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MIF: Mood Improving/Inhibiting Factor?
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Abstract

Although major depressive disorder imposes a serious public health burden and affects nearly one in six individuals
in developed countries over their lifetimes, there is still no consensus on its pathophysiology. Inflammation and
cytokines have emerged as a promising new avenue in depression research, and, in particular, macrophage
migration inhibitory factor (MIF) has been shown to be significant in depression physiology. In this review we
summarize current research on MIF and depression. We highlight the arguments for MIF as a pro- and
antidepressant species and discuss the potential implications for therapeutics.
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Introduction
Major depressive disorder (MDD) is a clinical syndrome
defined by chronic disturbances in emotion and ideation
that are accompanied by somatic or neurovegetative symp-
toms [1]. The disease has a worldwide lifetime prevalence
of 12%, with the prevalence in developed countries (USA
and Europe) as high as 18% [2]; this figure is increasing
over time [3]. Additionally, depressive mood is often co-
morbid with other psychiatric conditions such as anxiety
and eating disorders, as well as with chronic medical condi-
tions such as cancer, cardiovascular disease, neurological
disorders, and chronic inflammatory diseases [4]; this is
often called ‘secondary depression’ [5]. Comorbid depres-
sion significantly worsens outcomes in coronary heart dis-
ease, diabetes mellitus, and stroke [6,7]. Depression can
also cause cognitive symptoms [8] that can produce severe
psychosocial deficits [9]. Despite these considerations, treat-
ment for depression has not changed significantly in recent
years. Current treatments do not adequately address cogni-
tive deficits in depression [10], and there remain few solu-
tions for treatment-resistant depression, which affects
almost half of the patient population [11].
One of the reasons for the slow progress in this area is

the lack of a unified theory of the pathobiology of depres-
sion. Several hypotheses are currently supported by re-
search. One of the oldest is the monoamine theory, which
asserts that depression is caused by a depletion of
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monoamines (such as serotonin or norepinephrine) in the
brain [12]. Selective serotonin reuptake inhibitors (SSRIs)
operate on this premise, and they are currently among the
first-line treatments for major depression [13]. However,
this theory fails to explain the delay in remission during
treatment with SSRIs, or why depletion of monoamines
does not reproduce depressive symptoms in healthy con-
trols. As a result, a neurotrophic theory of depression has
emerged: atrophic changes are found in the postmortem
brains of MDD patients, and increases in neurogenesis or
neuroplastic factors have antidepressant effects [12]. Any
unified theory of depression would doubtless need to in-
corporate aspects of both of these hypotheses.
A large body of evidence has also pointed to an inflam-

matory etiology in depression [14]. Depressed mood
develops in nearly a third of patients treated with recom-
binant interferon alpha, and is more prevalent in patients
with chronic inflammatory diseases [15,16]. Systemic in-
flammation produces sickness behavior that resembles de-
pression in both patients and rodent models [17]. One of
the challenges of this hypothesis is explaining how periph-
eral cytokines can cross the blood brain barrier and affect
the central nervous system to induce depression. One pro-
posed explanation centers on the cytokine-activated en-
zyme indoleamine 2,3-dioxygenase, which has been shown
to induce depression-like behavior. It degrades neural tryp-
tophan into 3-hydroxykyurenin and quinolinic acid; in
addition to being neurotoxic, these metabolites also drain
local stores of tryptophan, which is a prerequisite in the
synthesis of serotonin [18].
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Macrophage migration inhibitory factor
With mounting evidence for a role for cytokines in de-
pression, macrophage migration inhibitory factor (MIF)
has emerged as a strong candidate for a pathophysio-
logical role. MIF is one of the first cytokines to be inves-
tigated, originally identified by its ability to prevent
random migration of macrophages. It is released from
intracellular pools by T- and B-lymphocytes, monocytes,
macrophages, dendritic cells, neutrophils, eosinophils,
mast cells, and basophils. It is also widely distributed in
tissues [19]. Its release is triggered when cells are ex-
posed to microbial products, pro-inflammatory cyto-
kines, or specific antigens. Upon release, it acts in an
autocrine and paracrine fashion to induce production of
pro-inflammatory cytokines [20]. It also opposes the
anti-inflammatory activity of glucocorticoids [21], which
will be discussed later. Finally, it has been shown to have
a role in cellular responses to DNA damage and cell
cycle regulation [22]. MIF has been implicated in several
disease conditions, including sepsis [23], acute respira-
tory distress syndrome [24], tuberculosis [25], and dia-
betes [26].
MIF has been shown to bind the transmembrane re-

