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Abstract

Background: A20 (TNFAIP3) is a pleiotropic NFkB-dependent gene that terminates NFkB activation in response to
inflammatory stimuli. The potent anti-inflammatory properties of A20 are well characterized in several organs.
However, little is known about its role in the brain. In this study, we investigated the brain phenotype of A20
heterozygous (HT) and knockout (KO) mice.

Methods: The inflammatory status of A20 wild type (WT), HT and KO brain was determined by immunostaining,
quantitative PCR, and Western blot analysis. Cytokines secretion was evaluated by ELISA. Quantitative results were
statistically analyzed by ANOVA followed by a post-hoc test.

Results: Total loss of A20 caused remarkable reactive microgliosis and astrogliosis, as determined by F4/80 and
GFAP immunostaining. Glial activation correlated with significantly higher mRNA and protein levels of the
pro-inflammatory molecules TNF, IL-6, and MCP-1 in cerebral cortex and hippocampus of A20 KO, as compared to
WT. Basal and TNF/LPS-induced cytokine production was significantly higher in A20 deficient mouse primary
astrocytes and in a mouse microglia cell line. Brain endothelium of A20 KO mice demonstrated baseline activation
as shown by increased vascular immunostaining for ICAM-1 and VCAM-1, and mRNA levels of E-selectin. In addition,
total loss of A20 increased basal brain oxidative/nitrosative stress, as indicated by higher iINOS and NADPH oxidase
subunit gp91P"°* levels, correlating with increased protein nitration, gauged by nitrotyrosine immunostaining.
Notably, we also observed lower neurofilaments immunostaining in A20 KO brains, suggesting higher susceptibility
to axonal injury. Importantly, A20 HT brains showed an intermediate phenotype, exhibiting considerable, albeit not
statistically significant, increase in markers of basal inflammation when compared to WT.

Conclusions: This is the first characterization of spontaneous neuroinflammation caused by total or partial loss of
A20, suggesting its key role in maintenance of nervous tissue homeostasis, particularly control of inflammation.
Remarkably, mere partial loss of A20 was sufficient to cause chronic, spontaneous low-grade cerebral inflamnmation,
which could sensitize these animals to neurodegenerative diseases. These findings carry strong clinical relevance in
that they question implication of identified A20 SNPs that lower A20 expression/function (phenocopying A20 HT
mice) in the pathophysiology of neuroinflammatory diseases.
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Background

Neuroinflammation is a common pathogenic culprit of
several neurodegenerative diseases including Alzheimer’s
Disease (AD) [1], Parkinson’s Disease (PD) [2], multiple
sclerosis (MS) [3], stroke [4] and neuropsychiatric diseases
such as depression, schizophrenia and autism [5,6]. Injury
to the central nervous system (CNS), whether metabolic,
structural, auto-immune, ischemic, infectious or mecha-
nical, results in increased production of pro-inflammatory
cytokines such as TNF, IL-1p and IL-6, and of neurotoxic
molecules such as nitric oxide (NO), by activated micro-
glia and astrocytes. Such pro-inflammatory environment
culminates in cell death and cerebral tissue damage [7,8].

Anti-inflammatory therapies including IL-1 receptor an-
tagonist, IL-1f inhibitors and NSAIDs have shown some
benefit in reducing post-stroke neurodegenerative lesions,
and in decreasing incidence of AD or PD [9-11]. However,
widespread use of these therapies must be cautioned by
their inhibitory effect on NF«B, a transcription factor that
regulates expression of many pro-inflammatory mediators,
all the while promoting the upregulation of protective and
regenerative molecules in the CNS [12]. Therefore, a bet-
ter understanding of the molecular signature of neu-
roinflammatory diseases is required in order to identify
safe, effective and possibly disease-specific therapeutic
targets.

A20 (TNF alpha-induced protein 3, TNFAIP3), a pleio-
tropic NFkB-dependent gene [13] expressed in a variety
of tissues and cell types, including the human brain [14],
encodes a ubiquitin-editing enzyme that is essential for
termination of NF«kB activation in response to multiple
stimuli such as IL-1f, TNEF, IL-6, CD40 and lipopolysac-
charide (LPS) [15-17]. The potent anti-inflammatory role
of A20 is exemplified by the phenotype of A20 knockout
(KO) mice. These mice rapidly become cachectic and
die within three to five weeks of age, as a result of
uncontrolled inflammation in several organs [18]. In
contrast to its ubiquitous anti-inflammatory function,
A20’s effect on apoptosis is cell type specific. A20
exhibits potent anti-apoptotic properties in endothelial
cells (EC), hepatocytes and pancreatic B-cells, through
several mechanisms including blockade of the caspase
cascade at the level of caspase 8, and preservation
of mitochondrion integrity [19]. On the other hand,
A20 promotes vascular smooth muscle cells apoptosis
through a NO-dependent mechanism [20]. In addition,
overexpression of A20 protects livers and kidneys from
ischemia reperfusion injury, in part by upregulating per-
oxisome proliferator associated receptor alpha, chan-
neling lipid metabolism away from lipid peroxidation
towards mitochondrial [-oxidation, which results in
increased ATP generation [21,22].

Little is known about the role of A20 in the CNS. Evi-
dence from the literature suggest that increased expression
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of A20 is neuroprotective in animal models of epilepsy
[23] and of focal cerebral ischemia, in part by limiting
ischemic damage and containing TNF-induced neuronal
apoptosis [24]. However, these gain-of-function studies did
not address the physiological role of A20 nor its involve-
ment in maintaining homeostasis and, in particular, con-
taining inflammation in the CNS. In more recent studies,
mice with neuroectodermal (astrocytes, neurons and oligo-
dendrocytes) specific A20 KO failed to show increased
CNS inflammation at baseline [25] and did not de-
monstrate larger ischemic infarcts following middle cere-
bral artery occlusion [26], when compared to their wild
type (WT) littermates. However, CNS specific A20 KO did
develop an aggravated form of auto-immune encephalo-
myelitis, which was attributed to astrocytic loss of A20,
further fueling controversy about A20’s function in the
CNS [25]. In order to better delineate the physiological
role of A20 in modulating CNS inflammation, we pheno-
typed the cerebral inflammatory pattern of full A20 KO
and heterozygous (HT) mice. We reasoned that this ap-
proach carries greater clinical relevance than cell type-
specific KO of this gene, as it would enable us to gauge
the impact of A20 on CNS generators of inflammation
(microglial cells, astrocytes), as well as CNS targets of
inflammation (neurons, endothelial cells). This study is
timely given the many A20 single SNPs causing decreased
expression or function of this gene that have been asso-
ciated with numerous auto-immune and inflammatory
diseases [25,27-30].

