Singh et al. Journal of Neuroinflammation 2014, 11:33 JOURNAL OF
http://www.jneuroinflammation.com/content/11/1/33 JN NEUROINFLAMMATION

RESEARCH Open Access

Antibacterial responses of retinal Miller glia:
production of antimicrobial peptides, oxidative
burst and phagocytosis

Pawan Kumar Singhw, Melissa J Shiha' and Ashok Kumar'?"

Abstract

Background: We have previously shown that, in response to microbial infection, activated Mdller glia secrete
inflammatory cytokines/chemokines and exhibit antimicrobial properties. The aim of this study is to understand the
mechanisms and the key components involved in this response.

Methods: Immortalized human retinal Mdller glia (MIO-M1 cells) were challenged with Staphylococcus (S) aureus,
the leading cause of severe intraocular infection followed by RT? profile PCR array analysis. The expression of
human (3-defensin 1 (HBD1), 2 (HBD2), 3 (HBD3), hepcidine and cathelicidin LL37 was checked by RT-PCR and quantified
by Tagman® gPCR. The expression of AMPs was confirmed at protein level by dot-blot analysis. The production of ROS
was measured by dicholoro-dihydro-fluorescein diacetate (DCFH-DA) staining by flow cytometry as well as fluorescence
microscopy. The level of nitric oxide (NO) was measured by measuring a stable metabolite, nitrite using the Griess
reagent. In vitro killing assay was performed by Live/Dead® BacLight™ staining as well as by dilution plating in
suspension and adherent conditions following S. aureus infection. Phagocytosis was measured by CFU
enumeration following infection.

Results: PCR array data showed that, in comparison to uninfected control cells, bacterial challenge
significantly (> two-fold) induced the expression of 26 genes involved in cytokine/chemokine, antimicrobials,
Toll-like receptor, apoptotic, and NF-kB signaling. RT-PCR analysis showed time-dependent increased expres-
sion of HBD1, HBD2, HBD3, LL-37, and hepcidin mRNA in bacteria-challenged Mdiller glia. The expression of
these antimicrobial molecules was also increased at the protein level in the culture supernatant, as detected
by dot-blot analysis. Additionally, the bacteria-stimulated Muller glia were found to produce reactive oxygen
(ROS) and reactive nitrogen (RNS) species. In vitro, killing assays revealed that Mller glia exhibited bactericidal
activity against S. aureus in both adherent and suspension cultures. Furthermore, our data demonstrated that
Muller glia can phagocytize and kill the bacteria in a time-dependent manner.

Conclusions: These data suggest that retinal Muller glia behave like classical innate immune cells by producing
a variety of antimicrobial molecules in response to bacterial challenge, suggesting their pivotal role in retinal
innate defense.
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Background

Miiller glia are the predominant glial cell type in the ret-
ina and have a similar role to astrocytes, oligodendro-
cytes, and ependymal cells in other regions of the
central nervous system (CNS) [1,2]. Miiller cells are ra-
dial glia that pass through the retina from its inner
border to the distal end of the outer nuclear layer and
because of their cell processes, they surround neuronal
cell bodies, axons and blood vessels [1,2]. Miiller cells
have many local functions; they stabilize the retinal
architecture, provide an orientation scaffold, give struc-
tural and metabolic support to retinal neurons and
blood vessels and prevent aberrant photoreceptor migra-
tion into the sub-retinal space [3,4]. Apart from these
important support functions, our recent studies have im-
plicated their role in retinal innate defense against mi-
crobial infection, such as bacterial endophthalmitis [5].
Since the overall incidence of bacterial endophthalmitis
is relatively low, ranging from 0.016 to 0.46% after ocular
surgeries or intravitreal injections [6-11] and up to 17%
following ocular trauma [6,12-14], it is intriguing, why
Miiller cells possess innate defense capabilities against
microbial pathogens. First, we previously showed that
Miiller glia express all known human Toll-like receptors
(TLRs), the best-characterized receptors present on in-
nate immune cells and involved in antimicrobial innate
defense [15]. Second, they are located strategically, that
is their end feet are in inner limiting membrane (ILM),
next to the vitreous cavity, the site where bacteria prolif-
erate in endophthalmitis [5]. Third, retinal Miiller glia
originate from the neuroepithelium (the stem cells of
the nervous system) and being a progenitor cell they can
divide and differentiate into a number of retinal cell
types [16]. Thus, the Miiller glia possesses the ability to
respond to a variety of infectious and non-infectious
stimuli.

