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Different actions of endothelin-1 on chemokine
production in rat cultured astrocytes: reduction of
CX3CL1/fractalkine and an increase in CCL2/
MCP-1 and CXCL1/CINC-1
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Abstract

Background: Chemokines are involved in many pathological responses of the brain. Astrocytes produce various
chemokines in brain disorders, but little is known about the factors that regulate astrocytic chemokine production.
Endothelins (ETs) have been shown to regulate astrocytic functions through ETB receptors. In this study, the effects
of ETs on chemokine production were examined in rat cerebral cultured astrocytes.

Methods: Astrocytes were prepared from the cerebra of one- to two-day-old Wistar rats and cultured in serum-
containing medium. After serum-starvation for 48 hours, astrocytes were treated with ETs. Total RNA was extracted
using an acid-phenol method and expression of chemokine mRNAs was determined by quantitative RT-PCR. The
release of chemokines was measured by ELISA.

Results: Treatment of cultured astrocytes with ET-1 and Ala1,3,11,15-ET-1, an ETB agonist, increased mRNA levels of
CCL2/MCP1 and CXCL1/CINC-1. In contrast, CX3CL1/fractalkine mRNA expression decreased in the presence of ET-1
and Ala1,3,11,15-ET-1. The effect of ET-1 on chemokine mRNA expression was inhibited by BQ788, an ETB antagonist.
ET-1 increased CCL2 and CXCL1 release from cultured astrocytes, but decreased that of CX3CL1. The increase in
CCL2 and CXCL1 expression by ET-1 was inhibited by actinomycin D, pyrrolidine dithiocarbamate, SN50,
mithramycin, SB203580 and SP600125. The decrease in CX3CL1 expression by ET-1 was inhibited by cycloheximide,
Ca2+ chelation and staurosporine.

Conclusion: These findings suggest that ETs are one of the factors regulating astrocytic chemokine production.
Astrocyte-derived chemokines are involved in pathophysiological responses of neurons and microglia. Therefore,
the ET-induced alterations of astrocytic chemokine production are of pathophysiological significance in damaged
brains.
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Background
Chemokines were originally identified as a family of small
proteins having chemoattractive activities on inflammatory
cells. Various chemokines are constitutively or inducibly
expressed in the brain and are involved in physiological or
pathological nerve functions [1,2]. In brain ischemia, head
trauma and neurodegenerative diseases, the expression of
brain chemokines is altered, which modulates neu-

roinflammation and the repair process of damaged nerve
tissues [3]. Astrocytes are one of the chemokine-producing
cells in the brain. Immunohistochemical observations on
damaged nerve tissues showed that production of brain
chemokines, including CCL2/monocyte chemoattractant
protein-1 (MCP-1) and CXCL1/cytokine-induced neutro-
phil chemoattractant-1 (CINC-1), increased in astrocytes
[4-6]. Astrocyte-derived chemokines act on brain micro-
vascular endothelial cells. The chemokine-induced func-
tional changes of vascular endothelial cells promote
infiltration of inflammatory cells and neovascularization at
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the damaged areas. In addition to vascular endothelial cells,
expression of chemokine receptors in normal and patho-
logical brains were shown in neurons, astrocytes and
microglia [1], suggesting that the function of these brain
cells is also regulated by chemokines. During brain injury,
the production of astrocyte-derived extracellular signal
molecules affects the viability of damaged neurons and the
repair of nerve tissues [7]. Studies in cultured neurons
showed that some types of chemokines had a protective ef-
fect against neuronal damage, while other types were detri-
mental [8-12]. In brain disorders, microglia become
activated. Astrocytes are also involved in the regulation of
microglial activation by releasing signal molecules [7].
Microglial activation is accompanied by the enhancement
of microglial function, including phagocytosis, migration
and pro-inflammatory cytokine production. In vitro and
in vivo studies showed that these microglial functions are
modulated by certain chemokines [13-19]. From the vari-
ous actions of brain chemokines, important roles of astro-
cytic chemokine production in neuroinflammation and the
tissue repair process after brain injury are proposed. How-
ever, the regulatory mechanisms of chemokine production
in astrocytes are not fully understood.
Endothelins (ETs), a vasoconstrictor peptide family, are