Experimental procedures

Reagents: Human recombinant TNF was purchased from
R&D Systems (Minneapolis, MN, USA). LPS (Lipopoly-
saccharides from Escherichia coli 055:B5), and FBS were
obtained from Sigma-Aldrich Co. (St. Louis, MO, USA).

Mice

Four to five-week-old A20 KO, HT and WT littermate
control mice [18] were used for forebrain isolation. Fol-
lowing anesthesia, mice were sacrificed by decapitation,
and their brains recovered and fixed for analysis by immu-
nohistochemistry (IHC) and immunofluorescence (IF). Al-
ternatively, cerebral cortex (CX) and hippocampus (HC)
were isolated for mRNA and protein isolation. For primary
astrocyte isolation and culture, brains from one to three-
day-old pups were used. Animals received humane care
according to the criteria outlined in the Guide for the Care
and Use of Laboratory Animals. Beth Israel Deaconess
Medical Center Institutional Animal Care and Use Com-
mittee approved all research protocols.

Cell culture
Primary astrocytes were prepared from forebrain of neo-
natal mice (one to three-day-old) according to a modified
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method of McCarthy and De Vellis [31]. Purity of astro-
cyte preparation was > 95%. In brief, cerebral hemispheres
were freed from the meninges and the forebrain was dis-
sociated mechanically using fire-polished Pasteur pipets.
Mixed brain cells were plated in DMEM containing 10%
FBS, and antibiotics (Mediatech, Inc., Manassas, VA,
USA). Cells were cultured for seven to ten days until con-
fluent in a humidified atmosphere enriched with 5% CO.,.
Contaminating oligodendrocytes and microglial cells were
eliminated from the astrocytic monolayer by placing cul-
ture flasks on a rotary shaker at 800 rpm overnight. Astro-
cyte monolayers were then trypsinized and cells plated in
24-well plates and cultured to confluency for seven to ten
days before being used in experiments. The mouse micro-
glia cell line N13 (kind gift of Dr. Di Virgilio, University of
Ferrara, Italy) and mouse primary astrocytes purchased
from ScienCell Research Laboratories (Carlsbad, CA,
USA) were used in RNA silencing experiments.

Western blot

Tissue lysates (40 to 60 pg protein) were separated under
reducing conditions by SDS-PAGE (Bio-Rad Laboratories,
Hercules, CA, USA) [32], and transferred to Polyvinylidene
fluoride (PVDF) membranes (PerkinElmer Life Science,
Whaltham, MA, USA) by semi-dry electroblotting.
Membranes were probed with mouse anti-gp91P"* (BD
Pharmigen, San Diego, CA, USA), mouse anti-glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH) (EMD chemi-
cals), mouse anti-Pactin and rabbit anti-IkBa (Santa Cruz
Biotechnology, Inc., Santa Cruz, CA, USA). Appropriate
secondary horseradish peroxidase (HRP)-conjugated anti-
bodies were used (Thermo Scientific, Rockford, IL, USA).
Protein bands were detected with enhanced chemilumines-
cence kit (ECL) (PerkinElmer Life Science, Waltham, MA,
USA) followed by exposure to the autoradiography film.
Immunoblots were scanned and the intensity of the bands
was quantified by densitometry using Image] 141 (US
National Institutes of Health, Bethesda, MD, USA).

Silencing RNA (siRNA)

N13 microglia cells and mouse primary astrocytes (Scien-
Cell Research Laboratories, Carlsbad, CA, USA) were trans-
fected with predesigned A20 silencing RNA probes (A20
siRNA) or All Start Negative Control siRNA (C siRNA),
using Hiperfect transfection reagent purchased from
Qiagen (Valencia, CA, USA). Transfections were carried
out according to the manufacturer’s transfection protocol.
Experiments were performed 24 hours after transfection.
Efficiency of gene knockdown was evaluated by qPCR in
non-treated and LPS (1 pg/mL for 1 hour) treated cells.

TNF and IL-6 secretion
Cell culture medium was changed to serum-free medium,
then cells were stimulated with either TNF or LPS in
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order to mimic inflammation. Supernatants were then
recovered, and analyzed for IL-6 and TNF content by
ELISA, using mouse IL-6 and TNF ELISA Ready-SET-Go!
(eBioscience, San Diego, CA, USA), according to manu-
facturer’s instruction. Results were normalized by protein
content. Cell cultures incubated in medium alone were
used as non-stimulated controls.

Quantitative reverse transcriptase-polymerase chain
reaction (qPCR)

mRNA from CX and HC and from primary astrocytes and
the mouse microglia cell line N13 was isolated using
RNAse spin columns (Qiagen, Valencia, CA, USA), and
c¢DNA was synthesized using iScript cDNA synthesis kit
(Bio-Rad, Hercules, CA, USA). Real-time PCR (qPCR)
was performed using iTaq Fast SYBR Green Supermix
with ROX (Bio-Rad, Hercules, CA, USA) and gene
specific primers (Table 1) or TagMan Mm00627280_m1
(tnfaip3), Mm00607939_s1 (Pactin), and ABI 7500 Fast
Real-time PCR System (Applied Biosystems, Inc., Foster
City, CA, USA). Comparative threshold cycle (Ct) method
was used to perform relative quantification of qPCR
results. mRNA expression of target genes Al, TNE, IL-6,
inducible NOS (iNOS), endothelial NO synthase (eNOS),
neuronal NO synthase (nNOS), E-selectin, monocyte che-
moattractant protein 1 (MCP-1), glial fibrillary acidic pro-
tein (GFAP), nuclear factor erythroid 2 related factor 2
(Nrf2), IkBa, gp91P"°* and heme oxygenase-1 (HO-1) was
normalized to that of the housekeeping gene Pactin. Data
are expressed as fold change of levels noted in WT mice.