ceptor CD74 and complex with CD44, with subsequent
signal transduction via extracellular signal-regulated ki-
nases (ERK1/ERK2), which are subtypes of mitogen-
activated protein kinases (MAPK) [27]. This leads to
several downstream effects that mediate the physio-
logical effects of MIF. Particularly significant is the pro-
duction of prostaglandin E2 (PGE2). Upregulation of
phospholipase A2 (PLA2) is likely important in both the
pro-inflammatory cascade and inhibition of glucocortic-
oid activity [28]. MIF also increases expression of TLR4,
which is involved in immune responses to pathogenic
bacteria as well as the pathogenesis of endotoxemia [29].
In addition, MIF promotes survival of pro-inflammatory
cells by inhibition of the tumor suppressor p53 [30].
MIF has been shown bind and inhibit JUN-activation
domain-binding protein 1 (Jab1), a coactivator of activa-
tor protein 1 (AP1), which is involved in cell growth.
MIF also acts as an enzyme in vitro, showing D-
dopachrome tautomerase and thiol protein oxidoreduc-
tase activities [31,32].
There are multiple lines of research pointing to a role

for MIF in the pathobiology of depression. These find-
ings have (i) identified MIF expression in the brain, par-
ticularly in areas significant to the behavioral symptoms
of depression; (ii) established the significance of the
hypothalamic-pituitary-adrenal (HPA) axis in depression,
with which MIF has an intricate relationship; (iii) shown
an interaction between MIF and both lifestyle and
pharmacological antidepressant treatments; (iv) deter-
mined a connection between MIF and neurogenesis, an-
other important avenue of depression research; and (v)
explored MIF as a biomarker in major depression and
other mood disorders. There is still much uncertainty
about MIF’s exact pathophysiologic role, and whether its
activity promotes or obstructs pathological processes in
depression. The goal of this review is to summarize
current research on the topic, highlight evidence for
MIF as a pro- or antidepressant, and address the poten-
tial for future developments in this area.

MIF in the central nervous system
Although MIF was originally identified as a product of
T-lymphocytes, it was later discovered to be ubiquitous,
with especially high expression rates in epithelia and
endocrine tissues [20]. Several studies have also highlighted
MIF expression in the central nervous system (CNS).
Immunostaining of bovine brain has established MIF
expression in the subependymal astrocytes, CA3/CA4
pyramidal cells of the hippocampus, and granule cells of
the dentate gyrus [33]. Similar techniques have been
used to localize MIF expression in rat brain to choroid
plexus epithelia, ventricular ependymal cells, and cerebral
astrocytes; the presence of MIF mRNA in astrocytes
and neurons has also been confirmed with in situ
hybridization [34]. An analysis of rat brain by Bacher
and colleagues revealed MIF expression in neurons of
the cortex, hypothalamus, hippocampus, cerebellum,
and pons [35]. Conboy et al. used immunohistochemistry
to establish MIF expression in astrocytes and the sub-
granular zone of the hippocampus [36]. Interestingly,
several of these areas contain proliferating or maturing
cell populations, which is an important consideration
for neurogenesis. There is significant regional association
with glucocorticoid activation.
MIF has also been isolated in human brain tissue, with

high levels of MIF mRNA expression in all regions [37].
Human neural MIF maintains high expression levels
throughout life (compared to other tissues, whose levels
decline with age), which has led some to propose a
maintenance role for MIF in isomerization of reactive
catecholamine metabolites to neuromelanin precursors
[38]. Neuromelanin has been shown to be neuroprotec-
tive in the pathobiology of Parkinson’s disease due to its
role as a scavenger and sink for toxic metabolites [39].
MIF has putative roles in several CNS inflammatory
conditions, including multiple sclerosis [40] and cerebral
ischemia-reperfusion injury [41], as well as being impli-
cated in tumor growth in the CNS [19].
Extensive research has been done in identifying brain