present in the brain. The production of brain ETs is in-
creased in various brain disorders. Increases in brain ETs
are involved in the pathophysiological responses of nerve
tissues [20-22]. Receptors for ETs are classified as ETA or
ETB types. In the brain, high expression of ETB receptors
was observed in astrocytes [23,24]. ETs have been shown
to regulate the function of astrocytes through ETB recep-
tors. In animal brain injury models, ETB antagonists re-
duced astrocytic proliferation [25,26], indicating that ETB

receptors are involved in the induction of astrogliosis. Ac-
tivation of ETB receptors was shown to induce the
production of several signaling molecules, such as neuro-
trophic factors and cytokines, in cultured astrocytes and
in the rat brain [27]. These findings suggest that ETs regu-
late the pathophysiological response of the damaged brain
by modulating the production of astrocytic signaling mol-
ecules. As for the production of chemokines in the brain,
we previously showed that administration of an ETB agon-
ist increased CCL2 and CXCL1 production in the adult
rat brain [28]. In this study, to clarify the role of ETB re-
ceptors in astrocytic chemokine production, the effect of
ETs on chemokine expression in rat cultured astrocytes
was examined.

Methods
Preparation of rat primary cultured astrocytes
All experimental protocols conformed to the Guiding Prin-
ciples for the Care and Use of Animals of the Japanese
Pharmacological Society and were approved by the Animal
Experiment Committee of Osaka Ohtani University.

Astrocytes were prepared from the cerebra of one- to two-
day-old Wistar rats as described previously [29]. The
isolated cells were seeded at 1 × 104 cells/cm2 in 75-cm2

culture flasks and grown in minimal essential medium
(MEM) supplemented with 10% fetal calf serum. To re-
move small process-bearing cells (mainly oligodendrocyte
progenitors and microglia from the protoplasmic cell
layer), the culture flasks were shaken at 250 rpm overnight,
10 to 14 days after seeding. The monolayer cells were
trypsinized and seeded on six-well culture plates. Astro-
cytes were identified by immunocytochemical observations
of glial fibrillary acidic protein (GFAP), an astrocytic
marker protein. At this stage, approximately 95% of cells
showed immunoreactivity for GFAP. Cultured neurons
and microglia were prepared from the rat cerebrum
according to previously described methods [29].

Treatment with ETs and the other drugs
Before treatment with ETs and other drugs, astrocytes in
six-well culture plates were cultured in serum-free MEM
for 48 hours. ET-1 and Ala1,3,11,15-ET-1 were dissolved
in distilled H2O to make stock solutions. ET antagonists
and signal transduction inhibitors were dissolved in di-
methyl sulfoxide (DMSO). Treatments of cultured astro-
cytes with ETs and other drugs were started by addition
of the stock solutions to serum-free MEM. As a control
for treatments with ET antagonists and signal transduc-
tion inhibitors, equal volumes of DMSO were included
in the medium.

Table 1 Comparison of chemokine mRNA copy numbers
in neurons, astrocytes and microglia derived from the rat
cerebrum

mRNA copy number

(× 103/μg total RNA)

Neuron Astrocyte Microglia

CCL2/MCP-1 189.9 ± 9.8 3050.8 ± 521.5 148.9 ± 31.6

CCL5/RANTES 10.3 ± 0.7 52.5 ± 18.7 4.3 ± 2.2

CXCL1/CINC-1 22.0 ± 2.2 1410.0 ± 266.9 34.4 ± 18.1

CXCL12/SDF-1α 92.1 ± 4.0 255.4 ± 45.7 29.1 ± 13.6

CX3CL1/
fractalkine

1,118.1 ± 108.4 1,721.0 ± 303.5 23.4 ± 6.6

G3PDH 40,081.9 ±
7,335.2

46,575.5 ±
6,274.4

48,586.5 ±
5,733.6

Cultured neurons, astrocytes and microglia were prepared from the cerebra of
Wistar rats and total RNA was extracted. The copy numbers of chemokine
mRNA were determined by quantitative RT-PCR. The copy numbers of G3PDH
mRNA in the same samples were also determined as an internal standard.
Data are the mean ± SEM of 6 to 10 different preparations presented as ×103

