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Abstract

matter and healthy control samples.

Background: Macrophages play a dual role in multiple sclerosis (MS) pathology. They can exert neuroprotective
and growth promoting effects but also contribute to tissue damage by production of inflammatory mediators. The
effector function of macrophages is determined by the way they are activated. Stimulation of monocyte-derived
macrophages in vitro with interferon-y and lipopolysaccharide results in classically activated (CA/M1) macrophages,
and activation with interleukin 4 induces alternatively activated (AA/M2) macrophages.

Methods: For this study, the expression of a panel of typical M1 and M2 markers on human monocyte derived M1
and M2 macrophages was analyzed using flow cytometry. This revealed that CD40 and mannose receptor (MR)
were the most distinctive markers for human M1 and M2 macrophages, respectively. Using a panel of M1 and M2
markers we next examined the activation status of macrophages/microglia in MS lesions, normal appearing white

Results: Our data show that M1 markers, including CD40, CD86, CD64 and CD32 were abundantly expressed by
microglia in normal appearing white matter and by activated microglia and macrophages throughout active
demyelinating MS lesions. M2 markers, such as MR and CD163 were expressed by myelin-laden macrophages in
active lesions and perivascular macrophages. Double staining with anti-CD40 and anti-MR revealed that
approximately 70% of the CD40-positive macrophages in MS lesions also expressed MR, indicating that the majority
of infiltrating macrophages and activated microglial cells display an intermediate activation status.

Conclusions: Our findings show that, although macrophages in active MS lesions predominantly display M1
characteristics, a major subset of macrophages have an intermediate activation status.

Keywords: Multiple sclerosis, Macrophages, CD40, Mannose receptor

Introduction

Multiple sclerosis (MS) is a chronic inflammatory, de-
myelinating disease of the central nervous system (CNS).
It is the most common cause of neurological disability
among young adults, affecting approximately one in
1,000 individuals in Europe and North America [1].
The major pathological hallmarks of MS are multiple
demyelinated lesions, which are associated with perivas-
cular leukocyte infiltrates, astrogliosis, axonal damage
and loss and neurodegeneration as well as remyelination
[2,3]. Macrophages and activated microglia are abundantly
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present in demyelinating MS lesions and staging of MS
lesions is based on the degree of myelin loss and the
presence of human leukocyte antigens—-DR (HLA-DR)
and CD68-positive macrophages [2].

Many lines of evidence indicate that macrophages play
a dual role in the pathogenesis of MS as they contribute
to lesion formation and axonal damage, but also support
repair mechanisms [4,5]. Upon activation, macrophages
secrete a plethora of pro-inflammatory mediators, such
as cytokines, reactive oxygen species, nitric oxide and
glutamate, which are able to induce tissue damage [6-11].
Injection of clodronate liposomes, which eliminate infil-
trating macrophages, suppressed axonal damage and
clinical signs of experimental autoimmune encephalomy-
elitis (EAE) [12,13], an animal model of MS, indicating
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that macrophages play an essential role in disease patho-
genesis. However, the role of macrophages in the patho-
genesis of MS is much more complex, since macrophages
also exert beneficial effects. For example phagocytosis of
myelin debris by macrophages/microglia is necessary for
axonal sprouting and remyelination [12-22], and addition-
ally, macrophages produce growth factors [23].

The dual role of macrophages can be explained by the
fact that macrophages are not a single homogeneous
population. Instead, several different phenotypical and
functional subpopulations exist [24-26] as a result of
their activation status, which is influenced by environ-
mental signals [27-30]. The two most polarized pheno-
types are classically activated (CA, M1) with cytotoxic
and pro-inflammatory properties [29,30] and the alterna-
tively activated (AA, M2) macrophages, which are in-
volved in tissue repair by producing extracellular matrix
molecules and anti-inflammatory cytokines [31,32].
An established method to generate M1 macrophages
in vitro is by stimulation with interferon-y (IFN-y) and
lipopolysaccharide (LPS) while induction of the M2
phenotype can be achieved by stimulation with IL-4 and
many other stimuli [25,30,31]. Once induced in vitro,
M1 and M2 macrophages can be distinguished by a
panel of functional and phenotypical markers. In vivo
the situation is more complex since a multitude of stim-
uli are present and markers are not exclusively expressed
by M1 or M2 macrophages. The endogenous and envir-
onmental signals that determine the activation status are
far more complex in vivo than in vitro, where time and
dosage of the activating stimuli are selected. Numerous
markers defining the phenotypes of M1 and M2 human
macrophages have been described in the literature.
These macrophage subsets are well studied in mouse
models; however, the marker expression of the different
subsets in humans are not completely consistent with
findings in mice. For example, the most commonly used
M1 markers of human macrophages include CD40
[32,33], CD86 [34], FcyRI (CD64) and FcyRII (CD32)
[32,35], while mannose receptor (MR) [25,27,30] and
CD163 [32,35,36] have been used to identify human M2
macrophages. In contrast, the most commonly used
marker for M1 and M2 macrophages in mice are Nitric
oxide synthase 2 and Arginasel respectively [30].