Immunohistochemistry (IHC) and immunofluorescence (IF)
Brains were processed for IHC and IF as described [33].
In brief, 2,000-um coronal slices were zinc-fixed (BD
Pharmigen, San Diego, CA, USA) for 48 hours at room
temperature, dehydrated in a tissue processor and embed-
ded in paraffin for sectioning, before being sectioned into
6-um thickness. For IHC, sections were de-paraffinized,
rehydrated, fixed with cold acetone:formalin 95:5 (vol/vol)
for 3 minutes, then incubated with horse serum (7% in
PBS) prior to overnight incubation at 4°C with hamster
anti-ICAM-1 and rat anti-VCAM-1 (BD Pharmigen, San
Diego, CA, USA), rabbit anti-iNOS and anti-IL-6 (Abcam
Inc., Cambridge, MA, USA), and rabbit anti-GFAP (Dako,
Carpinteria, CA, USA). Alternatively, sections were fixed
with cold 2% paraformaldehyde for 10 minutes prior to
overnight incubation with mouse anti-nitrotyrosine (Santa
Cruz Biotechnology, Inc., Santa Cruz, CA, USA), rat anti-
F4/80 (AbDSerotec, Raleigh, NC, USA), rabbit anti-TNF
alpha (Novus Biologicals, Littleton, CO) and hamster
anti-MCP-1 (BD Pharmigen, Franklin Lakes, NJ, USA).
Sections were then treated with H,O, 1:100 in PBS for
10 minutes, incubated with the appropriate secondary IgG
antibodies followed by ABC (avidin-biotin complex)
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Table 1 List of primers used in real-time PCR

Gene Definition Accession Forward Reverse

IL-6 Mus musculus interleukin 6 NM_031168.1 GACAACCACGGCCTTCCCTACTTC — TCATTTCCACGATTTCCCAGAGA

TNF Mus musculus tumor necrosis factor NM_013693.2 GACAAGGCTGCCCCGACTACG CTTGGGGCAGGGGCTCTTGAC

iNOS Mus musculus nitric oxide synthase 2, NM_010927.3 AACAGAGCCCTCAGCAGCATCCAT  CCAGGTGTTCCCCAGGCAGGTAG
inducible (Nos2)

eNOS Mus musculus nitric oxide synthase 3, NM_0087134 TCACTTCGTTCGGTTGACCA CCTTCAAGATTTAGGCCGACCC
endothelial cell (Nos3)

nNOS Mus musculus nitric oxide synthase 1, NM_008712.2 GCCGCCAAAACCTGCAAAGTCCTA  CGCGTCCTCCAGCCGTTCAAT
neuronal (Nos1)

GFAP Mus musculus glial fibrillary acidic protein -~ NM_001131020.1 TACCATGCCACGCTTCTCCTTGTC ~ ACGCTCGCTCGCCCGTGICTCCT
(Gfap), transcript variant 1 and variant 2 NM_010277.3

E-selectin ~ Mus musculus selectin, endothelial cell NM_011345.2 CTTGACGTCCCGGGAAAGATGAAC  GGGACGGGTGGGGCTGACTGG
(Sele)

MCP-1 Mus musculus chemokine (C-C motif) NM_0113333 GTTAACGCCCCACTCACCT AAAAACTACAGCTTCTTTGGGACACCT
ligand 2 (Ccl2)

Al Mus musculus B-cell leukemia/lymphoma 2 NM_009742.3 TGGGGGTGTTCTCCTCAAAAAA AAGCCATCTTCCCAACCTCCATTC
related protein Ala (Bcl2ala)

IL-13 Mus musculus interleukin 1 beta NM_008361.3 AAATCTCGCAGCAGCACATCAA CCACGGGAAAGACACAGGTAGC

Nrf2 Mus musculus nuclear factor, erythroid NM_010902.3 CCGGCCCAGCACATCCAGACAGAC GGGATATCCAGGGCAAGCGACTCA
derived 2, like 2 (Nfe2l2)

Gp91phox Mus musculus cytochrome b245, beta NM_007807.5 CAAGTGCCCCAAGGTATCCAAGTT  TGAATAGCCCCTCCGTCCAGTCTC
polypeptide (Cybb)

HO-1 Mus musculus heme oxygenase (decycling) NM_010442.2 GCCCACGCATATACCCGCTACCT  CCATGGCCTTCTGTGCAATCTTCT
1 (Hmox1)

IkBa Nuclear factor of kappa light polypeptide ~ NM_010907 CTACACCTTGCCTGTGAGCA TCCTGAGCATTGACATCAGC
gene enhancer in B-cells inhibitor, alpha

reagent (Vector Laboratories, Burlingame, CA, USA), then ~ Results

detected by ImmPACT 3,3’-diaminobenzidine tetrahydro-
chloride (DAB) peroxidase substrate (Vector Laboratories,
Burlingame, CA, USA). Negative controls using only
secondary antibodies confirm the absence of non-specific
immunostaining (Additional file 1: Figure S1). For IF, sec-
tions were fixed with 2% cold paraformaldehyde for 10 mi-
nutes prior to overnight incubation with rabbit anti-Nrf2
(Abcam plc., Cambridge, MA, USA), rabbit anti-IL-6, rat
anti-F4/80 and goat anti-GFAP (Santa Cruz, Biotechnology,
inc., Dallas, TX, USA), followed by appropriate Alexa
Fluor 488 (green) and 594 (red) conjugated secondary
antibodies (Invitrogen, Carlsbad, CA, USA).

Statistical analysis

Results are presented as mean * standard error of mean
(SEM). Statistical analysis was performed on Prism 5 for
Mac (GraphPad Software, Inc., La Jolla, CA, USA). Data
were analyzed by one or two way analysis of variance
(ANOVA) followed by post-hoc Tukey or Bonferroni, re-
spectively, when F was significant. Alternatively, results
were analyzed by a non-parametric Kruskal-Wallis analysis
followed by Dunn’s multiple comparison tests when va-
riances differed significantly. Differences between groups
were rated significant at a probability error (P) < 0.05.

Baseline A20 mRNA expression and NFkB activation in
mouse cerebral cortex and hippocampus

We first probed for expression and distribution of A20 in
normal and A20 deficient mouse brain. By qPCR, we
demonstrated that A20 mRNA was detected in compa-
rable amounts in CX and HC of WT mice (Figure 1A). As
expected, A20 mRNA was undetectable in the brain of
KO mice and showed 50% reduction in the brain of HT
mice (Figure 1A). A20 wipeout correlated with higher
NF«xB activation in cerebral cortex and hippocampus of
KO versus WT mice, as evidenced by remarkably lower
IkBa protein levels, indicative of amplified degradation
(Figure 1B) while IxBa protein levels were intermediate in
CX and HC of HT mice. Corroborating heightened
NF«B activation in the brains of A20 KO mice, we noted
significantly higher mRNA levels of IkBa, itself a prime
NF«B-dependent gene, when compared to WT brains,
with again HT brains showing intermediate results
(Figure 1C).

Total and partial loss of A20 causes reactive microgliosis
and astrogliosis

Having confirmed absence and decreased expression of
A20 in brains of KO and HT mice, respectively, we
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Figure 1 Baseline A20 mRNA expression in mouse cerebral
cortex and hippocampus. (A) A20 and (C) IkBa mRNA levels in
cerebral cortex (CX) and hippocampus (HC) of wild type (WT), A20
heterozygous (HT) and A20 knockout (KO) mice, measured by gPCR.
Graph shows relative mRNA levels after normalization with mRNA levels
of housekeeping gene Ractin. Results are expressed as mean + SEM of
three to four animals per genotype. **P < 0.01. ND: not detectable.