copy numbers/μg total RNA. G3PDH, glyceraldehyde-3-phosphate
dehydrogenase; SEM, standard error of the mean.
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Measurement of chemokine mRNA levels by quantitative
RT-PCR
Total RNA was extracted using an acid-phenol method as
described previously [29]. First-strand cDNA was synthe-
sized from total RNA (1 μg) using MMLV reverse tran-
scriptase (200 U; Invitrogen, Carlsbad, CA, USA), random
hexanucleotides (0.2 μg; Invitrogen) and an RNase inhibi-
tor (20 U; Takara, Tokyo, Japan) in 10 μL of buffer supplied

by the enzyme manufacturer. The mRNA levels of
chemokines in each sample were determined by quantita-
tive PCR using SYBR Green fluorescent probes. Each re-
verse transcription product was added to the SYBR Green
Master Mix (Toyobo, Tokyo, Japan) along with the primer
pairs, and the mixture was placed in a thermal cycler
(Opticom 2; MJ Research, Waltham, MA, USA). The fol-
lowing primer pairs were used:
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Figure 1 Effect of ET-1 on chemokine mRNA expression in cultured rat astrocytes. (A) Serum-starved astrocytes were treated with 100 nM
ET-1 for the times indicated. The expression of CCL2, CXCL1, CCL5, CXCL12 and CX3CL1 mRNA was normalized to G3PDH and expressed as the
% of 0 hour. Data are the mean ± SEM of 6 to 16 experiments. *P <0.05 and **P <0.01 versus 0 hour by one-way ANOVA followed by Dunnett’s
test. (B) Astrocytes were treated with the indicated concentrations of ET-1 for one (CCL2 and CXCL1) or six (CX3CL1) hours. Data are the mean ±
SEM of five to eight experiments. *P <0.05 and **P <0.01 versus none by one-way ANOVA followed by Dunnett’s test. ANOVA, analysis of variance;
ET-1, endothelin-1; G3PDH, glyceraldehyde-3-phosphate dehydrogenase; SEM, standard error of the mean.
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CCL2,
5′-TTCACTGGCAAGATGATCCC-3′ and 5′-
TGCTTGAGGTGGTTGTGGAA-3′;
CXCL1,
5′- GAAGATAGATTGCACCGATG −3′ and 5′-
CATAGCCTCTCACACATTTC-3′;
CCL5/RANTES,
5′-CACCGTCATCCTCGTTGC-3′ and 5′-
CACTTGGCGGTTCCTTCG-3′;
CX3CL1/fractalkine,
5′- GAATTCCTGGCGGGTCAGCACCTCGGCATA-
3′ and 5′-
AAGCTTTTACAGGGCAGCCGTCTGGTGGT-3′
CXCL12/ stromal cell-derived factor-1 (SDF-1),
5′-TTGCCAGCACAAAGACACTCC-3′ and 5′-
CTCCAAAGCAAACCGAATACAG-3′;
glyceraldehydes-3-phosphate dehydrogenase (G3PDH),
5′-CTCATGACCACAGTCCATGC-3′ and 5′-
TACATTGGGGGTAGGAACAC-3′.

As a standard for the copy number of PCR products,
serial dilutions of each amplicon were amplified in the
same manner. The amount of cDNA was calculated as
the copy number of each reverse-transcription product
equivalent to 1 μg of total RNA and normalized to the
value for G3PDH.

Determination of chemokine proteins
Serum-starved astrocytes in six-well plates were treated
with ET-1 and the culture medium collected. The level
of immunoreactive chemokines in the culture media
were determined using an ELISA kit for rat CCL2
(Biosource, Camarillo, CA, USA), CXCL1 (Immuno-Bio-
logical Laboratories, Gunma, Japan,) and CX3CL1
(RayBiotech, Norcross, GA, USA) according to the man-
ufacturers’ protocols. The protein content in each well
was determined with a BCA protein assay kit (Pierce,
Rockford, IL, USA).