areas significant in depression. Schmidt and colleagues
identified corticostriatal projection neurons as being es-
sential for antidepressant response [42]. A 2008 review
of neuroimaging, lesioning, and postmortem analyses
posits a visceromotor network underlying the physiology
of emotion and mood, with dysfunction in this circuit
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leading to the symptoms of depression [43]. This net-
work involves interplay between the medial prefrontal
cortex, amygdala, hippocampus, and various limbic
structures. It is noteworthy that this circuit includes the
hippocampus, one of the areas previously identified as
showing high MIF expression. This model has been ap-
plied to deep brain stimulation, an emerging approach
to treatment-resistant depression [44].

MIF and glucocorticoids
As mentioned above, MIF opposes the activity of glu-
cocorticoids on the immune system. This activity of
glucocorticoids is well understood, and oral corticoste-
roids are in use by 0.5% of the general population. Glu-
cocorticoids are produced endogenously as cortisol
and released by the adrenal glands upon stimulation by
adrenocorticotropic hormone (ACTH), secreted by cor-
ticotropic cells of the anterior pituitary; those cells re-
lease ACTH in response to stimulation by hypothalamic
corticotropin-releasing hormone (CRH). This process is
called the HPA axis. Corticosteroids bind cytosolic re-
ceptors that dimerize and translocate to the nucleus,
downregulating transcription of pro-inflammatory cy-
tokines and decreasing production of prostaglandins
[21]. These effects are mediated by interactions with
NFkB [45], an important transcriptional regulator.
Specifically, glucocorticoids upregulate expression of
annexin 1 [46] and MAPK phosphatase 1 (MPK1) [47],
which both cause downregulation of PLA2. In addition
to being involved with the production of prostaglan-
dins and leukotrienes from arachidonic acid, PLA2
also stimulates release of cytokines via Jun N-terminal
kinases (JNK) [48].
As discussed above, MIF causes upregulation of PLA2,

likely downstream of ERK1/2 signaling pathways [28]. It
may also affect NFkB via its interaction with Jab1, which
can lead to suppression of the inhibitory binding factor
of NFkB (IkB) [22]. MIF is expressed in cells at every
level of the HPA axis [49]. Its plasma levels follow a cir-
cadian rhythm that is comparable to that observed for
plasma cortisol [21], and it is released from pituitary
cells by CRH in a dose-dependent fashion [50]. Cortisol
has also been shown to induce secretion of MIF with a
bell-shaped dose response curve [51], in which high
levels suppress MIF production. This seems to indicate a
homeostatic balance between MIF and glucocorticoids,
with the dominant species determining whether to pro-
mote immune responses (in infection) or dampen them
(to protect from the harmful effects of inflammation).
It is well established that patients with MDD experi-

ence dysregulation of the HPA axis, manifesting as alter-
ations in cortisol secretion and loss of suppression by
dexamethasone [52,53]. These abnormalities manifest in
40 to 60% of patients with MDD [54]. This HPA
dysregulation is similar to the hormonal changes ob-
served in Cushing’s disease, albeit to a lesser degree [55];
interestingly, Cushing’s patients experience a greater
incidence of mood disorders, which resolve upon
normalization of cortisol levels [56]. Although patients
with MDD do not experience Cushingoid symptoms per
se, strong associations have been found between the
hypercortisolism of depression and physical changes as-
sociated with Cushing’s disease, including hippocampal
atrophy, cognitive impairment, and abdominal obesity
[55]. These hormonal changes seem to be related to ad-
renal hyperresponsiveness to ACTH [54] as well as al-
tered responses to glucocorticoids, especially at the
level of negative feedback in the pituitary [17].
The relationship between altered glucocorticoid signal-

ing and depression has been reiterated in mouse models,
although there is still insufficient evidence to substanti-
ate a true ‘glucocorticoid receptor theory of depression’
[57], especially since roughly half of MDD patients do
not manifest HPA abnormalities. However, HPA dysreg-
ulation may represent one pathway among many that
converge to produce the symptoms of depression. Sig-
nificantly, stress and corticosteroids have also been
shown to inhibit hippocampal neurogenesis; this effect is
reversed by antidepressants [58]. MIF’s role in this
scheme has been investigated: Edwards et al. found that
MIF levels were 40% higher in healthy volunteers who
showed depressive symptoms on the Beck Depression
Inventory (BDI), and elevated MIF was associated with
decreased cortisol response to acute stress and lower
morning cortisol values [59].

