
similar switch has been described on chondrocytes [52].
So what might be the functional significance of this
switch? Although al and a2 integrins show great similar-
ity in their sequence homology [19], some clear functional
differences between these two integrins have been
reported. First, the ligand specificity of a1l and a2 integrins
seems to be cell-type-specific. Glomerular epithelial cells
(GECs) use a2p1 to attach to collagen, and use both alf1
and a2B1 to attach to laminin, whereas renal mesangial
cells use both alfl and a2P1 to attach to collagen, but
use only alP1 to adhere to laminin [53,54]. Second, com-
pared with alPl, a2p1 integrin has much higher affinity
for collagen I [36,37], implying that a2 integrin expression
confers on cells an increased adhesion and signaling cap-
ability on this substrate.

Several studies have highlighted an important role for
a2p1 integrin in promoting cell proliferation and migration
in other systems. PDGF-B-induced proliferation and mi-
gration of vascular smooth muscle cells is blocked by
function-blocking anti-a2 antibodies or enhanced by the
a2p1 integrin agonist aggretin [55,56]. Furthermore, many
studies have described an important role for a2f1 integrin
in promoting the migration and/or metastatic spread of

tumor cells, including melanoma [57], and carcinoma cells
of the colon, prostate, liver, and mammary gland [58-61].
In another study, TNF-a conferred an invasive transformed
phenotype on mammary epithelial cells that was accom-
panied by increased o2 integrin expression, and specific
blockade of a2 integrins inhibited this transformation [62].
This TNF-a-induced transformation bears a remarkable
similarity to our own findings with pericytes, suggesting
the presence of a common fundamental mechanism by
which TNF-a stimulates cell migration through a o2
integrin-dependent mechanism.

An angiogenic role for a2f1 integrin in endothelial cells
has been well described [63,64]. A recent study by
Stratman et al. defined an important role for pericytes in
stimulating endothelial basement membrane formation
and vessel maturation, but also demonstrated a require-
ment for a2 integrin in the early stages of tube formation,
[65]. Taken with our own findings, this is consistent with
the notion that a2P1 integrin provides pro-angiogenic sig-
nals, both in endothelial cells and pericytes during the early
stages of vessel remodeling. So how essential is a2 integrin
for these events? Interestingly, although o2 integrin knock-
out (KO) mice are viable and fertile, they exhibit defective
branching morphogenesis in mammary epithelial ducts
[66]. In future experiments, we plan to test whether o2 in-
tegrin plays a similar role in vessel sprouting by examining
cerebrovascular remodeling in a2 integrin KO mice, both
during EAE and in a mouse model of chronic mild hypoxia.

Conclusions

The aim of this study was to determine how ECM com-
ponents present in the vascular basal lamina influence
pericyte remodeling behavior, and how cytokines regu-
late these events. Fibronectin and collagen I promoted
pericyte proliferation and migration, but the proteogly-
can HSPG had an inhibitory influence on pericyte be-
havior. The pro-inflammatory cytokine TNF-a strongly
promoted pericyte proliferation and migration, and con-
comitantly induced a switch in pericyte integrins, from
al to a2 integrin, the opposite to that seen when
pericytes differentiate. Inhibition studies showed that a2
integrin mediates pericyte adhesion to collagens, and
that function blockade of a2 integrin inhibited the pro-
modeling influence of TNF-a. Together, these results
suggest a model in which ECM constituents influence
pericyte remodeling status. In this model, HSPG restricts
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pericyte remodeling in stable vessels, but during inflam-
mation, TNF-« triggers a switch in pericyte integrins, from
al to o2, which stimulates pericyte proliferation and mi-
gration on collagen. These results thus define a funda-
mental molecular mechanism by which TNF-a stimulates
pericyte remodeling in an o2 integrin-dependent manner.

Additional file

Additional file 1: Figure S1. TNF-a promotes cerebral pericyte
remodeling in vitro, via a switch from al to a2 integrins.
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