(B) Westermn blot (WB) analysis of IkBa expression in CX and HC of A20
WT, HT and KO mice. Immunoblotting for the housekeeping protein
Bactin was used to control for loading. Results are representative of
three animals per genotype.

evaluated the impact of total or partial loss of A20 on
microglia and astrocytes activation. Microglia, the resident
macrophages of the CNS, and astrocytes, the most abun-
dant glial cell population, respond to injury and inflam-
mation by assuming an activated phenotype defined by
characteristic changes in morphology and gene expres-
sion, and by increased propensity for migration and pro-
liferation [34,35].

Immunohistochemistry analysis of mouse brain sections
using a macrophage/microglia cell surface marker F4/80
[36] revealed increased number of activated microglia
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throughout the A20 KO brain, as evidenced by their typi-
cal hypertrophied phenotype, that is enlarged cells with
shorter and thicker branched processes [37] (Figure 2A).
This picture totally contrasted with WT brains that
showed resting/quiescent microglia harboring a ramified
morphology with slender sensing arms. We confirmed the
activation status of microglia by probing for mRNA levels
of the microglial activation marker Al [38,39]. A1 mRNA
levels were significantly higher in CX and HC (approxi-
mately seven-fold) of A20 KO as compared to WT mice
(Figure 2B). Astrocyte activation in the brain of A20 KO
mice was also evident, as demonstrated by enhanced
GFAP immunoreactivity [40]. Astrocytes displaying thick
cell bodies and processes characteristic of astrocyte re-
activity were especially marked in the outer layers of the
CX and throughout the HC (Figure 2C). Astrocyte activa-
tion was confirmed at the mRNA levels by qPCR. GFAP
mRNA levels were significantly (approximately 1.8-fold)
higher in the CX and HC of A20 KO mice as compared to
WT (Figure 2D). Brains from HT mice showed an inter-
mediate phenotype with a consistent trend for greater
microglia and astrocyte activation when compared to WT
mice, and for significantly lower microglia and astrocyte
activation when compared to KO mice, as showed by IHC
and qPCR (Figure 2).

Total and partial loss of A20 increases brain cytokine and
chemokine levels

Activated microglia and reactive astrocytes are key defense
mechanisms of the CNS to injury, in part through their
ability to modulate immune and inflammatory responses
by secreting pro-inflammatory cytokines and chemokines
such as TNE, IL-6, IL-1f3, and MCP-1 [41,42]. As in all
inflammatory responses, this defense system needs to be
tightly modulated in order to avoid unfettered inflamma-
tion that would counterproductively cause neurotoxicity
[43]. Accordingly, we probed by qPCR for mRNA levels of
TNE, IL-6, IL-1B and MCP-1 in CX and HC of A20 WT,
HT and KO mice. Our results show significantly increased
mRNA levels of all these pro-inflammatory mediators in
the brain of KO, as compared to WT mice, further con-
firming glial activation (Figure 3A). HT mouse brains also
showed a tendency (albeit not significant) for higher
mRNA levels of all these molecules when compared to
WT brains. This tendency was more prominent in the CX
than in the HC. We confirmed by IHC that higher TNE,
IL-6, and MCP-1 mRNA levels in the brain of A20
deficient mice correlated with higher protein levels
(Figure 3B). Double immunofluorescence staining using
antibodies against microglia surface marker F4/80 or
astrocyte marker GFAP in combination with anti-IL-6
demonstrate that both cell types produce IL-6 and con-
tribute to its increased levels in the brains of A20 KO mice
(Figure 4). Altogether, these results indicate a heightened
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Figure 2 Loss of A20 leads to spontaneous microglia and astrocyte activation. Representative (A) F4/80 and (C) GFAP
immunohistochemistry (brown) in the cerebral cortex (CX) and hippocampus (HC) of A20 wild type (WT), heterozygous (HT) and knockout (KO)
mice. Yellow arrows indicate hypertrophied activated microglia, noted by their stout, dense appearance with shorter and thicker branched projections.
Blue arrows indicate reactive astrocytes displaying thick cell bodies and processes, evident in the outer layers of the CX and throughout the HC.
Photomicrographs are representative of three animals per genotype. Bar = 20 pm, magnification = 400x. (B) A1 and (D) GFAP mRNA levels measured
by gPCR. Graph shows relative mRNA levels after normalization with mRNA levels of housekeeping gene Bactin. Results are expressed as mean + SEM
of five to seven animals per genotype. *P < 0.05, **P < 0.01 and ***P < 0.001.
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basal level of inflammation in the brain of A20 deficient
mice, especially when A20 expression is totally knocked-
out.

Total and partial loss of A20 increases cytokine
production by primary astrocytes and microglia cell line
in response to pro-inflammatory stimuli

IL-6, mostly produced by astrocytes, achieves higher
concentration than other soluble pro-inflammatory me-
diators in the brain, and hence has been designated as a
key contributor to neuroinflammation [44,45]. To check
whether enhanced IL-6 levels in the brain of A20 KO
mice resulted from heightened activators, that is higher
TNEF levels, or also related to heightened production by
A20 deficient astrocytes in response to a similar level of
activator, we isolated and cultured primary astrocytes
from A20 KO, HT and WT mice, exposed them for
24 hours to similar concentrations of exogenous LPS
(10 pg/mL) and measured, by ELISA, TNF and IL-6
levels in cell culture supernatant. We noted a trend to-
wards higher (albeit not significant) TNF and IL-6 levels
in 24 hours culture supernatants of A20 KO as com-
pared to WT astrocytes (2.25- and 1.5-fold, respectively),
in the absence of any inflammatory stimuli. Following
LPS treatment, TNF and IL-6 levels increased in re-
sponse to LPS in all groups, albeit these levels were
significantly higher in KO, as compared to WT astro-
cytes (Figure 5A and B). HT astrocytes showed an

intermediate response, that is LPS treatment increased
IL-6 production by two to three-fold, as compared to a
ten-fold upregulation in KO astrocytes (Figure 5B). Since
higher LPS-induced TNF levels is the master inducer of
IL-6 in astrocytes, and hence could account for higher
IL-6 levels in LPS treated A20 deficient astrocytes, we
independently evaluated TNEF-induced production (100
U/ml) of IL-6 in these cells. Here again, TNF-induced
upregulation of IL-6 production was significantly higher
in A20 KO as compared to WT and HT astrocytes
(Figure 5C). We confirmed these findings in mouse pri-
mary astrocytes that had undergone siRNA mediated A20
knockdown. Transfection of astrocytes with A20 siRNA
reduced by 50% LPS-induced A20 upregulation, as
evidenced by mRNA levels measured 1 hour after LPS
(1 pg/mL) stimulation (Additional file 2: Figure S2). In-
adequate A20 upregulation following LPS (mimicking A20
knockdown in A20 HT mice) correlated with significantly
higher TNF and IL-6 mRNA levels six hours after LPS, as
compared to levels measured in non-transfected and All
Star siRNA (C siRNA) control cells (Figure 6A and B).
This was paralleled by significantly higher IL-6 protein
levels in the cell culture supernatant of A20siRNA versus
control cells (Figure 6C). As in astrocytes, siRNA me-
diated A20 knockdown in microglia cells (N13) decreased
by 50% LPS induced upregulation of A20 (Additional
file 2: Figure S2). Here again, this correlated with signifi-
cantly higher LPS-induced upregulation of TNF and IL-6
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(See figure on previous page.)

black box in top images.