MIF and antidepressant treatments
Antidepressant response is a commonly used paradigm
in depression research. Since the pathobiology and gen-
etics of depression remain unknown, and many of its
symptoms are impossible to replicate in an animal
model, it has become necessary to design experimental
models based on reproducible responses to established
antidepressant treatments [60,61]. These models utilize
both classical treatments, such as selective serotonin re-
uptake inhibitors (SSRIs) and electroconvulsive therapy
(ECT), as well as new treatments like increased physical
activity and deep brain stimulation [62].
MIF has been tested against traditional antidepressant

treatments. An assay of motivated behavior has shown
an association between the ERK1/2 pathway and re-
sponses to tricyclic antidepressants [63]. Conboy and
colleagues determined that fluoxetine, a commonly ad-
ministered SSRI [13], causes an increase in neurons im-
munoreactive for MIF. They also found that MIF
knockout (KO) mice and mice given the MIF inhibitor
[64] ISO-1 showed decreased neurogenesis after admin-
istration of fluoxetine. In addition, deletion of MIF
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resulted in increased depressive symptoms in the Porsolt
forced swim test for behavioral despair (FST) and im-
pairments in hippocampal spatial learning and memory
in the Morris water maze. They concluded from these
results that MIF is significant in the neurogenic effects
of antidepressants [36].
Physical activity (PA) is emerging as an exciting new

avenue of therapy for depression. PA has relatively few
adverse effects, and can positively influence other
physiological and psychological disorders. PA has been
shown to be immunomodulatory, promoting expression
of certain cytokines and immune cells and reducing
others, as reviewed elsewhere [65]. PA also induces pro-
duction of erythropoietin (EPO), a glycoprotein hor-
mone involved in red blood cell hematopoiesis [66].
EPO and its receptor have recently been elaborated in
the CNS [67], and they have been shown to have neuro-
trophic and neuroprotective effects [68].
Moon et al. found that the antidepressant effects of exer-

cise were partially mediated by MIF, which they concluded
functions as an antidepressant [69]. Using data from mRNA
microarrays, they determined that both voluntary exercise
and ECT induce MIF. Similar to the results from Conboy
et al. [36], MIF−/− mice showed increased depressive behav-
ior and decreased antidepressant effects from exercise on
the FST. Intracerebroventricular (icv) MIF administration
had a direct antidepressant effect on the FST. They
also analyzed gene expression patterns for brain-derived
neurotrophic factor (BDNF), an important species in
neurogenesis [70], and tryptophan hydroxylase-2 (Tph2),
a rate-limiting enzyme in brain production of serotonin
[71]. Both were upregulated in exercise and icv adminis-
tration of MIF. Induction of Tph2 by MIF was matched
with increased expression of serotonin in a recombinant
cell line. It was further determined that these effects are
all dependent on CD74 and ERK1/2, both established fac-
tors in MIF signal transduction [20,64].

MIF and neurogenesis
MIF is known to have a role in embryonic development
and cellular proliferation. As mentioned above, it pro-
motes cell growth and inhibits apoptosis via inhibition
of p53, a tumor suppressor protein. Swant et al. estab-
lished in fibroblasts that RhoA GTPase is an important
link between MIF and cyclin D1, which promotes cell
cycle progression by phosphorylation of Rb, another
tumor suppressor protein [72]. Inactivation of Rb leads
to disinhibition of E2F, which promotes synthesis of S
phase proteins and subsequent cellular proliferation
[73]. MIF directly stimulates activation of RhoA.
Ito and colleagues determined that MIF is an import-

