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Abstract

Neuroinflammation mediated by activation of microglia and interruption of the blood-brain barrier (BBB) is an
important factor that contributes to neuron death and infarct area diffusion in ischemia reperfusion injury. Finding
novel molecules to regulate neuroinflammation is of significant clinical value. We have previously shown that adjudin,
a small molecule compound known to possess antispermatogenic function, attenuates microglia activation by
suppression of the NF-kB pathway. In this study we continued to explore whether adjudin could be neuroprotective
by using the transient middle cerebral artery occlusion (tMCAO) model. Adjudin treatment after reperfusion significantly
decreased the infarction volume and neuroscore compared to the vehicle group. Staining of CD11b showed that
adjudin markedly inhibited microglial activation in both the cortex and the striatum, accompanied by a reduction
in the expression and release of cytokines TNF-g, IL-13 and IL-6. Concomitantly, adjudin noticeably prevented BBB
disruption after ischemia and reperfusion, as indicated by the reduction of IgG detection in the brain cortex and striatum
versus the vehicle group. This finding was also corroborated by immunofluorescence staining and immunoblotting of
tight junction-related proteins ZO-1, JAM-A and Occludin, where the reduction of these proteins could be attenuated
by adjudin treatment. Moreover, adjudin obviously inhibited the elevated MMP-9 activity after stroke. Together these
data demonstrate that adjudin protects against cerebral ischemia reperfusion injury, and we present an effective

neuroinflammation modulator with clinical potential.
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Introduction

Stroke has become one of the major causes of death
in China and is the leading cause of permanent dis-
ability and mortality worldwide [1]. Ischemia/reperfusion-
induced cerebral injury not only causes great pain to the
patient, but also brings enormous burden to the family
as well as to society as a whole. However, effective therapy
is yet to be discovered. Among the various underlying
mechanisms of stroke, inflammation plays an important
role in the pathogenesis of ischemia/reperfusion-induced
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cerebral injury, although the pathway involved is still
largely unrevealed [2]. Inflammatory response could
be triggered within a few hours after reperfusion and
reaches its peak in the following 3 to 5 days [3]. Dy-
namic balance between the pro-inflammation and anti-
inflammation reactions is disrupted because of the
activation of microglia, a resident macrophage-like cell in
the brain, and the infiltration of macrophages from the
blood after the blood brain barrier (BBB) collapses [4-6].
Over-activated microglia and the disrupted BBB further
exacerbate the inflammation and contribute to the
spreading of the infarction area [7-9]. Finding an effective
anti-inflammation drug that is administered at an appro-
priate window to regulate microglia activation and pro-
tect the BBB could be an efficient approach to protect
the brain against stroke-induced damage. In fact, many
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studies have indicated that inhibition of inflammation
after stroke with anti-inflammation drugs could decrease
the infarct area and the neuroscore [1]. Adjudin (1-(2,4-
dichlorobenzyl)-1H-indazole-3-carbohydrazide), formerly
called AF-2364, is a reversible antispermatogenic com-
pound and a potential male contraceptive that can
disrupt adherens junctions between germ cells and
supporting cells, leading to the exfoliation of germ cells
from the seminiferous epithelium [10,11]. It has been re-
ported that a number of indazole derivatives that are
used as non-steroidal anti-inflammatory drugs (NSAID)
could suppress the production of nitric oxide (NO) and
the release of cytokines and chemokines [12]. In our pre-
vious work, we demonstrated that adjudin could attenu-
ate lipopolysaccharide (LPS)-induced BV2 activation by
suppression of the NF-kB pathway and could reduce
microglial activation in permanent middle cerebral artery
occlusion (pMCAQ) mouse model [13]. However, in that
study, a number of questions were not answered [13].
First, since adjudin was administered two hours before is-
chemia, post-treatment of adjudin that is more clinically
relevant needs be tested. Second, brain edema could
be reduced after adjudin pre-treatment, but the BBB
function was not examined. These issues warrant further
investigation.

In this work, we try to explore if adjudin could attenu-
ate microglial activation, help protect BBB integrity and
improve behavioral score after ischemia/reperfusion by
using the transient middle cerebral artery occlusion
(tMCAOQO) mouse model, which is more relevant to clin-
ical stroke scenarios.