To distinguish infiltrating monocytes from activated
microglia a CCR2 red fluorescent protein knock-in
mouse was recently reported in which infiltrating mono-
cytes are red fluorescent while resident microglia are
green fluorescent [37]. After EAE induction in this
mouse the relative contribution of infiltrating monocytes
and activated microglia could be distinguished at the
level of pathology. In humans such discrimination be-
tween macrophages and microglia is not yet feasible.
Macrophages/microlgia present in active and chronic
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active MS lesions contain lipids, reflecting ingestion and
accumulation of myelin lipids. These so-called foamy
macrophages express anti-inflammatory cytokines and
lack typical pro-inflammatory cytokines, indicating an al-
ternative phenotype [38,39]. On the other hand, it has
been shown that macrophages in inflammatory MS le-
sions express specific M1 markers, such as inducible ni-
tric oxide synthase (iNOS) and CD40 [40,41]. These data
prompted us to systematically analyze the expression of
a discriminatory panel of M1 and M2 markers in well-
characterized MS lesions and normal appearing white
matter (NAWM). Although foamy macrophages and
microglia in active and chronic active lesions predomin-
antly express M1 markers, the majority (approximately
70%) of CD40-positive macrophages also express the
typical M2 marker MR. Taken together, our findings in-
dicate that foamy macrophages in active demyelinating
MS lesions display an intermediate activation status
supporting the idea that in vitro polarization of macro-
phages and microglia cannot be easily translated to path-
ology of diseased tissues in vivo.

Materials and methods

Human brain tissue

Human brain tissue was obtained at autopsy from two
patients without neurological disorders (control) and
eight MS patients. Patient characteristics are listed in
Table 1. The rapid autopsy regimen of the Netherlands
Brain Bank in Amsterdam (coordinator Dr. I. Huitinga)
was used to acquire the samples, with the approval of
the Medical Ethical Committee of the VU University
Medical Center. All patients and controls had given in-
formed consent for autopsy and use of their brain tissue
for research purposes. Tissue samples from subcortical
white matter were obtained from non-neurological con-
trol cases. For MS tissue, the clinical diagnosis was con-
firmed neuropathologically by Professor P. van der Valk.
Tissue samples from MS cases were obtained after
ex vivo magnetic resonance imaging scanning as de-
scribed by de Groot et al. [42]. Brain tissue samples were
snap-frozen and stored in liquid nitrogen. Classification of
lesion staging was based on immunohistochemical detec-
tion of inflammatory cells (that is, cells that express major
histocompatibility complex (MHC) class II/HLA-DR)
and the presence of proteolipid protein (PLP) to reveal
areas of myelin loss or the presence of myelin in phago-
cytic cells as described before [43-45]. Seven lesions
sampled in this study were classified as active lesions
with myelin loss and abundant phagocytic perivascular
and parenchymal macrophages containing myelin degrad-
ation products, and five lesions were classified as chronic
active with a hypocellular demyelinated gliotic center with
astrogliosis and a hypercellular rim containing activated
microglia and macrophages.
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Table 1 Patients’ details
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Case Tissue block lesion characterization Gender Age Disease duration (years) Cause of death PMD (hrs:min)
Control Male 74 - Lung carcinoma 745
Control Male 62 - DM de novo, suspected 7:20

pancreas carcinoma
MS 3 blocks active Male 41 14 Urosepsis 723
MS 2 blocks active Male 54 22 Euthanasia 815
MS 2 blocks active Male 51 20 NA 11:00
MS 1 block chronic active Female 66 23 NA 6:00
MS 1 block chronic active Male 61 18 Euthanasia 6:00
MS 2 blocks chronic active Male 66 26 lleus 9:15
MS 1 block chronic active Male 49 26 Pneumonia 7:30

DM, diabetes mellitus; NA, not applicable; PMD, postmortem delay time (hours: minutes).