Figure 3 Levels of pro-inflammatory mediators are increased in cerebral cortex and hippocampus of A20 deficient mice. (A) TNF, IL-6,
IL-18 and MCP-1 mRNA levels in cerebral cortex (CX) and hippocampus (HC) of wild type (WT), A20 heterozygous (HT) and A20 knockout (KO),
measured by gPCR. Graph shows relative mRNA levels after normalization with mRNA levels of housekeeping gene {actin. Results are expressed
as mean + SEM of four to seven animals per genotype. *P < 0.05, **P < 0.01 and ***P < 0.001. (B) Representative images of TNF, IL-6 and MCP-1
immunohistochemistry (brown) in HC (TNF and IL-6) and CX (MCP-1) of A20 WT, HT and KO mice. Photomicrographs are representative of three
to four animals per genotype. Top images: Bar = 50 um, magnification = 200x. Bottom images are close-up images of the area delineated by the

mRNA (Figure 6D and E), and of IL-6 protein (Figure 6F)
levels in these cells as compared to non-transfected or C
siRNA transfected cells.

Altogether these results establish that both heightened
activators (TNF) in brains of A20 deficient mice, and
hyper-responsiveness of A20 deficient glia to pro-inflam-
matory stimuli contribute to the amplification of the pro-
inflammatory spiral, culminating in excessive amount
of IL-6.

Total and partial loss of A20 increases brain oxidative and
nitrosative stress

NO, when produced in physiologic levels by the low-
throughput and constitutively expressed nNOS and eNOS

WT HT KO

IL6/GFAP/DAPI

IL6/F480/DAPI

Figure 4 Astrocytes and microglia contribute to higher IL-6
levels in A20 deficient brains. Representative images of double
IL-6 (red) and GFAP (green), or IL-6 (red) and F4/80 (green) positive
cells in the hippocampus (HC) of A20 wild type (WT), heterozygous
(HT) and knockout (KO) mice, as determined by immunofluorescence
staining. White arrows show IL-6 co-localization with glial fibrillary acidic
protein (GFAP) (astrocytes) or F4/80 (microglia), as evidenced by the
yellow overlay. Nuclei were stained with 4',6-diamidino-2-phenylindole
(DAPI, blue). Photomicrographs are representative of four animals per
genotype. Top images: Bar = 20 um, magnification = 400x. Bottom
images are close-up images of the area delineated by the white box in
top images.

NO synthases (NOS), mostly serves a homeostatic func-
tion through regulation of synaptic signaling and plasticity
[46,47], as well as vasoprotection, through combined anti-
apoptotic, anti-inflammatory, and reactive oxygen radicals’
scavenging properties [48]. However, overproduction
of NO in pathophysiological conditions is implicated in
oxidative-dependent neuronal death and dysfunction.
High throughput NFkB-dependent iNOS, mainly pro-
duced by activated glia, is the primary NOS involved in
inflammatory neurodegenerative disorders [49]. Accor-
dingly, we evaluated iNOS mRNA and protein levels in
CX and HC of A20-competent and A20 deficient mice.
Our results show that INOS mRNA levels significantly in-
crease in the CX of KO mice as compared to WT, with
HT demonstrating an intermediate level (Figure 7A). We
confirmed this by IHC that depicted increased iNOS im-
munostaining in the CX of A20 deficient mice (Figure 5B).
Levels of iNOS mRNA in HC were similar in all groups.
Besides high NO production by iNOS, drastic increase of
nNOS expression in certain pathophysiologic conditions
could promote excitotoxicity causing neuronal death [50].
Interestingly, nNOS mRNA levels were significantly de-
creased in CX and HC of A20 KO, as compared to WT
mice, with HT showing an intermediate phenotype
(Figure 7A), while brain eNOS mRNA levels were com-
parable in all three genotypes (Figure 7A). Increased
expression of iNOS in inflammatory conditions is often
associated with increased levels of NADPH oxidase, the
major enzymatic complex involved in the production of
superoxide anion (O,-) [51]. Increased NO levels, in the
setting of oxidative stress, favors formation of highly react-
ive peroxynitrite (NO/O,) species, enhancing formation of
the protein adduct, nitrotyrosine [52]. Accordingly, we
evaluated, by qPCR and Western blot, the expression level
of the transmembrane catalytic subunit of NADPH oxi-
dase, gp91P"°*. Our results show that gp91P">* mRNA and
protein levels were significantly higher in CX and HC of
A20 KO as compared to WT and HT mice, with HT
mice showing slightly higher levels then their WT lit-
termates (Figure 7C and D). Combined increase of
gp91P"** and iNOS (hence likely NO) production in
brains of A20 KO mice correlated with increased im-
munostaining for nitrotyrosine, indicating heightened
levels of protein nitration, implying nitrosative stress
(Figure 7B).
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Figure 5 Cytokine production in response to inflammatory
stimuli is enhanced in A20 deficient primary astrocytes. (A) TNF
and (B) IL-6 levels, measured by ELISA, in cell culture supernatant from
A20 wild type (WT), heterozygous (HT) and knockout (KO) mouse
primary astrocytes following 24 hour stimulation with LPS (10 pg/mL).
(C) IL-6 levels measured by ELISA, in cell culture supernatant from WT,
HT and KO mouse primary astrocytes following 24 hours stimulation
with TNF (100 Ul/mL). NS: non-stimulated cells. Data represent mean +
SEM of primary astrocytes isolated from littermate pups (WT n=2;
HT n=81t0 10, KO n=3 to 4). *P < 0.05, **P < 0.01.