Materials and methods

Reagents and animals

DMSO was purchased from Sigma Aldrich (St. Louis,
MO, USA). Adjudin was provided by Dr. C Yan Cheng of
the Mary M. Wohlford Laboratory, Population Council,
New York. Mice were purchased from Shanghai SLAC
Laboratory Animal Corporation (Shanghai, China).

Surgical procedures

Animal surgical procedures and experimental protocols
were reviewed and approved by the Institutional Animal
Care and Use Committee (IACUC) of Shanghai Jiao
Tong University School of Biomedical Engineering. Adult
male ICR mice weighing 25 to 30 g were used in the
study. Mice were randomly assigned to the adjudin-
treated group, the DMSO-treated group or the sham
group. The surgical procedure of tMCAO was described
previously [14]. Briefly, mice were anesthetized with keta-
mine (100 mg/kg) and xylazine (10 mg/kg) intraperitone-
ally. Mice were placed supinely on a heating pad (RWD
Life Science, Shenzhen, China), which maintains body
temperature at 37.0 £ 0.5°C. The left common carotid
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artery (CCA), the external carotid artery (ECA) and the
internal carotid artery (ICA) were isolated. 6-0 suture
(Dermalon, 1741-11, Covidien, OH, USA) coated with
silicone was introduced into the ECA stump and ad-
vanced from the ICA to the opening of the middle cere-
bral artery (MCA) until a slight resistance was felt. At
this moment, the tip of the suture was located in the an-
terior cerebral artery (ACA). All procedures were per-
formed under an operating microscope (Leica, Wetzlar,
Germany). The success of occlusion was characterized as
the reduction of cerebral blood flow (CBF) down to 10%
of baseline, which was verified by a laser Doppler flow-
meter (Moor Instruments, Devon, England). The ICA
was occluded for 1.5 h, followed by the removal of the su-
ture to allow reperfusion. Mice were injected with adju-
din (50 mg/kg, DMSO stock dissolved in corn oil at a
dilution of 1:10) or DMSO (DMSO dissolved in corn oil
at a dilution of 1:10) intraperitoneally immediately after
reperfusion. The second injection at the same dose was
performed 5 hours after the first administration, and the
third injection was given 48 h after reperfusion, also with
the same dose. The sham group (n=5) underwent the
same procedure without suture insertion. All of the ani-
mals were sacrificed 72 h after reperfusion.

Measurement of infarct volume

Mice from each group were sacrificed 3 d after reperfu-
sion; brain tissue was immediately removed and frozen
in pre-chilled isopentane. The tissue was then cut into a
series of 20-um-thick coronal sections from the begin-
ning of the infarct area to the end, with the distance be-
tween adjacent sections of 200 um. The entire set of
brain sections was immersed in 0.1% cresyl violet for
30 min and then rinsed in distilled water for 10 min.
The infarct area in each section was calculated using the
Image] software by the following formula: contralateral
hemisphere area (mm?) - ipsilateral undamaged area
(mm?). Infarct volume between two adjacent sections
was calculated by this formula:

1/3><h<81+82+\/W),

where S1 and S2 are the infarct areas of the two sec-
tions, and h is the distance between them. The total in-
farct volume was calculated by the sum of all infarct
volume from each pair of adjacent sections [15].

Behavioral assessment

Neurological status was assessed by an investigator who
was blind to the treatment regimen, based on the modi-
fied neurologic severity scores (mNSS) system in which
mNSS is a composite of motor, reflex and balance tests.
Total neurological score was calculated as the sum of
scores on limb flexion (range: 0 to 3), walking gait
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(range: 0 to 3), beam balance (range: 0 to 6) and reflexes
absence (range: 0 to 2). Therefore, neurologic function
was graded on a scale of 0 to 14 (normal score 0; max-
imal deficit score 14) as previously described [16].

Immunohistological staining

Brain cryosections (20 pm in thickness) were fixed with
absolute methanol in a -20°C freezer for about 10 min,
blocked with 10% normal donkey serum and incubated
with one of the following primary antibodies: mouse
anti-CD11b antibody (1:100 dilution, BD Biosciences,
San Jose, CA, USA); rabbit anti-Occludin, rabbit anti-
ZO-1, rabbit anti-IgG, rabbit anti-JAM-A, and rat anti-
CD31 antibodies (all at 1:100 dilution, Life Technologies,
CA, USA). After being washed with PBS, sections were
incubated with Alexa-488-conjugated secondary anti-
body (1:200 dilution, Life Technologies), and nuclei were
stained with 4,6-diamidino-2-phenylindole (DAPI) (1:500
dilution, Beyotime Institute of Biotechnology, China). Con-
focal microscopic images were acquired using a confocal
laser-scanning microscope (Leica TCS SP5 II, Germany).