Consent

Brain tissue samples were obtained from the Netherlands
Brain Bank (coordinator Dr. Huitinga, Amsterdam,
The Netherlands).

The Netherlands Brain Bank received permission to
perform autopsies for the use of tissue and for access
to medical records for research purposes from the
Ethical Committee of the VU University Medical Center,
Amsterdam, The Netherlands.

All patients and controls, or their next of kin, had
given informed consent for autopsy and use of brain tis-
sue for research purposes.

Human macrophages

Peripheral blood mononuclear cells (PBMCs) were
isolated from healthy donor buffy coats (Sanquin
Blood Bank, Amsterdam, The Netherlands) using Ficoll
(Lymphoprep ™, Axis-Shield, Oslo, Norway) density gra-
dient. Monocytes were isolated from the PBMCs by
anti-CD14 magnetic beads according to manufactures
protocol (Miltenyi Biotec, Leiden, The Netherlands).
Monocytes were cultured in 6-well plates (Greiner Bio-
One; Alphen a/d Rijn, The Netherlands) at a concentration

of 1 x 10° cells/ml in macrophage medium (DMEM
(Invitrogen, Breda, the Netherlands), supplemented with
5% (v/v) normal human serum (NHS) (Bio Whittaker, East
Rutherford, NJ), and 1% (v/v) penicillin-streptomycin-glu-
tamine (Invitrogen), at 37°C, 5% CO,. Monocytes matured
into macrophages (MO macrophages) in the course of 5 to
7 days of culturing. Before each experiment macrophages
were washed with phosphate buffered saline (PBS) (Braun,
Melsungen, Germany), resulting in >95% pure macro-
phages cultures (Figure 1).

The M1 phenotype was induced by culturing MO mac-
rophages in the presence of 1 x 10> U/ml recombinant
human IFN-y (U-Cytech, Utrecht, the Netherlands) [46]
and 10 ng/ml Escherichia coli LPS (026:B6; Sigma-
Aldrich, Zwijndrecht, the Netherlands) for 48 h. M2
macrophages were generated using 10 ng/ml human IL-4
(ImmunoTools, Friesoythe, Germany) for 48 h [25].

Fluorescence-activated cell sorting (FACS) analysis

Cells were treated with 4% (v/v) lidocaine for 10 min,
harvested and washed with PBS. Subsequently the cells
were fixed with 4% formaldehyde for 30 min on ice,
washed with PBS containing saponine 1% (v/v), 0.1%
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Figure 1 Characterization of monocyte-derived macrophages. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) of
healthy donors and were cultured for 7 days in the presence of 5% normal human serum. A gate was positioned around living (7-aminoactinomycin
(7-AAD) negative) cells (approximately 70%). Of the living cells approximately 97% stained positive for CD68. Representative fluorescence-activated cell
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(v/v) bovine serum albumin (BSA). Next, cells were in-
cubated with the first antibody directed against intra-
cellular or cell surface markers (Table 2) diluted in
PBS containing saponine 1% and 0.1% BSA for 1 h.
After being washed twice, the cells were incubated
with the fluorescently labeled secondary antibody
ALEXA 488 goat anti-mouse (Invitrogen 1:400) for
1 h. As a control, cells were incubated with the
isotype-matched IgG controls or anti-mouse IgG as
a second antibody. The macrophages were analyzed
using flow cytometry (FACSCalibur, Becton Dickinson,
Erembodegem, Belgium) combined with Cellquest Pro soft-
ware (Becton Dickinson) and Flow]Jo software version 9.4.0
for Microsoft (Tree Star, San Carlos, CA). Data obtained
using fluorescence-activated cell sorting (FACS) analysis
were presented as mean fluorescent intensity (MFI). The
data from three separate experiments performed in dupli-
cate were averaged and expressed as mean + SEM.