Oxidative stress in the brain is also regulated by the
down-modulating effect of the transcription factor Nrf2.
Nrf2 is activated in response to oxidative stress, and initi-
ates the transcription of several antioxidant and cytopro-
tective genes [53,54]. Nrf2 also antagonizes inflammation
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in the brain by negatively impacting NF«kB activation [55].
Accordingly, we checked whether A20 knockdown also
increases inflammation and oxidative stress in the brain
through impacting Nrf2 expression or function. Interest-
ingly, our studies show increased Nrf2 mRNA and protein
levels in A20 KO brains as compared to control (Figure 7E
and F), possibly an attempt to contain oxidative stress.
However, increased Nrf2 levels did not translate into any
significant induction of Nrf2-dependent cytoprotective
and antioxidant genes such as HO-1 in A20 KO brains,
suggesting that A20 knockdown likely interfered with
Nrf2 activation, precluding an adequate regulatory anti-
oxidant response in these mice (Additional file 3: Figure
S3). Altogether, our results indicate that heightened in-
flammation in the brain of A20 deficient mice associates
with enhanced oxidative and nitrosative tissue damage.

Endothelial cell activation is increased in brain of A20
deficient mice

Activation of brain EC and subsequent upregulation of
adhesion and other pro-inflammatory molecules is an obli-
gate corollary of heightened cerebral inflammation and
oxidative stress, as noted in A20 KO mice [56]. Indeed, we
confirmed that mRNA levels of the EC specific and proto-
typic activation marker, the adhesion molecule E-selectin,
were significantly increased in CX and HC of A20 KO
mice, as compared to WT, with HT fairing in between
(Figure 8A). Similarly, vascular immunostaining for the
adhesion molecules ICAM-1 and VCAM-1 was much
stronger in brain sections of A20 KO mice, as compared to
the faint staining observed in WT mice, with HT mice
showing an intermediate staining (Figure 8B). These results
demonstrate that A20 deficiency also caused spontaneous
basal endothelial cell activation in the brain. Inflammation
may results in disruption of the blood brain barrier (BBB),
which allows for increased cytokine access to the brain. To
evaluate whether permeability of the BBB was affected in
A20 deficient mice, we intravenously injected a 2% Evan’s
blue dye solution to A20 WT, HT and KO and measured
the amount of dye that extravasated into the brain paren-
chyma. We also evaluated the integrity of the BBB by
measuring serum levels of S100 calcium-binding protein 3
(S100B), an astrocyte molecule usually released into the
peripheral circulation upon disruption of these cells’ mem-
brane integrity, and a good indicator of enhanced BBB per-
meability [57]. Our results demonstrated that the integrity
of the BBB was not altered in A20 deficient brains, despite
their higher basal inflammation and EC activation levels
(Additional file 4: Figure S4, Additional file 5: Supplementary
Experimental Procedures).

Total and partial loss of A20 promotes axonal injury
Neurofilaments (NF) are intermediate filaments of the
cytoplasmic scaffold that composes the axon cytoskeleton
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[58]. Expression of NF proteins decreases in physiological
and pathological conditions such as aging [59], AD [60],
amyotrophic lateral sclerosis and MS. Accordingly, NF
protein expression levels qualify as surrogate for neuronal
response to injury. Despite the fact that reduction in NF
proteins is generally well tolerated [59], it is associated
with decreased axonal transport velocity [61]. Brains of
A20 KO mice showed significantly less immunostaining
for NF (Figure 9), as compared to WT mouse brain. This
is suggestive of axonal damage likely induced by chronic
neuronal exposure to a pro-inflammatory environment.
A20 HT mice showed an intermediate phenotype.

Discussion

A20 is a ubiquitously expressed NF«B negative feedback
regulator that is highly and rapidly induced in response
to NFkB activation in most cell types and organs, inclu-
ding the human brain [25,26]. We demonstrated basal
A20 mRNA expression in the mouse CX and HC, the
two brain structures that were the focus of this study,
though the comparative distribution of A20 in the

different brain regions varies between mice and humans
[14]. We verified that basal A20 mRNA levels in CX and
HC decreased by half and were totally absent in brains
of A20 HT and KO, respectively. Lower A20 levels cor-
related with higher NFkB activation in the brains of A20
KO mice.

The inflammatory phenotype of A20 KO mice, which
are cachectic and die prematurely due to uncontrolled
spontaneous inflammation in the liver, kidney, joints, in-
testines and bone marrow, has been previously charac-
terized [18]. However, it lacked an account of the impact
of A20’s deficiency on the brain. In this study, we fill this
gap by showing for the first time that loss of A20 causes
spontaneous cerebral inflammation, as demonstrated by
robust microglial activation, reactive astrogliosis, endo-
thelial activation, increased oxidative/nitrosative stress
and expression of NFkB regulated pro-inflammatory sol-
uble mediators such as IL-1f, TNEF, IL-6 and MCP-1 in
the brain.

By immunostaining, using F4/80 as microglia cell sur-
face marker, we noted the presence of a significant



Guedes et al. Journal of Neuroinflammation 2014, 11:122 Page 11 of 16
http://www.jneuroinflammation.com/content/11/1/122

A owr o mko . OW @H mKo COWT @EHT =Ko
é 6 _x z 2 2 15
EE Efg £z
83 g2 gs 10
Z6 %81 Z%
222 22 g2 05
&= < £<c
€ 0 e g o0
cx HC X HC CcX HC
B WT HT KO

OWT @E@HT mKO

. hk
s
s

-
o
3

INOS
5
h
e | G
”»
L
4 5
|
a
= sae |
O |
U Relative gp91phox mRNA
gp91phox/factin O
° 9 3

s | - . Tl v PR 0
. . ' “«" $ 5 =34 . . \ gp91phox .

NTY
|
gp91phox/GAPDH
(fold increase)
I .

E F WT
OWT EHT meKO

-k
2 25 T
%153 20 o
o =
g2 '® z
eg 10
£< 05
€ 00

cX HC

Figure 7 Loss of A20 increases oxidative/nitrosative stress in the brain. (A) INOS, eNOS and nNOS, (C) NADPH oxidase gp%phOX subunit and
(E) Nrf2 mRNA levels in cerebral cortex (CX) and hippocampus (HC) of wild type (WT), A20 heterozygous (HT) and A20 knockout (KO) mice, measured
by gPCR. Graphs show the statistical analysis of relative mRNA levels after normalization with Bactin. Results are expressed as mean + SEM of five to
seven animals per genotype. (B) iNOS and nitrotyrosine (NTY) immunostaining (brown) in CX of A20 WT, HT and KO mice. Top images: Bar = 50 pum,
magnification = 200x. Bottom images are close-up images of the area delineated by the black box in top images. (D) NADPH oxidase gp91 PR subunit
expression in CX and HC protein lysates of A20 WT, HT and KO brains evaluated by Western blot (WB). Housekeeping protein GAPDH was used as
loading control for semi-quantitative densitometry as shown in the graph. Graph shows semi-quantitative densitometry data using GAPDH as loading
control. Results are expressed as mean + SEM for four animals per genotype. (F) Representative images of Nrf-2 (red) and 4'6-diamidino-2-phenylindole
(DAPI, nuclear staining, blue) immunofluorescence staining in HC of WT, HT and KO mice. Photomicrographs are representative of three animals per
genotype. Top images: Bar = 50 um, magnification = 200x. Bottom images are close-up images of the area delineated by the white box in top images.
*P <005 and **P<001.