Western blot analysis

Western blot analysis was performed as previously de-
scribed with some modification [17]. The ischemic re-
gions of left striatum and cortex were lysed in lysis
buffer (Thermo Scientific, Rockford, IL, USA) containing
10 pM leupeptin and 200 pM phenylmethylsulfonyl
fluoride. The lysates were centrifuged at 12,000 g for
20 min at 4°C, and the supernatants were collected. The
protein concentration was measured using the BCA
assay kit (Thermo Scientific). Total proteins (40 pg)
were loaded on 6 to 10% SDS-polyacrylamide gel elec-
trophoresis and were transferred to a nitrocellulose filter
membrane (Whatman). The membranes were incubated
with primary antibodies at 4°C overnight and then hy-
bridized with appropriate HRP-conjugated secondary
antibody (1:5000 dilution, Jackson) at room temperature
for 1 h. After membranes were washed, the immunore-
active bands were detected by enhanced chemilumin-
escence (ECL) (Thermo Scientific), and images were
captured by using the ChemiDoc XRS system (BioRad,
Hercules, CA, USA). The primary antibodies used were
as follows: Occludin/JAM-A/ZO-1 antibodies (1:500 di-
lution, Invitrogen) and B-actin (1:1000 dilution, Santa
Cruz Biotechnology, CA). The intensity analysis was car-
ried out using a Gel-Pro Analyzer (Media Cybernetics,
Silver Spring, MD, USA).

Enzyme-linked immunosorbent assay

The concentrations of TNF-a, IL-1f and IL-6 in sera
from each group of animals were measured by platinum
ELISA Kit: TNF-a (R&D Systems), IL-1p (R&D Systems)
and IL-6 (R&D Systems), according to manufacturer’s
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instructions. The absorbance at 450 nm was determined
using a microplate reader (Synergy2, BioTek). Protein
concentrations were determined with a BCA Protein
Assay Kit (Thermo Scientific). The TNF-a, IL-1p and IL-6
concentration in the serum was calculated with each stand-
ard and normalized against the protein of the samples.

Real-time PCR

Total RNA was isolated from ipsilateral hemisphere of
the adjudin group and the vehicle group and the coun-
terpart of the sham group by using Trizol Reagent (Life
Technologies, CA, USA) and was reverse-transcribed to
¢DNA using a PrimeScript RT reagent kit (TaKaRa).
Quantitative real-time PCR was performed using SYBR
Premix Ex Taq (TaKaRa) and the following primers: IL-6
(sense 5'-tagtccttcctaccccaatttce-3” and anti-sense 5'-
ttggtccttagecactectte-3°); IL-1p  (sense 5'-gcaactgttcct
gaactcaact-3" and anti-sense 5'-atcttttggggcgtcaact-3°);
TNF-a (sense 5'-ccctcacactcagatcatcttct-3° and anti-
sense 5'-gctacgacgtgggctacag-3'); and Rplp0O (sense 5'-
agattcgggatatgctgttgge-3° and anti-sense 5’-tcgggtecta
gaccagtgttc-3’). PCR was performed as previously de-
scribed [13] at the following conditions: denaturing at
95°C for 10 s, followed by 40 cycles of 95°C for 5 s and
60°C for 30 s. Data were analyzed by using the com-
parative threshold cycle (Ct) method, and results were
expressed as fold difference.

Zymography

Activity of MMP-9 were tested by zymography as de-
scribed previously [18] with slight modification. Tissue
samples were prepared as for western blot but without
denaturing before electrophoresis. Samples were loaded
in a zymography specific buffer (BioRad, Hercules, CA,
USA). After electrophoresis, the gel was incubated in
Buffer 1 (2.5% Triton X-100, 50 mM Tris-HCl, 5 mM
CaCl,, pH 7.6) twice for 40 min each with shaking. Then
the gel was incubated in Buffer 2 (50 mM Tris-HCl,
5 mM CaCl,, pH 7.6) twice for 20 min each with agita-
tion. After being washed twice, the gel was transferred
to Buffer 3 (50 mM Tris-HCl, 5 mM CaCl,, 0.02% Brij-
35, pH7.6) and incubated for 42 h at 37°C. Then, the gel
was placed in staining solution (0.05% Coomassie
Brilliant Blue, 30% methanol, 10% acetic acid) for 3 h,
followed by washing in destaining solutions A (30%
methanol and 10% acetic acid in double distilled water),
B (20% methanol and 10% acetic acid in double distilled
water), and C (10% methanol and 5% acetic acid in
double distilled water) for 0.5, 1, and 2 h, respectively.
Thereafter, the gel was photographed.