Results
Effect of ETs on chemokine production in cultured
astrocytes
In the adult rat brain, the mRNA of CCL2, CXCL1,
CCL5/RANTES, CX3CL1/fractalkine and CXCL12/SDF-
1 has been previously detected [4,6,30-32]. These
chemokines are produced by different brain cells, includ-
ing neurons, microglia and astrocytes [3]. Thus, at first,
copy numbers of these chemokine mRNAs in cultured
neurons, microglia and astrocytes were determined.
Copy numbers of CCL2 and CXCL1 in non-stimulated
cultured astrocytes were 10 to 50 times higher than
those in neurons and microglia (Table 1). Expression of
CX3CL1 was high in neurons and astrocytes. Copy

numbers of CXCL12 and RANTES were of similar level
among these cells.
Treatment of cultured astrocytes with 100 nM ET-1 in-

creased mRNA levels of CCL2 and CXCL1, where the
maximum increase was observed in one hour (Figure 1A).
In contrast, CX3CL1 mRNA decreased following ET-1
exposure to approximately 40% of levels observed in
non-treated cells in six hours. ET-1 did not affect
mRNA levels of CCL5 and CXCL12. The effect of ET-1 on
CCL2 and CXCL1 mRNA levels was dose-dependent and
a significant increase was observed at 10 nM (Figure 1B).
The ET-induced decrease in astrocytic CX3CL1 mRNA
was significant at 10 nM. Treatment with 100 nM
Ala1,3,11,15-ET-1, a selective ETB agonist, also increased
CCL2 and CXCL1 mRNA levels in cultured astrocytes,
while it decreased CX3CL1 mRNA (Figure 2). Increases
in CCL2 and CXCL1 mRNA by ET-1 were inhibited by
1 μM BQ788, an ETB antagonist (Figure 3). BQ788 also
inhibited the ET-induced decrease in CX3CL1 mRNA.
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Figure 2 Effects of Ala1,3,11,15-ET-1 on CCL2, CXCL1 and CX3CL1
mRNA expression in cultured rat astrocytes. Serum-starved
astrocytes were treated with 100 nM Ala1,3,11,15-ET-1 for the times
indicated. The expression of CCL2, CXCL1 and CX3CL1 mRNA was
normalized to G3PDH and expressed as the % of 0 hour. Data are
expressed as the mean ± SEM of 4 to 14 experiments. *P <0.05
versus 0 hour by one-way ANOVA followed by Dunnett’s test.
ANOVA, analysis of variance; ET-1, endothelin-1; G3PDH,
glyceraldehyde-3-phosphate dehydrogenase; SEM, standard error of
the mean.
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FR139317 (1 μM), an ETA antagonist, did not inhibit the
effects of ET-1 on astrocytic CCL2, CXCL1 and CX3CL1
mRNA levels. The effects of ET-1 on chemokine release
from cultured astrocytes were examined. Treatment with
100 nM ET-1 for 1.5 to 3 hours increased the release of
CCL2 and CXCL1 protein in the culture medium, while
release of CX3CL1 protein into the culture medium
decreased in the presence of ET-1 (Figure 4).

Effects of signal transduction inhibitors on the ET-induced
alterations of chemokine production
The expression of the mRNAs of several chemokines is
regulated by transcriptional mechanisms and alterations
of mRNA stability. Involvement of transcriptional mech-
anisms in the ET-induced alterations of astrocytic che-
mokine production were examined by using actinomycin
D, a transcription inhibitor. Actinomycin D (1 μg/mL)
gradually decreased basal expressions of CCL2 and
CXCL1 mRNAs in the treatments up to 60 minutes, al-
though the effects were not statistically significant
(Figure 5A and B). In the presence of actinomycin D,
ET-1 did not increase astrocytic CCL2 and CXCL1
mRNAs (Figure 5A and B). On the other hand, the ET-
induced decrease in CX3CL1 expression was not affected
by actinomycin D (Figure 5A and B). Cycloheximide
(10 μg/mL), a protein synthesis inhibitor, had no effect
on ET-induced CCL2 and CXCL1 expression, but
prevented the decrease in CX3CL1 expression (Figure 5A).
ETB receptors belong to Gq-protein coupled receptors.