Immunohistochemistry
Frozen sections of MS lesions, normal appearing white
matter (NAWM) and normal control brain tissue were air
dried and incubated with acetone for 10 min. Sections were
rehydrated in PBS and pre-incubated with 10% NHS in
PBS/0.1% BSA (Roche, Mannheim, Germany) for 60 min.
Subsequently, sections were incubated with the appropriate
primary antibody (Table 2) overnight at 4°C in PBS/0.1%
BSA. After washing the sections were incubated with a sec-
ondary antibody with a Dako Envision Kit (Peroxidase)
(Dako, Heverlee, Belgium) for 30 min at room temperature,
rinsed in PBS stained with diaminobenzidine (DAB) (Dako)
rinsed with tap water and counterstained with hematoxylin
(Sigma-Aldrich). Finally, sections were dehydrated
and embedded in Entellan (Merck, Schiphol-rijk, The
Netherlands). Isotype controls were used as a negative con-
trol; however, omission of the primary antibody did not
show any differences in specificity. Images were taken on a
Nikon E800 microscope (Amstelveen, the Netherlands) and
processed using Adobe Photoshop 6.0 (San Jose, USA).
Double staining was performed using anti-CD40, anti-
MR-bio and anti-HLA-DR to determine the extent of

Page 4 of 12

colocalization of CD40 and MR with each other and
with anti-HLA-DR as microglia/macrophage marker.
Sections were fixed using acetone, pre-incubated with
10% NHS in PBS/0.1% BSA. Subsequently, sections were
incubated with anti-CD40 or anti-MR overnight at 4°C.
Next, sections were washed and incubated for 1 h with
goat-anti-mouse IgG-Alexa 488 (Invitrogen, Breda, The
Netherlands) or goat-anti-mouse IgG-Alexa 647. Sec-
tions were washed and incubated with either anti-CD40,
anti-MR or anti-HLA-DR (clone LN3: eBioscience) in
PBS/0.1% BSA for 1 h. They were then washed again
and incubated with a goat-anti-mouse IgG1l-Alexa 488
or goat-anti-mouse IgG2a Alexa 647 (Invitrogen) anti-
body. Sections were counterstained using Hoechst
(Sigma-Aldrich) 1:10,000 for 5 min, rinsed and embedded
using mounting medium. Images were taken on a Leica
DM6000 (Leica LAS AF software, Leica Microsystems,
Bensheim, Germany) and processed using Adobe
Photoshop 6.0. We quantified the percentages by counting
CD40, HLA-DR and MR positive cells in ten randomly
taken pictures at magnification 20X of the active lesions.

Statistical analysis

The data were analyzed using a one-way ANOVA with
Bonferroni correction in Graphpad prism version 4.03
for Windows (Graphpad software, San Diego, California,
USA). A P value <0.05 was considered significant.

Results

Expression of M1 and M2 markers on in vitro generated
macrophages

PBMCs were obtained from three different donors and
cultured for 7 days to mature into macrophages, then stim-
ulated with either IL-4 (M2) or IFN-y and LPS (M1) or left
unstimulated (MO0). Macrophages were harvested after
2 days and stained with 7-aminoactinomycin (7-AAD)
(Invitrogen) to determine cell viability (approximately
80%). FACS analysis showed that 97% of the cells of each
subpopulation were CD68 positive (Figure 1). We next
assessed the phenotype of M1 and M2 human macro-
phages generated in vitro using a selection of various well-

Table 2 Antibodies used in fluorescence-activated cell sorting (FACS) analysis and immunohistochemistry (IHC)