Statistical analysis
All data are presented as mean + SEM. Data were ana-
lyzed by a one-way ANOVA, followed by the Tukey post



Liu et al. Journal of Neuroinflammation 2014, 11:107
http://www.jneuroinflammation.com/content/11/1/107

hoc test, with P values less than 0.05 considered statisti-
cally significant.

Results

Adjudin exerts a neuroprotective effect against
ischemia/reperfusion injury

In our previous work, administration of adjudin before
surgery had no significant effect in reducing infarct vol-
ume from the pMCAO model [13]. However, the poten-
tial of this small molecule compound has not been fully
tested. Therefore, in this study, we used the clinically
more relevant tMCAO model. First, we aimed to test
whether post-injection of adjudin could reduce infarct
volume as well as neuroscore. In contrast with the ve-
hicle group, mice treated with adjudin significantly re-
duced infarct volume by as much as 50% 3 days after
reperfusion (Figure 1A,B, and Additional file 1: Figure S1).
Moreover, adjudin treatment improved behavioral per-
formance with the neuroscore plummeted by approxi-
mately 40% (Figure 1C). These findings illustrated that
post-treatment with adjudin significantly attenuated is-
chemia/reperfusion induced cerebral injury.

Adjudin attenuates microglial activation after
ischemia/reperfusion

We then investigated whether adjudin also affected
microglia in the tMCAO model. CD11b signal, an indi-
cator of active microglia, was revealed by fluorescence
microscopy (Figure 2A). In the sham group, no obvious
activation of microglia was expected, and no CD11b sig-
nal was detected in either the cortex or the striatum
(Figure 2A, top panel). In the vehicle group, strong
staining of CD11b as widely found in the two brain re-
gions of the ipsilateral hemisphere (Figure 2A, middle
panel). Contrarily, intraperitoneal administration of adju-
din after reperfusion significantly inhibited the activation
of microglia both in the cortex and the striatum where
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much less CD11b signal was detected (Figure 2A, bottom
panel). Statistical analysis of the CD11b signal from brain
sections of mice indicated that adjudin treatment signifi-
cantly attenuated microglial activation in both brain re-
gions (Figure 2B,C).

Adjudin reduces ischemia/reperfusion induced cytokine
production

Ischemia/reperfusion-induced cerebral microglia activa-
tion could upregulate cytokine production. As adjudin
could suppress microglia activation, we further explored
if cytokine production in tMCAO models could be re-
duced after the administration of adjudin. Indeed, adju-
din largely reduced transcription of TNF-a, IL1-B and
IL-6 at mRNA levels (Figure 3A,B and C). Correspond-
ingly, a significant decrease of protein levels of TNF-q,
IL1-B and IL-6 had also been detected in the adjudin
group (Figure 3D,E and F). In sum, these results illus-
trate that adjudin is a potent suppressor of ischemia/
reperfusion-induced neuroinflammation. We also evalu-
ated the iNOS expression at an earlier time point (1 d
after reperfusion). There was a marked increase in the
protein levels of iNOS, while adjudin treatment signifi-
cantly reduced iNOS levels (Additional file 2: Figure S2).
It is likely that adjudin could also inhibit the production
of free radicals early after ischemia.

Adjudin protects against ischemia/reperfusion-induced
blood-brain barrier destruction