Activation of astrocytic ETB receptors induces an in-
crease in cytosolic Ca2+ and activation of protein kinase
C (PKC) and mitogen-activated protein (MAP) kinases
[25,33-35]. Ca2+ chelation (a combination of 0.5 mM
ethylene glycol tetraacetic acid (EGTA) and 30 μM 1,2-
bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid
acetoxymethyl ester. (BAPTA/AM)) and PKC inhibition
(staurosporine, 10 nM) did not affect ET-induced CCL2
and CXCL1 mRNA expression (Table 2). On the other
hand, the decrease in CX3CL1 expression was inhibited
by Ca2+ chelation and staurosporine. The inhibition by
staurosporine was BAPTA/AM dose-dependent, where a
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Figure 3 Effects of ET receptor antagonists on ET-induced
changes in CCL2, CXCL1 and CX3CL1 mRNA levels. Serum-
starved astrocytes were treated with 10 nM ET-1 for one (CCL2 and
CXCL1) or six (CX3CL1) hours. BQ788 (1 μM) or FR139317 (1 μM) was
added to the medium 30 minutes before treatment with ET-1. The
expression of CCL2, CXCL1 and CX3CL1 mRNA was normalized to
G3PDH and expressed as the % of no treatment cultures. Data are
the mean ± SEM of five to nine experiments. *P <0.05, **P <0.01
versus no ET-1, #P <0.05, ##P <0.01 versus ET-1 with no antagonist by
one-way ANOVA followed by Fisher’s PLSD test. ANOVA, analysis of
variance; ET, endothelin; G3PDH, glyceraldehyde-3-phosphate
dehydrogenase; NS, not significant; PLSD, protected least significant
difference; SEM, standard error of the mean.
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significant effect was obtained at 10 nM (Figure 6).
SB203580 (a p38 inhibitor) and SP600125 (a JNK inhibi-
tor) inhibited the effect of ET-1 on CCL2 and CXCL1
expression in a dose-dependent manner, but PD98059
(an ERK inhibitor, 50 μM) had no effect (Table 2 and
Figure 6). The ET-induced decrease in CX3CL1 expres-
sion was not affected by these MAP kinase inhibitors
(Table 2). Pyrrolidine dithiocarbamate (PDTC, 100 μM)
and SN50 (10 μM), which inhibits the transcriptional
activities of nuclear factor-kappaB (NFκB), reduced ET-
induced CCL2 and CXCL1 expressions, while these
inhibitors did not alter the effects of ET-1 on CX3CL1
expression (Table 2 and Figure 6). Mithramycin (500 nM),
an inhibitor of transcription factor SP1, diminished ET-
induced CCL2 and CXCL1 expression, but had no effect
on the decrease of CX3CL1 expression (Table 2 and
Figure 6). At the highest concentrations used, these sig-
nal transduction inhibitors did not largely affect basal
expressions of astrocytic CCL2, CXCL1 and CX3CL1
mRNAs [see Additional file 1].

Discussion
ETs increase astrocytic CCL2 and CXCL1 production
Various chemokines, including CCL2, CXCL1, CCL5,
CXCL12 and CX3CL1, are constitutively or inducibly
expressed in the adult brain. A comparison of these che-
mokine mRNA levels in cultured neurons, microglia and
astrocytes (Table 1) revealed higher expression of CCL2
and CXCL1 in astrocytes. The higher expression of
CCL2 and CXCL1 in cultured astrocytes is in agreement
with the observation that astrocytes are the main source
of these chemokines [3]. We previously showed that in-
tracerebroventricular administration of an ETB agonist
increased CCL2 and CXCL1 production in rat cerebral
astrocytes [28]. In this study, treatment with ETs