ant factor in embryonic development of zebrafish, a
commonly used model for embryogenesis. Using whole-
mount in situ hybridization (WISH) they detected
widespread MIF expression in embryonic structures, in-
cluding eyes, tectum, branchial arches, and gut struc-
tures. Using antisense Morpholino-mediated knockdown
(MO), they determined that MIF MO fish displayed a re-
producible phenotype of abnormal development in eyes
and cartilage structures, and, significantly, in brain struc-
tures such as the tectum and fourth ventricle [74]. Simi-
lar expression patterns have been observed in avian,
murine, and other mammalian models [75-77]. MIF has
also been shown to promote proliferation and survival of
neural stem progenitor cells in vitro [78].
It is notable that MIF expression in the brain is local-

ized in regions of cellular proliferation. As discussed
above, MIF expression has been found in proliferating
cells of the subgranular zone of the hippocampus, and is
modulated by treatments affecting neurogenesis (chronic
stress, corticosteroids, and antidepressants). MIF dele-
tion by genetics or inhibitors also attenuates both basal
and induced neurogenesis [36]. Similarly, Moon et al.
found that MIF induces the production of BDNF [69],
whose role in neurogenesis is well-established [70]. A
summary of results from significant animal studies of
MIF and depression can be found in Table 1.

MIF as a biomarker
With inflammation implicated in pathophysiology of de-
pression, several groups have examined cytokines as de-
pression biomarkers [79]. Rodent studies have indicated
that serum MIF increases in response to acute stress
[49,80]. Several groups have examined MIF levels in hu-
man serum in the context of depressive symptoms. A
study of male undergraduate students presented with a
public speaking task determined that subjects with mild
to moderate depression on the BDI demonstrated higher
baseline serum levels of MIF as well as increased lym-
phocytes [59,81]. Similar results have been reported in
pregnant women, where an association was determined
between depressive symptoms and increased MIF. In-
creased serum MIF was also observed after an immune
challenge in pregnant patients with depressive symptoms
as measured by the Center for Epidemiologic Studies
Depression Scale (CES-D) [82]. Interestingly, studies of
healthy patients with negative mood symptoms as mea-
sured by the Zung self-rating depression scale (SDS)
showed no significant association between serum MIF
and SDS mood scores [83]; associations were found with
IL-1β, a species known to be elevated in depression [84].
MIF has also been examined as a biomarker in the

context of clinical depression. In a drug trial examining
celecoxib add-on therapy to reboxetine (a norepineph-
rine reuptake inhibitor), MDD patients had an increased
serum MIF at baseline with no change during treatment
[85]. Similar results were found in an analysis of
leukocyte mRNA expression in serum from participants



Table 1 Animal studies of macrophage migration inhibitory factor (MIF) in the setting of depression or depressive
etiologies

Authors Model (n) Intervention Analysis Results

Conboy
et al. [36]

Adult male Wistar rats (48) Chronic unpredictable stress,
chronic corticosterone

Immunohistochemistry for Ki-67,
MIF-IR cells in dentate gyrus

MIF co-localizes with proliferative
markers

MIF levels correlate with
neurogenesis

WT and MIF KO mice (16) Fluoxetine (ip, od/14days),
ISO1 (od/14days)

Immunohistochemistry for PCNA,
DCX, BrdU, Ki-67, MIF-IR cells in
dentate gyrus

Loss of MIF results in decreased
basal and antidepressant-
stimulated neurogenesis

WT and MIF KO mice
(9, 16, 20, 8)

Acute stress exposure ELISA for serum corticosterone,
Western blot for receptor expression

MIF KO mice show no significant
difference from WT in levels of
serum glucocorticoids or receptor
expression

WT and MIF KO mice (52, 20) None FST, water maze, acoustic fear
conditioning

MIF KO mice show increased
behavioral despair

MIF KO mice show impaired
hippocampal spatial learning and
memory, intact amygdalar fear
conditioning

Moon
et al. [69]

Male Sprague–Dawley rats
(13, 4)

Voluntary exercise (running
wheel), ECS (55 mA pulses,
100/s)