Inflammation caused by ischemia/reperfusion in brain
injury is often accompanied with BBB breakdown.
Ruined BBB integrity increases leakage of serum proteins
like IgG or albumin, which results in focal tissue hypoxia
[19]. To further explore whether adjudin has a positive
effect on the BBB destruction, we tested the integrity of
BBB with immunofluorescence staining and western blot.
A tremendous amount of IgG, which permeated both the
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Figure 1 Neuroprotective effect of adjudin on ischemia/reperfusion induced cerebral injury. (A) Cresyl violet staining of brain sections
from mice that underwent a transient middle cerebral artery occlusion (tMCAO) and were treated with either vehicle or adjudin 3 d after reperfusion.
Dash line indicates infarct area. Quantification of the infarct volumes (B) and neurological scores (C) of adjudin-treated and vehicle-treated mice after
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Figure 2 Effect of adjudin on the activity of microglia after transient middle cerebral artery occlusion (tMCAO). Immunofluorescence
staining of CD11b in the cerebral cortex and striatum (A) from mice that underwent sham surgery (sham, top panel), tMCAO followed by vehicle
treatment (vehicle, middle panel) and tMCAO followed by adjudin treatment (adjudin, bottom panel) 3 d after reperfusion. Scale bar= 100 um.
Microglial activation in the ischemic cerebral cortex (B) and striatum (C) is quantified by the intensity of CD11b immunofluorescence. Data were
mean + SEM, N=4 in each group. **P <0.01, **P <0.005.
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Figure 3 Adjudin reduced ischemia/reperfusion induced cytokine production. Bar graph shows the mRNA levels of TNF-a (A), IL-13 (B) and
IL-6 (C) in brain tissue 3 d after reperfusion. Data were expressed as average copies per copy of Rplp0, and normalized to sham group, from five
separate experiments. Relative protein levels of TNF-a (D), IL-1B (E) and IL-6 (F) in blood samples were measured with ELISA. Data were normalized
against the protein level of the sham group. Data were presented as mean £ SEM, n =5 per group. *P <0.05, **P <0.01, ***P <0.005.
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cortex and striatum of the ipsilateral hemisphere of the
vehicle group, was detected (Figure 4, middle panel),
while mice treated with adjudin significantly reduced IgG
leakage (Figure 4, bottom panel). Note that in the sham
group, no IgG signal was found in the same brain regions
(Figure 4, top panel), indicating an intact BBB was in
place. To corroborate this result, tight junction (TJ)-
related proteins ZO-1, Occludin, and JAM-A were exam-
ined by immunofluorescence microscopy in conjunction
with CD31, an endothelial marker that also locates the
BBB, and by western blot to determine the changes of
protein levels. In the sham group, ZO-1 and CD31 sig-
nals were aligned most perfectly in both cortex and
striatum (Figure 5A, top panel), where in the ipsilateral
cortex and striatum of the vehicle group, such align-
ment became disorganized with ZO-1 signal being greatly
reduced, indicative of damaged BBB (Figure 5A, middle
panel). However, in the adjudin group, a certain de-
gree of rescue of such superimposed lining of ZO-1
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and CD31 was observed, suggesting that the BBB de-
struction after ischemia/reperfusion was attenuated
(Figure 5A, bottom panel). Importantly, western blot
analysis of lysates from the two brain regions also
proved that the significant reduction of ZO-1 levels
after ischemia/reperfusion (vehicle versus sham) could
be rescued by adjudin treatment (Figure 5B). Similarly,
we examined Occludin and JAM-A, two T] component
proteins, by immunofluorescence and western blot
(Figures 6 and 7). Adjudin treatment obviously pro-
tected against the T] protein reduction after ischemia/
reperfusion injury, as indicated by the changes in the
intensity of fluorescence signal and immunoblotting
signal of Occludin and JAM-A from the sham, vehicle
and adjudin groups (Figures 6 and 7). Together, these
results further demonstrated that the BBB destruction
after ischemia/reperfusion injury could be effectively
rescued by adjudin treatment, possibly as a result of the
attenuated neuroinflammation.

Vehicle:
ipsi-cortex

Adjudin:
ipsi-cortex

Vehicle:
ipsi-striatum

Adjudin:
ipsi-striatum

Figure 4 Adjudin inhibited ischemia/reperfusion induced blood-brain barrier destruction assayed by detection of IgG. Immunofluorescence
staining for IgG (red) in the cerebral cortex and striatum from mice that underwent sham surgery (sham, top panel), transient middle cerebral artery
occlusion (tMCAQ) followed by vehicle treatment (vehicle, middle panel) and tMCAO followed by adjudin treatment (adjudin, bottom panel) 3 d after
reperfusion, with DAPI staining for contrast. Merged images were shown at larger magnification, and scale bar =100 pym.




Liu et al. Journal of Neuroinflammation 2014, 11:107
http://www.jneuroinflammation.com/content/11/1/107

Page 7 of 10

Figure 5 Adjudin inhibited ischemia/reperfusion induced blood-brain barrier destruction assayed by tight junction related ZO-1.