number of hypertrophied microglia in A20 KO brain. This  of WT brain, which is ramified resting microglia, depic-
cell morphology, characterized by enlarged soma and ting radially long and thin projecting processes with fine
thick cytoplasmatic projecting processes with few ramifi-  ramifications. We confirmed microglial activation by de-
cations, is typical of microglia undergoing activation after =~ monstrating heightened A1 mRNA expression in the
CNS injury. This microglial phenotype contrasts with that  brains of A20 KO mice, as compared to WT. Expression
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of Al, a BCL2 gene family member, in the CNS is re-
stricted to microglia, and is uniquely upregulated when
these cells undergo activation [38,39].

A20 KO brain also display enhanced astrogliosis, as
morphologically evidenced by hypertrophy of astrocyte
cell body and glial processes, together with increased ex-
pression of the intermediate filament GFAP, an early and
sensitive biomarker of astrogliosis [62].

Furthermore, we documented in vitro that A20 deficient
astrocytes and microglia are hyper reactive to inflamma-
tory stimuli. Astrocytes isolated from A20 KO brain and

Neurofilament

] £ % "
R

Figure 9 Loss of A20 decreases the expression of
neurofilaments in mice cerebral cortex and hippocampus.
Immunostaining for neurofilaments (NF) (brown) in cerebral cortex (CX)
and hippocampus (HC) of wild type (WT), A20 heterozygous (HT) and
A20 knockout (KO) mice. Photomicrographs are representative of three
animals per genotype. Top images: Bar = 50 um, magnification = 200x.
Bottom images are close-up images of the area delineated by the black
box in top images.

A20-silenced primary mouse astrocytes and N13 microglia
cells produced significantly higher amounts of IL-6 in re-
sponse to inflammatory stimuli than WT and control cells.
This accords with A20 being a negative feedback regulator
of inducible NFxB-dependent genes, such as IL-6 [63],
and corroborates work by Wang et al. showing enhanced
TNF-mediated IkBa phosphorylation/NFkB activation in
A20 KO astrocytes [25]. IL-6 plays a dual role in the CNS.
IL-6 KO mice that suffer compromised inflammatory
responses, increased oxidative stress, impaired neuroglial
activation and decreased lymphocyte recruitment, show a
slower rate of recovery and healing in several models of
neuroinflammatory, degenerative and traumatic brain
injury [64]. On the other hand, excessively high intracere-
bral IL-6 levels aggravate brain injury and damage by
causing abnormal immune activation, decreased neuro-
genesis and differentiation of neural stem/progenitor cells
into neurons [64].

A20 deficient astrocytes and microglia also produced
significantly higher TNF and consequently higher IL-6
levels following engagement of the Toll-like receptor
(TLR) signaling by LPS treatment. Altogether, our in vivo
and in vitro data ascertain the critical role of A20 in regu-
lating glial activation. In that regard, A20 deficient glia dis-
play a similar hyper-reactive pattern to A20 KO peritoneal
macrophages, that is sustained IkBa degradation and
higher TNF production in response to thioglycollate or
LPS treatment [65]. As a result of microglial activation
and reactive astrogliosis, A20 deficient brains bathe in a
heightened pro-inflammatory milieu, as evidenced by
significantly higher expression of TNE IL-1f, IL-6 and
MCP-1 in CX and HC of A20 KO mice as compared
to WT.

Upregulation of the NADPH oxidase subunit gp91P"°*
and of the high throughput NOS, iNOS, is a distinctive
hallmark of glial activation [66]. Gp91PM* deficient mice
do not mount a robust ROS response following traumatic
brain injury, and hence are relatively protected from cere-
bral damage [67]. INOS, on the other hand, seems to have
a dichotomous role in the brain. While absence of iNOS
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could impair neurogenesis after stroke, suggesting import-
ance for CNS repair [68], excessive expression of iNOS is
generally deleterious, and accordingly, genetic or pharma-
cologic knockdown of iNOS reduces tissue damage and
neuronal death in animal models of brain injury [69,70].
Our data demonstrate that both gp91P"** and iNOS ex-
pression are increased at baseline in the brain of A20 KO
mice. This would result in heightened local production of
NO and of O, generating highly toxic peroxynitrite radi-
cals that promote protein nitration, particularly damaging
to the CNS [71]. Indeed, we observed increased nitrotyro-
sine immunostaining in A20 KO when compared to WT
brains. Upregulation of gp91°P"* and iNOS gene ex-
pression in reactive astrocytes and microglia is NFkB-
dependent [72,73], explaining their enhanced cerebral
levels in the absence of A20. Importantly, NFkB activation
is also a downstream target of NADPH oxidase products
[72], hence the self-feeding inflammatory and pro-oxidant
spiral observed in A20 KO brain. In addition, our data also
suggest that A20 KO brains are unable to mount an ap-
propriate antioxidant response, as they fail to significantly
upregulate the expression of antioxidant genes such as
HO-1 despite Nrf2 upregulation, which further amplifies
oxidative stress, possibly causing heightened axonal dam-
age, as suggested by decreased immunostaining for neuro-
filaments in KO brains.

Activation and loss of brain EC is another feature of in-
flammation driven CNS injury [74]. Maintenance of endo-
thelial homeostasis and of the unique phenotype of the
BBB depends on tight interaction between EC, perivascular
glial cells and neurons via direct cell-cell contact or through
soluble factors to maintain the BBB. Having demonstrated
that A20 KO mice suffer important gliosis, we checked the
status of brain EC in these mice. As anticipated, astrogliosis
and microglial activation corresponded with overt EC acti-
vation in A20 KO brain vasculature, as demonstrated by in-
creased expression of the adhesion molecules VCAM-1,
ICAM-1 and endothelial specific E-selectin, as well as the
chemokine MCP-1, although the latter may be a product of
glial cells, in addition to EC [75]. Increased endothelial acti-
vation in brains of A20 KO mice is in keeping with the
well-documented anti-inflammatory and homeostatic func-
tion of A20 in EC [15,76], and agrees with our recent data
demonstrating that mere partial loss of A20 aggravates the
inflammatory phenotype of the endothelium in a vascular
allograft model of transplant arteriosclerosis (Lee et al.,
manuscript in preparation).