RT-PCR, Western blot,
immunohistochemistry for MIF
mRNA/protein

MIF mRNA is upregulated by
exercise and ECS

Neuro-2A and RBL-2H3 cells (3);
WT and MIF KO mice (12 to
16); male Sprague–Dawley rats
(8 to 12)

MIF (300 ng/mL), exercise/ECS
(see above), MIF (icv), CD74
siRNA, CT04 (5ug/mL), U0126
(10 uM)

RT-PCR for candidate genes (Bdnf,
Fgf2) and neurogenesis genes (Dcx,
Pax6), HPLC for 5HT, Western blot
for P-ERK1/2

MIF induces expression of BDNF
and Tph2, and also increases
intracellular concentrations of 5HT

Effects on BDNF, Tph2, and 5HT
are CD74 and ERK1/2 dependent

WT and MIF KO mice (12 to
16); male Sprague–Dawley rats
(16 to 20)

Exercise (see above), MIF (icv) FST MIF KO mice show diminished
antidepressant effects of exercise

Exogenous recombinant MIF has
antidepressant activity

ECS = electroconvulsive shock; FST = forced swim test; icv = intracerebroventricular injection; ip = intraperitoneal injection; IR = immunoreactive; KO = knockout;
od = once daily; WT = wild-type.
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in the Genome-based Therapeutic Drugs for Depression
(GENDEP) project. In addition to observing increased
MIF in MDD patients compared to healthy controls, the
group also found that treatment responders had signifi-
cantly higher levels of serum MIF than patients who
resisted treatment. MIF levels were shown to reduce
over time in this study, but this was not associated with
treatment response [86]. Results of human studies with
MIF and depression are summarized in Table 2.

Discussion
Despite significant evidence for MIF involvement in
the pathobiology of depression, some uncertainty re-
mains about its exact role. MIF is an established spe-
cies in the brain with suggested protective roles against
neurodegenerative disease [38]. Multiple groups have
identified a role for MIF in mediating antidepressant
activities, and have shown that loss of MIF results in
an antidepressant phenotype; there is even evidence
that MIF has direct antidepressant effects. These stud-
ies have linked MIF to monoamine production and
neurogenesis, both implicated in the pathobiology of
depression [36,69]. Conversely, increased serum MIF
has been identified in both patients with major depres-
sion and healthy subjects with depressive symptoms
[81,82,85,86], although these studies have shown
mixed results [83]. At least one study has associated
these changes with the HPA axis, which has also been
implicated in depression [59]. See Figure 1 for a sum-
mary of putative roles for MIF in depression.
It seems counterintuitive to assert that MIF is both an

antidepressant and a biomarker of depression. However,
it is important to realize that the Conboy and Moon
studies were working with MIF native to the brain, while
the biomarker studies were analyzing MIF levels in per-
ipheral blood. MIF does not cross the blood brain bar-
rier [87,88], and differential expression in the two areas
may explain the differing observations. MIF levels in
plasma may be incidental to the mechanisms of depres-
sion or may arise as a consequence of a different but
related process. It is also possible that the two results
are not mutually exclusive, and increased MIF in de-
pressed individuals is a physiological adaptation to the
pathobiological changes of depression. It is notable in



Table 2 Controlled studies of macrophage migration inhibitory factor (MIF) in major depressive disorder (MDD) or
depressive mood

Authors Subjects Depression
measures

Intervention
(duration)

Analysis (t) Pertinent results

Hawkley
et al. [81]

75 subjects BDI Public speaking stress
task (once)

Serum MIF (0, 15 minutes) MIF levels are increased in subjects showing mild to
moderate depression (BDI)

MIF levels are unaffected by the public speaking
stress task

Edwards
et al. [59]

126 healthy
subjects

BDI Public speaking stress
task (once)

ELISA for serum MIF (0, 3, 15,
45 minutes)

MIF levels are increased at baseline in subjects
showing high depressive symptoms (BDI)

UCLA-R
MIF levels do not change over the time course
measured

Christian
et al. [82]

22 pregnant
subjects

CES-D Vaccination for
influenza virus (once)