stimulated the production and release of CCL2 and
CXCL1 in cultured astrocytes (Figures 1 and 4). The ef-
fect of ET receptor agonist and antagonists showed that
the actions of ET-1 were mediated by ETB receptors
(Figures 2 and 3). From these findings, activation of
astrocytic ETB receptors is thought to stimulate CCL2
and CXCL1 production directly. Increased production of
astrocytic CCL2 and CXCL1 was observed in nerve tis-
sue damaged by brain ischemia and neurodegenerative
diseases [4,6,36,37]. Brain ETs have been shown to be in-
creased in several brain pathologies and regulate several
pathophysiological responses of astrocytes, including the
production of extracellular signaling molecules, through
ETB receptors [27]. Thus, the ET-induced chemokine
production in cultured astrocytes suggests that ETs are
one of the factors to stimulate CCL2 and CXCL1 pro-
duction at the damaged nerve area.

ETs decrease astrocytic CX3CL1 production
Differing from CCL2 and CXCL1, production of astro-
cytic CX3CL1 decreased following treatment with ETs
(Figures 1 and 4), which was also mediated by ETB re-
ceptors (Figures 2 and 3). CX3CL1 is relatively abundant
in the brain, where sub-populations of neurons constitu-
tively express the protein [1]. We found that cultured as-
trocytes had a comparably high level of CX3CL1 when
compared to cerebral neurons (Table 1). As for the regu-
lation of astrocytic CX3CL1, pro-inflammatory cyto-
kines, such as tumor necrosis factor alpha (TNFα) and
IFN-γ, stimulate its production in cultured astrocytes
[38]. On the other hand, a negative-regulatory mechan-
ism of constitutive CX3CL1 production was suggested
by the finding that basal CX3CL1 production in human
astrocytomas was reduced by tumor growth factor beta
(TGFβ) [18]. The effects of ETs on CX3CL1 production
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least significant difference; SEM, standard error of the mean.
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indicate an involvement of ETB receptors in the
negative-regulation of astrocytic CX3CL1 production.
Recently, Donnelly et al. [39] showed that expression of
CX3CL1 decreased after spinal cord injury in mice, al-
though its cellular sources were not identified. Thus, the
negative regulation of astrocytic CX3CL1 by ETs may re-
flect the reduced CX3CL1 expression in damaged nerve
tissues.

Signal transduction mechanisms mediating the ET-
induced chemokine production
Activation of astrocytic ETB receptors stimulates several
intracellular signal pathways, including PKC, intracellu-
lar Ca2+, and MAP kinases. The effects of ET-1 on astro-
cytic chemokine production were significant at 10 to
100 nM (Figure 1B), which concentrations of ET-1 acti-
vated signal mechanisms mediated by PKC, Ca2+ and
MAP kinases [25,33-35]. The effects of signal transduction

inhibitors (Table 2 and Figure 5) showed that different
mechanisms mediate ETB receptor signals to regulate
astrocytic chemokine expression. In addition to the
regulation of gene transcription, expression levels of
CCL2, CXCL1 and CX3CL1 mRNA can be regulated by
alteration of their stabilities [40-43]. The effect of ET-1
on CCL2 and CXCL1 mRNA expression was inhibited
by actinomycin D (Figure 5A). Further examination
showed that treatments with ET-1 did not affect the
degradation rates of astrocytic CCL2 and CXCL1 mRNAs
(Figure 5B). These results suggest that stimulation of tran-
scription, rather than increases in mRNA stability, under-
lie ET-induced astrocytic CCL2 and CXCL1 expression.
Both rat CCL2 and CXCL1 genes have recognition
sequences for NFκB and SP1 on the 5′-promotor regions.
Through these recognition sites, transcription of CCL2
and CXCL1 are cooperatively stimulated by NFκB and
SP1 [44-47]. Agreeing with these findings, the inhibition
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of astrocytic CCL2 and CXCL1 expression by PDTC,
SN50 and mithramycin suggests the involvement of
both NFκB and SP1 in the effect of ET-1. MAP kinases,
that is, ERK, JNK and p38, regulate the transcription
activities of NFκB and SP1 in signal transduction path-
ways under several receptors. In astrocytes, activation
of JNK and p38 was reported to stimulate NFκB
[48,49]. We also found that ET-induced activation
(phosphorylation) of SP1 was reduced by SP600125 in
cultured astrocytes [see Additional file 2]. Thus, the in-
hibition of ET-induced CCL2 and CXCL1 expression by
SP600125 and SB203580 may indicate that JNK and
p38 mediate ET receptor signals to NFκB and SP1.
Differing from the effects on CCL2 and CXCL1 ex-