Notably, A20 KO mice analyzed in this work were not
exposed to exogenous toxic substances, pathogens or sur-
gical procedure, raising questions regarding the primary
signals/mediators triggering spontaneous neuroinflamma-
tion in these mice.

Data demonstrating that spontaneous multi-organ in-
flammation observed in A20 KO mice resolves when the
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TLR adapter MyD88 is simultaneously knocked out
(A20/MyD88 double knockout), implicate pathogen-as-
sociated molecular patterns from commensal bacteria in
driving the inflammatory process [77]. We hypothesize
that similar mechanisms might drive spontaneous neu-
roinflammation in these mice. Indeed, the BBB may be
breached in A20 KO and as a result, greater levels of
LPS may cross the BBB and directly activate TLR ex-
pressing microglia. Alternatively, heightened EC inflam-
mation and by consequence production of cytokines,
[78,79] would engage NFxB signaling and activate
microglia [80]. Activated microglia in turn would cause
reactive astrogliosis [81], creating a paracrine and auto-
crine feedback loop whereby microglia- and astrocyte-
derived factors would regulate each other, promoting a
self-sustained pro-inflammatory environment. We favor
the latter scenario as we failed to show any significant
disruption of the BBB in A20 KO mice, at least at
baseline.

In contrast to our observations in whole-body A20 KO
mice, astrocyte, neuronal and neuroectodermal (astro-
cytes, neurons and oligodendrocytes) specific A20 KO do
not cause spontaneous inflammation in the CNS [25].
This suggests that A20 knockdown on microglia and/or
brain EC is required to cause spontaneous inflammation
of the CNS, which would agree with our hypothesis pla-
cing these two cell types at the initiation of the neuroin-
flammatory process. Whether specific A20 KO in any or
both of these cells is sufficient to cause neuroinflamma-
tion, or whether A20 KO in all brain cells (microglia,
astrocytes, neurons, oligodendrocytes, endothelial cells) is
required to have the phenotype we observe remains to be
determined.

Limited survival of A20 KO animals restricts our study
in terms of gauging their responses in several animal
models of cerebral diseases. On the other hand, our la-
boratory has evidence that A20 HT mice, that do not
present any apparent signs of pathology, uncover a signifi-
cant phenotype upon challenge. In particular, we have
strong indication that partial hepatectomy, a benign pro-
cedure in WT mice, harbors high lethality in A20 HT
mice (Studer et al., manuscript submitted). High lethality
in these mice stems from inadequate liver regeneration
that partly results from heightened inflammation. Accord-
ingly, we set up to check the baseline brain phenotype of
A20 HT mice. Interestingly, our findings show that partial
loss of A20 results in mild cerebral inflammation, as de-
monstrated by a moderate yet consistent increase in pro-
inflammatory and oxidative/nitrosative stress markers in
the CX and HC of A20 HT mice. Those findings are
highly significant, given recently described SNPs in the
A20/TNFAIP3 locus, imparting decreased A20 expression
or function (NFxB inhibition), that were linked with
auto-immune and pro-inflammatory pathologies such as
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systemic lupus erythematosus, rheumatoid arthritis and
multiple sclerosis [82,83]. These ‘risky’ TNFAIP3 SNPs,
akin to those seen in A20 HT mice, may cause low-grade
inflammation in the brain, predisposing patients to neuro-
inflammation and neurodegenerative diseases.
Neuroinflammation in brains of A20 HT mice is
bound to increase with aging, and possibly metabolic
diseases such as diabetes. It is well documented that
microglial cells in aging brains, including those of mice,
demonstrate a sensitized phenotype, that is, they release
higher amounts of pro-inflammatory mediators upon
activation [84]. In addition, our group has shown that
A20 protein levels decrease in the context of diabetes, as
a result of increased proteasomal degradation stemming
from high glucose driven post-translational modifica-
tions, namely o-glycosylation and ubiquitination [85].

Conclusion

Altogether, our data uncover the cerebral phenotype of
A20 deficient mice that suffer spontaneous neuroinflam-
mation as depicted by heightened gliosis and endothelial
cell activation, feeding into a spiral of local cytokine and
chemokine production together with increased oxidative/
nitrosative stress, all of which culminate in neuronal dam-
age. Future studies using A20 HT as a model for chronic
spontaneous low-grade neuroinflammation may help clar-
ify the role of A20 in brain inflammation related to aging
or metabolic diseases, as well as inflammatory neurode-
generative diseases such as PD, AD, stroke or trauma.

Additional files

Additional file 1: Figure S1. Absence of non-specific staining in
negative controls for immunohistochemistry. Primary antibodies were
omitted and immunohistochemistry was performed using secondary 1gG
anti-goat, anti-rabbit, anti-rat and anti-hamster in cerebral cortex (CX) and
hippocampus (HC). Bar = 50 um, magnification = 200x.

Additional file 2: Figure S2. Transfection of mouse primary astrocytes
and microglia cell line N13 with A20 silencing RNA significantly reduces
LPS-induced upregulation of A20 mRNA. A20 mRNA levels measured by
gPCR in A. mouse primary astrocytes and B. microglia cell line N13 1 hour
after LPS (Tpg/mL) stimulation. Graphs represent relative mRNA levels after
normalization by Bactin. NS: non-stimulated cells. Ctrl: non-transfected control
cells. A20 siRNA: cells transfected with A20 silence RNA. C siRNA: cells
transfected with All Star control silence RNA. *P < 0.05, **P < 001 and

P < 0.001.

Additional file 3: Figure S3. HO-1 levels are unchanged in cerebral
cortex and hippocampus of A20 deficient mice. A. HO-1T mRNA levels in
cerebral cortex (CX) and hippocampus (HC) of wild type (WT), A20
heterozygous (HT) and A20 knockout (KO) mice, measured by gPCR.
Graph shows of relative RNA levels after normalization with Bactin.
Results are expressed as mean + SEM for six to seven animals per
genotype.

Additional file 4: Figure S4. Loss of A20 does not induce spontaneous
changes in blood brain barrier (BBB) permeability. A. Evan’s blue dye (EB)
extravasation: Wild type (WT), A20 heterozygous (HT) and A20 knockout
(KO) mice using were intravenously injected with 2% EB solution. 1.5
hours after injection, animals were transcardially perfused with saline and
brains were processed to measure fluorescence. Graph shows optical
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density (OD) at 620 nm. B. S1003 protein levels in serum from WT, HT
and KO mice, measured by ELISA. Results are expressed as mean + SEM
for three to six animals per genotype.

Additional file 5: Supplementary Experimental Procedures.
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