Antigen Species Dilution (FACS) Dilution (IHC) Double stain (IHC) Manufacturer
CD68 (KP1) mouse 1:100 1:1000 1:1000 Dako
CD40 (Clone MCA1590) mouse 1:50 1:1500 1:750 Serotec
CD86 (MCA1118) mouse 1:50 1:400 Serotec
CD64 (555525) mouse 1:50 1:250 Serotec
CD32 (MCA1075) mouse 1:500 1:2000 Serotec
CD206 (Clone 19.2) mouse 1:100 1:400 1:250 (bio 1:50) BD Pharmingen
CD163 (ED1) mouse 1:50 1:1000 Serotec
HLA-DR (LN3) mouse 1:1000 1:1000 Dako
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defined macrophage markers, including CD40, CDS86,
CD64, CD32, MR and CD163. Treatment with IFNy and
LPS resulted in a significant upregulation of CD40 com-
pared to MO macrophages (Figure 2A), in line with previ-
ous observations [32]. Treatment with IL-4 resulted in a
significant increase of MR expression compared to MO
macrophages (Figure 2A). Remarkably, cell surface expres-
sion of the M1 markers CD86 and CD32 and the M2
marker CD163 did not differ significantly compared to MO
macrophages. CD64 expression showed a tendency to-
wards upregulation on M1 macrophages; however, this did
not reach significance. Results are represented in a graph
depicting the MFI in Figure 2B. Statistically significant dif-
ferences in MFI compared to MO macrophages were ob-
served for CD40 on M1 macrophages and MR on M2
macrophages (P <0.05).

Expression of M1 and M2 macrophage markers in control

brain and normal appearing white matter

While many studies have reported expression of typical
M1 and M2 markers by macrophages this has not been
systematically studied in detail in MS brain samples. To
determine a baseline we first examined the expression of
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typical M1 and M2 markers in the brain of control sub-
jects. CD68 and HLA-DR expression, well-known
markers for macrophages and microglia, was expressed
by microglia and perivascular macrophages (PVM) [42].
Likewise, antibodies directed against the M1 markers,
CD40, CD64 and CD32 decorated virtually all microglia
and PVM, whereas CD86 was expressed by only a minor
subset of microglia. CD40 was also expressed by brain
endothelial cells. As described previously, the expression
of typical M2 markers MR and CD163 were restricted to
PVM [47] (Figure 3). In general, M1 and M2 markers re-
vealed a similar cellular distribution and expression pat-
tern in NAWM compared to control white matter.

Expression of M1 and M2 macrophage markers in MS lesions
Expression of M1 and M2 macrophages/microglia markers
was evaluated in seven active and five chronic active MS
lesions from eight different donors. All M1 markers stud-
ied, including CD40, CD86, CD64 and CD32, were consist-
ently and highly expressed by activated microglia and
myelin-laden macrophages throughout the demyelinated
lesion area. Anti-CD40 showed both a cytoplasmic and
membrane staining pattern while the Fc-y receptors CD64
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Figure 2 Expression of markers on MO, M1 and M2 macrophages stimulated in vitro. Macrophages were polarized to M1 and M2
macrophages (see materials and methods for details) and the expression of markers was analyzed by flow cytometry. In all figures the black bold
line represents M1 macrophages (A). CD40 and CD64 are both shifted in mean fluorescent intensity; however, only CD40 is significantly
upregulated on M1 macrophages compared to MO macrophages. The M2 macrophage population is depicted by a grey line. Mannose receptor
(MR) expression is upregulated on the M2 macrophages, whereas no differences in CD163 expression were observed comparing the different
subsets. The means + SEM were calculated from three independent experiments performed in duplicate and *P <0.05 calculated for mean
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Figure 3 Expression of markers for M1 and M2 phenotype in white matter of control brain. Sections of white matter of control brain were
stained using immunohistochemistry. Proteolipid protein (PLP) staining shows normal abundant myelin (A) Human leukocyte antigen-DR (HLA-DR) and
(D68 staining reveals positive microglia (B,C). M1 markers, including CD40, and CD86 were expressed on microglia (D,E). Antibodies directed against
CD64 and CD32 clearly decorated microglia (F,G), whereas MR and CD163 were expressed by perivascular macrophages (H-1).

and CD32 were present on membranes of all macrophages
and microglia. In active MS lesions MR and CD163, two
well-defined M2 markers, were strongly expressed by
foamy macrophages and by a majority of the PVM
(Figure 4).