pression, the ET-induced decrease in CX3CL1 mRNA
was inhibited by cycloheximide (Figure 5A). This result
indicates a requirement of protein de novo synthesis for
the effect of ETs on fractalkine expression. Moreover,
Ca2+ chelation and PKC inhibition, but not MAP kinase
inhibition, prevented the effects of ET-1. Rat CX3CL1
mRNA has AU-rich elements in the 3′ regions, where
many regulatory proteins affecting mRNA stability bind
[42]. As is reported in the regulatory mechanisms of
some inflammatory factors [50], ET may stimulate the
induction of regulatory proteins that destabilize CX3CL1
mRNA through Ca2+- and PKC-dependent signals.

Pathophysiological significance of the ET-induced
changes in astrocytic chemokine production
In nerve tissues damaged by brain insults and neurode-
generative diseases, astrocytes undergo a phenotypic
change to reactive astrocytes and alter their ability to

produce various chemokines [7]. By altering the produc-
tion of astrocyte-derived chemokines, the pathophysio-
logical response of the damaged brain is modulated. In
brain pathologies, brain ETs increase in damaged tissues,
which activate astrocytic ETB receptors and induce re-
active astrocytosis [25,26]. Accompanied with the con-
version to reactive astrocytes, ETs modulate the
production of various extracellular signaling molecules
[27]. A major finding of the present study is that ETs
had different actions on astrocytic chemokine produc-
tion: ETs increased CCL2 and CXCL1, but decreased
CX3CL1 production (Figures 1 and 4). The reciprocal
regulation of astrocyte-derived chemokines would result
in the possible modulation of chemokine-induced patho-
logical brain responses by ETs. In the brain, receptors
for CCL2, CXCL1 and CX3CL1 are expressed in vascu-
lar endothelial cells, neurons and microglia [1]. CCL2,
CXCL1 and CX3CL1 all stimulate the proliferation and
migration of vascular endothelial cells [51-53], which in-
dicates that these chemokines have similar actions on
neovascularization after brain injuries. The function of
these chemokines on neuronal cells is controversial.
While CX3CL1 showed a neuroprotective effect [9,11],
CCL2 and CXCL1 were reported to be detrimental [8]
or protective [10,12] on neuronal cells. Thus, the pos-
sible significance of ET-induced astrocytic chemokine
production would be difficult to discuss in view of the
function of neurons and vascular endothelial cells.
On the other hand, the action of CX3CL1 opposes that

of CCL2 and CXCL1 in the regulation of microglial
function. CCL2 and CXCL1 caused the activation of cul-
tured microglia and stimulated the production of

Table 2 Effect of signal transduction inhibitors on ET-induced expression of CCL2, CXCL1 and CX3CL1 mRNA

Ratio of chemokine to G3PDH mRNA copy number

(% of no treatment)

CCL2/MCP-1 CXCL1/CINC-1 CX3CL1/fractalkine

no treatment 100.0 ± 31.4 (20) 100.0 ± 22.0 (20) 100.0 ± 17.5 (24)

100 nM ET-1 313.8 ± 65.1 (20)a 404.7 ± 63.9 (20)a 37.5 ± 8.5 (23)a

+ 30 μM BAPTA/0.5 mM EGTA 307.4 ± 89.0 (7) 342.7 ± 65.0 (7) 122.8 ± 25.2 (9)b

+ 10 nM staurosporine 444.8 ± 122.3 (6) 385.4 ± 79.0 (6) 108.6 ± 25.6 (4)b

+ 100 μM PDTC 129.2 ± 16.5 (12)b 140.2 ± 20.7 (12)b 42.5 ± 8.8 (18)