(A) Immunofluorescence staining for ZO-1 (green) and CD31 (red) in the cerebral cortex and striatum from mice that underwent sham surgery
(sham, top panel), transient middle cerebral artery occlusion (tMCAOQ) followed by vehicle treatment (vehicle, middle panel) and tMCAO followed
by adjudin treatment (adjudin, bottom panel) 3 d after reperfusion. Merged images of ZO-1 and CD31 staining were also shown. Scale bar =100 um.
(B) Representative western blot for ZO-1 levels in the cerebral cortex and striatum from mice of the sham, vehicle and adjudin groups. Densitometric
value of the protein bands normalized to the respective 3-tubulin was also shown.
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Adjudin reduces ischemia/reperfusion-induced MMP-9
activity

It is well known that matrix metalloproteinases such as
MMP-9 could degrade the T] proteins of the BBB. We
continued to test the activity of MMP-9 in both the cor-
tex and striatum from the sham, vehicle and adjudin
groups by zymography. Lysates from these brain regions
were processed and analyzed, and the zymograph clearly
indicated that the upregulation of MMP-9 activity was
significantly inhibited by adjudin treatment (Figure 8).
This result partially explained that the protection of the
BBB by adjudin treatment was mediated by an inhibition
of MMP-9 activation.

Discussion
In this work, we revealed that adjudin could decrease
infarct volume and improve behavioral outcome in an
ischemia/reperfusion-induced cerebral injury mouse model.
Such neuroprotective effect was mediated by an inhibition
of neuroinflammation as marked by a reduction of cytokine
production, along with improved BBB integrity and sup-
pressed MMP-9 activity. Together we presented strong
evidence that adjudin, as an anti-inflammatory molecule,
could be an effective neuroprotective agent to reduce
ischemia/reperfusion injury.

In this study inhibition of pro-inflammatory cyto-
kines could be mediated by both brain and systemic

A Occludin

Figure 6 Adjudin inhibited ischemia/reperfusion induced blood-brain barrier destruction assayed by tight junction protein Occludin.
(A) Immunofluorescence staining for Occludin (green) and CD31 (red) in the cerebral cortex and striatum from mice that underwent sham
surgery (sham, top panel), transient middle cerebral artery occlusion (tMCAO) followed by vehicle treatment (vehicle, middle panel) and tMCAO
followed by adjudin treatment (adjudin, bottom panel) 3 d after reperfusion. Merged images of Occludin and CD31 staining were also shown.
Scale bar= 100 um. (B) Representative western blot for Occludin levels in the cerebral cortex and striatum from mice of the sham, vehicle and
adjudin groups. Densitometric value of the protein bands normalized to the respective B-tubulin was also shown.
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Figure 7 Adjudin inhibited ischemia/reperfusion induced blood-brain barrier destruction assayed by tight junction protein JAM-A.

(A) Immunofluorescence staining for JAM-A (green) and CD31 (red) in the cerebral cortex and striatum from mice that underwent sham surgery
(sham, top panel), transient middle cerebral artery occlusion (tMCAOQ) followed by vehicle treatment (vehicle, middle panel) and tMCAO followed
by adjudin treatment (adjudin, bottom panel) 3 d after reperfusion. Merged images of JAM-A and CD31 staining were also shown. Scale bar= 100 pm.
(B) Representative western blot for JAM-A levels in the cerebral cortex and striatum from mice of the sham, vehicle and adjudin groups. Densitometric
value of the protein bands normalized to the respective 3-tubulin was also shown.
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inflammation, which should not be separately considered.
Inflammation caused by ischemia/reperfusion in the brain
has been well studied, but systemic inflammatory re-
sponses after stroke have been characterized relatively less.
Cerebral ischemia initiates a complex cascade of events
that lead to focal brain injury, and inflammation plays an
important role in those events. Inflammatory products de-
rived from the ischemic area could cross the disrupted
BBB and cause reciprocal systemic immune response as
previous researches have reported. Cytokines like TNF-a
and IL-6 are significantly increased in the peripheral im-
mune system in both clinical and experimental stroke

[20-22], and the activation of the peripheral immune sys-
tem could also affect the already disrupted ischemic area,
which could form a vicious circle and further spread the
infarct area.