Immunofluorescent double staining on five active le-
sions and chronic active lesions of CD40 and HLA-DR
revealed a complete overlap on macrophages/microglia,
indicating that virtually all macrophages/microglia ex-
press CD40. To study the co-expression of M1 and M2
markers, double staining on both active and chronic ac-
tive lesions of CD40 with MR was performed. All mac-
rophages/microglia expressed CD40 and 70% (range 51
to 80%) of foamy macrophages expressed both MR as
well as CD40 in active MS lesions (Figure 5). The over-
lap of M1 and M2 markers was consistently observed in
lesion samples of the different patients.

Chronic active lesions are characterized by a demye-
linated gliotic center and hypercellular rim containing
HLA-DR and CD68-immunopositive activated microglia
and macrophages. In our study most chronic active le-
sions had only activated microglia in the rim and no
foamy macrophages. Only one chronic active lesion
contained foamy macrophages. All M1 markers were
abundantly expressed by activated microglia at the rim

of chronic active lesions (Figure 6). Activated microglia
in the rim of chronic active lesions lacked MR and
CD163 expression, whereas PVM prominently expressed
MR and CD163 (Figure 6H,I). The results are summa-
rized in a semi-quantification of the expression of the
markers in control brain, NAWM, active MS lesions and
chronic active MS lesions (Table 3).

In summary, we here show for the first time that the
majority of foamy macrophages in active MS lesions
consistently express both M1 and M2 markers, indicat-
ing an intermediate activation status. This was a consist-
ent finding in all lesions studied.

Discussion

Macrophages are the most predominant immune cell
type in inflammatory demyelinating MS lesions. The ac-
tivation status of macrophages in MS lesions has not
been studied in detail yet. Therefore, the aim of this
study was to systematically analyze the expression of
markers for M1 (classically activated, pro-inflammatory)
and M2 (alternatively activated, growth promoting) mac-
rophages/microglia in the different lesion types. Our
findings indicate that CD40 and MR are the most dis-
tinctive markers for M1 and M2 macrophages. In vivo
examination of the active and chronic active MS lesions
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Figure 4 Expression of M1 and M2 markers in active multiple sclerosis (MS) lesions. Images were taken from the center of active

demyelinating lesion. Proteolipid protein (PLP) staining shows widespread demyelination and PLP-laden macrophages (insert) (A). Intense labeling
of human leukocyte antigen-DR (HLA-DR) and CD68 positive cells was observed in the center and rim of the lesion. CD68, CD40, CD86, CD64 and
CD32 were markedly expressed by macrophages throughout the lesion area (D-G). Mannose receptor (MR) and CD163 were highly expressed by

foamy macrophages (H,l).

revealed that the expression of typical M1 markers is
more abundant than that of M2 markers and approxi-
mately 70% (51 to 80%) of foamy macrophages present
in active demyelinating lesions express both M1 and M2
markers. In chronic active lesions the M2 markers are
lacking, indicating that the M2 markers extinguish
slowly when an active lesion is developing towards a
chronic active lesion.

Many factors are proposed to push polarization be-
sides IFNY/LPS and IL-4, such as M-CSF and GM-CSF,
which induce other phenotypic marker expression. Fac-
tors involved in cell culture, including growth factors,
media, supplements and stimulation methods will influ-
ence marker expression by the subsets [32,33,48-50].
Our in vitro data show that CD40 is the most distinctive
marker for the M1 phenotype, which is in line with
other studies [34,51]. Both LPS and IFNy (stimuli for
classical activation), induce CD40 expression by macro-
phages and microglia via activation of NF«B [34,51]. In
contrast to previous reports [28,29] we found no signifi-
cant differences in the expression of CD86, CD64 and
CD32 between M1 and unstimulated macrophages. In
previous studies CD86 is significantly upregulated after
IFNy or IL-4 stimulation compared to MO; however, it