+ 10 μM SN50 188.7 ± 64.3(8)b 136.1 ± 22.6 (8)b 54.6 ± 23.9 (11)

+ 500 nM mithramycin 37.8 ± 9.2 (8)c 49.8 ± 24.1 (8)c 36.3 ± 11.7 (10)

+ 50 μM PD98059 277.4 ± 90.7 (12) 360.2 ± 103.2 (12) 49.6 ± 7.2 (10)

+ 20 μM SB203580 118.3 ± 36.9 (13)c 229.1 ± 73.6 (13)b 37.1 ± 6.3 (20)

+ 1 μM SP600125 110.2 ± 23.6 (8)b 188.5 ± 22.5 (8)b 47.1 ± 22.0 (10)
aP <0.01 versus no treatment, bP <0.05, cP <0.01, versus 100 nM ET-1 by one-way ANOVA followed by Fisher’s PLSD test. Astrocytes were treated with 100 nM ET-1
in the presence of the signal transduction inhibitors indicated. Total RNA was extracted at one hour (for CCL2 and CXCL1) or six hours (for CX3CL1) after the
addition of ET-1. The inhibitors were included in the serum-free medium for 30 minutes before the addition of ET-1. The copy numbers of CCL2, CXCL1 and
CX3CL1 mRNA was normalized to G3PDH. Results are the mean ± SEM and the numbers of experiments are indicated in parentheses. ANOVA, analysis of variance;
BAPTA/AM, 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid acetoxymethyl ester; ET, endothelin; G3PDH, glyceraldehyde-3-phosphate dehydrogenase;
PDCT, pyrrolidine dithiocarbamate; PLSD, protected least significant difference; SEM, standard error of the mean.
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proinflammatory molecules [19,54]. Inhibition of CCL2
signals attenuated microglial activation and pro-
inflammatory cytokine production in animal models of
brain injury [19,55]. Pro-inflammatory cytokine produc-
tion and migration in cultured microglia were stimulated
by CXCL8/IL-8, a human homologue of rat CXCL1
[14,15]. In contrast, CX3CL1 attenuated microglial acti-
vation and proinflammatory cytokine production in vitro
and in vivo [16,17]. Mice lacking CX3CL1 receptors
showed enhanced activation of microglia in response to
lipopolysaccharide [13], indicating a repressive role of
CX3CL1 in microglial function. Considering the differ-
ent actions among CCL2, CXCL1 and CX3CL1 on
microglia, the reciprocal regulation of astrocytic
chemokine production by ETs may have a pathophysio-
logical significance in the induction of activated micro-
glia. Induction of activated microglia promotes the

neuroinflammatory response and results in the aggrava-
tion of neuronal degradation. Thus, the increase in ETs
after brain insults and neurodegenerative diseases may
show a detrimental action on the damaged brain
through microglial activation induced by altered astro-
cytic chemokine production.

Conclusions
In this study, activation of ETB receptors altered the pro-
duction of CCL2, CXCL1 and CX3CL1 in cultured as-
trocytes. Because astrocytes are a main source of brain
chemokines in neurological disorders, alterations of
astrocytic chemokine production affect several responses
of the damaged brain. Thus, ET-induced alterations of
astrocytic chemokine production indicate a pathophysio-
logical significance of astrocytic ETB receptors.
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Figure 6 Dose-dependent inhibition of ET-induced changes in CCL2, CXCL1 and CX3CL1 mRNA levels by signal transduction inhibitors.
Serum-starved astrocytes were treated with 100 nM ET-1 for one (CCL2 and CXCL1) or six (CX3CL1) hours. Different concentrations of signal
transduction inhibitors (SN50, mithramycin, SB203580, SP600125 and staurosporine) were included in the medium 30 minutes before treatment
with ET-1. The expression of CCL2, CXCL1 and CX3CL1 mRNA was normalized to G3PDH and expressed as the % of no treatment cultures. Data
are the mean ± SEM of 6 to 12 experiments. *P <0.05, **P <0.01 versus no treatment, #P <0.05, ##P <0.01 versus ET-1 with no inhibitor by one-way
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protected least significant difference; SEM, standard error of the mean.
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