As our previous study has shown, adjudin could in-
hibit microglial activation in the pMCAO model [13].
In this research, a tMCAO model was introduced that
could better mimic the clinical situation of stroke pa-
tients. With the withdrawal of the filament after 1.5 h
occlusion, reperfusion of blood could induce another
wave of damage to the penumbra area around the infarct
core, mediated by ROS and inflammation [23]. CD11b
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staining revealed that post-treatment with adjudin also
inhibited microglial activation in the tMCAO model
Concomitantly the heightened expression of cytokines
TNE-a, IL-1p and IL-6 was also significantly attenuated
by adjudin, further demonstrating diminished neuroin-
flammation by this agent.

As a cardiac-cerebral vascular disease, stroke is often
companied with BBB disruption [24]; thus, maintenance
of BBB integrity is a key strategy to protect brain from
ischemia/reperfusion induced injury [15,25,26]. The BBB
is a highly specialized structure located in the brain
endothelial cells [27,28]. In cooperation with pericytes,
astrocytes and microglia, the BBB could prevent plasma
components such as leukocytes from infiltrating the
brain [29]. In many neurodegenerative diseases like mul-
tiple sclerosis and Alzheimer’s disease, BBB integrity
is compromised, leading to the leakage of blood cells,
which further aggravate inflammation and generate neuro-
toxic products that can finally result in neuron death
[30-32]. In this study, IgG immunofluorescence staining
showed a decreased infiltration of this molecule in the
adjudin-treated group versus the vehicle group, reflective
of a better preserved BBB. Immunofluorescence staining
and western blot analysis of ZO-1, Occludin and JAM-A
further demonstrated that adjudin preserved BBB integrity
in ischemia/reperfusion injury models.

TJ is the core part of the BBB, which is located in the
tightly sealed monolayer of brain endothelial cells (BEC)
[29]. With complex molecular interaction, T] confers
BBB the capacity to preclude blood substance from per-
meating [33]. In many experimental neuronal disease
models TJ-related proteins like ZO-1, Occludin and
JAM-A proved to be reduced, which consequently com-
promised the integrity of the BBB [34]. MMPs, which
were significantly increased after ischemia/reperfusion-
induced brain injury, were considered to be responsible
for reducing ZO-1 and Occludin [35,36]. Numerous
prior studies indicated that activated microglia could re-
lease MMPs after stroke [8]. Hence a ‘vicious circle’ may
form: BBB disruption caused by the ischemia/reperfu-
sion facilitates infiltration of macrophages and other
immune cells in the blood, which aggravates the in-
flammation and further destroys the integrity of the
BBB. As a consequence, the core infarction area spreads
towards the peripheral area and brings severe damage
that cannot be reversed. Our data indicated that adjudin
could break this ‘circle’ by inhibiting the activation of
microglia. Consequently, further escalation of brain in-
jury could be attenuated.

Even though the activity of MMP-9 could be signifi-
cantly inhibited by administration of adjudin, the under-
lying mechanisms still remain largely unrevealed. NF-xB
could be the upstream regulator of MMP-9, and activity
of MMP-9 could be suppressed by the inhibition of the
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NF-«B pathway [37,38]. In our previous work, we have
already demonstrated that adjudin could inhibit NF-xB
activity in vitro. But whether NF-kB still plays a role in
the pathway in which adjudin exerts its neuroprotective
effect in vivo needs to be studied. Mechanisms under-
lying BBB preservation by adjudin is worthy of further
research. Adjudin is known not to perturb the blood-
testis barrier even when administered at a much higher
concentration; it only disrupts the adhesion between the
sperm and the supporting cells [10]. Adjudin’s capacity
to preserve the barrier function in the brain after injury,
on the other hand, offers an intriguing point to the stud-
ies in reproductive physiology.

Additional files

Additional file 1: Figure S1. Assessment of relative microglia activation
and lesion size after adjudin treatment. (A) Quantification of immunostaining
signals of CD11b in the ipsilateral hemisphere, which was pooled from serial
sections of four animals in each group. Results were normalized to the
vehicle group (100%). (B) Relative infarct volume changes after adjudin
treatment, which was a replot of Figure 1B.

Additional file 2: Figure S2. Adjudin inhibited ischemia/reperfusion
induced iINOS expression after 24 h reperfusion. Representative western
blot for INOS levels in the cerebral cortex and striatum from mice of the
sham, vehicle and adjudin groups. Densitometric value of the protein
bands normalized to the respective 3-tubulin was also shown.
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