upregulated to the same extent between M1 and M2
which is in line with our data [35]. Zeyda et al. showed
that CD86 was significantly upregulated between the
subsets after stimulation with IL-4 and to a greater ex-
tent with IFNy compared to adipose tissue macrophages
[34]; however, their culture method deviates from our
protocol; DNA-se was added and macrophages were cul-
tured in RPMI/FCS10%, which may influence the marker
expression. CD64 and CD32 were upregulated in a study
by Becker after stimulation with IFNy only [49]; how-
ever, another study showed no upregulation of CD32
upon IFNy stimulation [35]. The difference in CD32 ex-
pression after IFNy polarization can be explained by dif-
ferent media, different amounts of IFNy and a different
activation time scheme, RPMI with 5% NHS and IMDM
with 10% FCS, 0.001-1 ng/ml IFNy and 50 ng/ml, 24 to
64 h and 96 h, respectively. CD32 showed no difference
in vitro using our stimulation method of combining
IFNy and LPS to skew macrophages towards an Ml
phenotype. CD64 is considered a marker for M1 macro-
phages [35,49]; however, in a contradicting study, CD64
was not upregulated on M1 macrophages [32]. We ob-
served that CD64 was higher expressed on M1 macro-
phages compared to MO macrophages; however this
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Figure 5 CD40 and mannose receptor (MR) expression on foamy macrophages in an active multiple sclerosis (MS) lesion. Images are
taken at the center of an active MS lesion stained for human leukocyte antigen-DR (HLA-DR) (A) and CD40 (B). Colocalization studies showed a
clear overlap of HLA-DR and CD40 (C). Double staining with anti-CD40 (D) and -MR (E) shows that 70% of the CD40 positive cells were also MR
positive, all MR positive cells are CD40 positive (F).
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Figure 6 Expression of markers for M1 and M2 phenotype in a chronic active lesion. (A) Proteolipid protein (PLP) staining of a chronic
active lesion shows massive demyelination and PLP positive macrophages in the insert. Human leukocyte antigen-DR (HLA-DR) expression was
profound at the rim of chronic active lesions (B). CD68, CD40, CD86, CD64 and CD32 are all clearly expressed by microglia at the rim of the
lesion. Images of macrophage markers were taken at the rim of the lesion (C-G). Mannose receptor (MR)-positive and CD163-positive
macrophages were predominantly observed in the perivascular space (H-1).
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Table 3 Marker expression in multiple sclerosis (MS) lesions

Macrophage Antigen Control NAWM Active Chronic active
lesion lesion
Pan marker CD68 +++ o+
M1 CD40 +++ +++
CD86 + + ++ +++
CD64 ++ ++ +++ +++
CD32 ++ ++ ++ ++
M2 Mannose - - +++ -
receptor
CD163 - - +++ -

NAWM, normal appearing white matter; -’ indicates no positive cells; ‘+'
indicates few macrophages stain positive or the expression level is low; “++'
indicates that the majority (>50%) of the macrophages stain positive; ‘+++
indicates that all macrophages stain positive.

higher expression did not reach significance. Our find-
ings illustrate that the expression of MR is significantly
higher on M2 macrophages after IL-4 stimulation, which
is in line with previous findings [35,50,52]. In our experi-
ments CD163, a marker that is expressed on M2 macro-
phages [32,35,36], was not upregulated after IL-4
stimulation as has been demonstrated before [34,50].
Altogether, our data show that IFNy/LPS skews macro-
phages to CD40-immunopositive M1 macrophages,
whereas IL-4 exposure promotes the induction of MR-
positive M2 macrophages. Taken together these studies
indicate that there is only a partial phenotypic overlap
between GM-CSF and M-CSF polarized macrophages
and IFNy/LPS and IL-4 skewed macrophages.

In vivo, the activation status of macrophages is likely
induced by a complex set of factors, which includes, but
is not limited to, the commonly used in vitro activators.
In normal appearing white matter an upregulation of
possible microglia activators like IL-4, IL-1p are present,
compared to control brain [53]. Because a plethora of ac-
tivators is present in vivo, we decided to continue with a
panel of relevant markers to study the presence of M1
and M2 phenotype. Our results show that microglia in
NAWM and control brain express M1 markers, FC-
gamma receptors, CD64 and CD32, which is line with
previous findings [54]. A recently published study
stressed the differences between NAWM and control
brain by showing the activation status of microglia, based
on marker expression of microglia on RNA level [55].
We could not confirm these findings by the expression of
M1 and M2 markers at protein level. It could well be that
detection at mRNA level is more sensitive than immuno-
histochemical detection of protein expression.