ELISA for serum MIF (0, 1
weeks)

Pregnant women with depressive symptoms (CES-D)
show increased MIF levels at 1 week

Katsuura
et al. [83]

209 healthy
subjects

Zung-SDS None Multiplex suspension array
for serum levels of multiple
immune mediators (0)

MIF levels are not significantly associated with
depressive symptoms (SDS)

Musil
et al. [85]

32 MDD
patients, 20
healthy
controls

DSM-IV Treatment with
reboxetine and add-
on celecoxib
(5weeks)

ELISA for serum MIF, TGFB,
and sCD14 (0, 3, 5 weeks)

MIF levels are increased at baseline in MDD patients

HRSD MIF levels are unchanged during reboxetine
treatment

Celecoxib reduces HamD scores but does not affect
MIF levels

Cattaneo
et al. [86]

74 MDD
patients, 34
healthy
controls

DSM-IV Treatment with
escitalopram or
nortryptiline
(8 weeks)

qPCR for serum leukocyte
mRNA levels of several
candidate genes (0, 8 weeks)

MIF mRNA levels are increased at baseline in
treatment-responsive MDD patients; MIF mRNA levels
decrease during treatment, but with no correlation to
treatment response

MADRS

HRSD

BDI

All studies collected serum from subjects at the times indicated (0 = baseline) for measurements of peripheral MIF levels. BDI = Beck Depression Inventory;
CES-D = Center for Epidemiologic Studies Depression Scale; DSM-IV = Diagnostics and Statistics Manual of Mental Disorders, 4th edition; HRSD = Hamilton Depression
Scale 17-item version; MADRS =Montgomery-Asberg Depression Rating Scale; SDS = Self-Rating Depression Scale; UCLA-R = Revised UCLA Loneliness Scale.
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this regard that increased MIF in depressed patients has
been found to correlate with treatment response [86].
MIF underlies the pathophysiology of several disease

conditions, and MIF inhibition is well characterized and
widely used in research [64]. Anti-MIF antibodies are
currently being investigated in Phase I clinical trials [89].
It seems inevitable that some form of MIF inhibitors will
soon become available at the clinical level. When this
antidepressants
exercise

MIF

BDNF

Tph2
5HT

neurogenesis

NM

neuroprotection

GCs

Figure 1 Putative roles for macrophage migration inhibitory
factor (MIF) in depression. GCs = glucocorticoids; NM= neuromelanin.
(Single column fitting figure; color for Web only).
occurs, MIF’s role in depression - whatever it may be -
will be highly relevant. If MIF is found to promote de-
pression, then MIF inhibitors could be investigated as
antidepressants; ISO-1, the most tested MIF inhibitor,
has already been shown to cross the blood brain barrier
[36]. If MIF acts as an antidepressant, then anti-MIF
therapeutics can be engineered not to cross the blood
brain barrier, bypassing depression as a possible off-
target effect.

Conclusion
There are clear gaps in the research concerning MIF and
depression. Future studies should work to elucidate the
relationship between central and peripheral MIF in de-
pression, if any exists. Further work should also be done
to clarify MIF’s role as a pro- or antidepressant and its
place in the pathobiology of depression. It may be useful
to further analyze relationships with factors in and out
of the monoamine and neurogenic pathways that have
been shown to impact depression. Imaging studies have
emerged as an important modality in neuropsychiatric
disorders, including depression [90,91]; it may prove in-
teresting to test how alterations in MIF expression affect
the presentation of the disease on imaging studies. One
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advantage in these projects will be the fact that MIF is a
well-studied molecule, with both established inhibitors
and KO strains in rodent models.
Although there is much to be done, it seems beyond

doubt that MIF has great potential in studies of the
mechanisms of major depression. In addition to interact-
ing with known elements involved in the physiological
changes of depression, it is also active in the brain and
can be shown to have independent effects on the depres-
sion phenotype. In addition to expanding our knowledge
about this still-enigmatic disease, such studies can also
inform current drug development efforts with anti-MIF
therapy, as well as possibly provide the stagnant field of
antidepressant treatment with a valuable new target in
modifying the course of this disease.
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