In control brain the expression of CD86 is lacking and
CD40 is present on PVM, microglia and endothelium.
The expression of these co-stimulatory molecules in
NAWM have not been reported before in detail
[47,56,57]. Here we show that CD40 is expressed by most
microglial cells and endothelium, whereas CD86 is weakly
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expressed on the branches of a subset of microglia. No
major differences in expression of CD40 and CD86 were
observed between control brain and NAWM. These find-
ings in human brain are in contrast with findings in mar-
moset monkeys where CD40 and CD86 were completely
absent in control brain from marmoset monkeys [58]. Re-
garding the expression of M2 markers present in the con-
trol brain, it was shown previously that the expression of
M2 markers is limited to the PVM in NAWM and control
brain as confirmed in our study [38,47]. It is postulated
that microglia in control brain are in a resting state [59].
However our data indicate a more ‘vigilant’ state since in
NAWM and control brain the Fc-gamma receptors, CD64
and CD32 are expressed by microglia, as well as the co-
stimulatory molecules CD40 and CD86.

In active MS lesions all foamy macrophages express
CD40, CD86 CD64 and CD32 indicative of an M1 pheno-
type. Previously the expression of Fc-y receptors, CD64
and CD32 by macrophages in active lesions and the pres-
ence of co-stimulatory molecules CD86 and CD40 is de-
scribed before in the CNS on microglia [47,54,56,60]. We
here show that CD86 and CD40 are not only expressed by
microglia, but also by foamy macrophages, indicating their
activated state. CD40 is of special interest, since this re-
ceptor is known to play a crucial role in experimental
autoimmune encephalomyelitis (EAE) [58]. Interaction
between CD40 on macrophages/microglia and its ligand
leads to secretion of cytokines and neurotoxins and
CD40-deficient mice and CD40-ligand knockout mice
fail to develop EAE [61,62]. Animals with EAE treated
with antibodies against CD40 showed reduced clinical
signs indicating that CD40 is crucial for disease induc-
tion and neuroinflammation [41,63-65]. Presence of
CD40 was described on foamy macrophages in active
MS lesions and on endothelium [41,47,57]. In this study
we show that CD40 is abundantly expressed by virtually
all microglia cells and macrophages in MS brains, indi-
cating the vigilant state of these HLA-DR positive cells.

The expression of M2 markers on macrophages was
shown before [38,47]; however, we are the first to show
that MR is also expressed on a majority of foamy mac-
rophages and absent on activated microglia. Scavenger
receptor CD163 showed a similar distribution pattern
as MR, with strong expression on PVM and foamy
macrophages [47,66]. Upregulation of MR and CD163
on macrophages is consistently interpreted as an anti-
inflammatory macrophage activation status [30,38].
However, these receptors are both pathogen recognition
receptors, suggesting that macrophages are actively in-
volved in innate immunity [10].

Our findings confirm previous data demonstrating that
HLA-DR-positive microglia almost have a complete
overlap with CD40 immunoreactivity [57]. Double im-
munofluorescence staining revealed that approximately
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70% of CD40-positive (foamy) macrophages/microglia co-
express MR. Only one previous study showed that a sub-
population of PVM in an active lesion expresses both M1
and M2 markers, hinting at an intermediate activation sta-
tus of the macrophage [47]. Here, we provide evidence that
the majority of macrophages and activated microglial cells
in active demyelinating MS lesions express a combination
of typical M1 and M2 markers. This phenotype ex vivo dif-
fers from that found in vitro, which might be explained by
the fact that in vitro stimulation methods, based on
addition of either IFNy and LPS or IL-4 does not ad-
equately represent the in vivo situation where infiltrating
cells are exposed to an arsenal of pro- and anti-
inflammatory mediators, chemokines and growth factors.

Conclusions

In summary, we show that CD40 and MR are the most dis-
tinctive cell surface markers to identify human M1 and M2
macrophages in vitro. Immunohistochemical analysis re-
vealed that virtually all activated macrophages/microglia
express the typical M1 marker CD40. Interestingly, the ma-
jority (70%) of foamy macrophages in active demyelinating
MS lesions co-express M1 and M2 markers. Together, our
findings suggest that, although macrophages in active MS
lesions predominantly display M1 characteristics, a major
subset of macrophages have an intermediate activation sta-
tus. Many endogenous signals can be responsible for this
intermediate activation state. We are currently investigat-
ing which factor is responsible for induction of this inter-
mediate phenotype.
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