Innate defense mechanisms are used by the host to re-
spond to a wide range of microbial pathogens in an acute
and conserved fashion. Host cells express pattern recogni-
tion receptors (PRRs) that sense pathogen-associated mo-
lecular patterns (PAMPs) [17,18]. Following detection, a
variety of antimicrobial mechanisms are deployed to kill
the pathogen in infected cells and/or tissue. We have pre-
viously shown that, in the retina, these early innate de-
fenses are provided by retinal glial cells (Miiller and
microglia). In response to infectious stimuli retinal glial
cells produce and secrete inflammatory cytokines and che-
mokines via TLR signaling [15,19]. In addition to their role
in inflammatory response, TLR activation on innate im-
mune cells leads to the production of antimicrobial pep-
tides (AMPs) [20]. The two best-characterized families of
AMPs are defensins [21] and cathelicidins [22]. However,
the role of AMPs in retinal innate defense has not been
fully investigated.
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The retina is protected from microbial infection due
to the presence of the blood-retinal barrier (BRB). How-
ever, in the case of infectious endophthalmitis, bacteria
gain access to the vitreous cavity following ocular
trauma or surgery, thus bypassing the BRB [23]. In such
situations, the production of AMPs by retinal innate
cells may be crucial in limiting intraocular bacterial
growth. These AMPs are ubiquitous natural effectors of
the host defense system and are conserved in both the
plants and animals with both broad-spectrum microbici-
dal activity and cell signaling functions. The ocular sur-
face tissue has been reported to express [-defensins,
hepcidin, cathelicidin and Ribonuclease 7 [24], but the
expression of these AMPs in retinal cells has not been
studied extensively. Our recent studies have shown the
induced expression of one of the AMPs, LL37, in Miiller
glia in response to S. aureus infection [5,25]. Hence, it is
reasonable to hypothesize that, in addition to LL37 other
AMPs may also be involved in retinal innate defense.

In this study, we used a Superarray to investigate the
antibacterial responses of Miiller glia challenged with
Staphylococcus (S) aureus (SA). We also tested other in-
nate responses such as production of reactive oxygen
species (ROS) and reactive nitrogen species (RNS) and
the phagocytic activities of Milller glia. Our data suggest
that in response to pathogen challenge, Miiller glia ex-
hibit the induced expression of AMPs, ROS, and NO.
The culture supernatants of activated Miiller cells were
found to possess bactericidal activity. Further under-
standing of the antimicrobial mechanisms within the ret-
ina will allow us to develop new approaches to prevent
intraocular infections.

Methods

Cell culture

The immortalized human Miiller glia cell line MIO-M1
was maintained in DMEM supplemented with 10% FBS,
1% penicillin-streptomycin and 10 pg/ml L-glutamine.
Human embryonic kidney (HEK/293) cells were used as
unresponsive control cells and they were also cultured
in DMEM with 10% FBS. Whenever needed, cells were
grown overnight in serum and antibiotic-free DMEM
prior to infection.

RNA extraction and PCR analysis

Total RNA was extracted from the MIO-M1 cells using
TRIzol reagent following the manufacturer’s instruction
(Invitrogen, Carlsbad, CA, USA). cDNA was synthesized
using 1 pg of total RNA using a Maxima first strand
c¢DNA synthesis kit, as per the manufacturer’s instruc-
tions (Thermo Scientific, Rockford, IL, USA). The cDNA
was amplified using AMP (HBD1, HBD2, HBD3, LL-37,
and hepcidin) gene specific PCR primers. The PCR
product and internal control glyceraldehyde 3-phosphate
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dehydrogenase (GAPDH) were subjected to electrophor-
esis on 1.5% agarose gel containing 0.5 pg/ml ethidium
bromide. Stained gels were captured using a digital cam-
era (EDAS 290 system, Eastman Kodak, Rochester, NY,
USA). Real time RT-PCR was conducted in StepOnePlus™
Real-Time PCR system (Applied Biosystems, Grand Is-
land, NY, USA). All primers and Tagman® probes (Prime
Time Mini qPCR Assay) were purchased from Inte-
grated DNA technologies (Coralville, IA, USA). The
quantification of gene expression was determined via
the comparative AACT method. Expression in the test
samples were normalized to the endogenous reference
GAPDH level and were reported as x-fold change relative
to GAPDH gene expression. All assays were performed in
triplicate and repeated at least three times.

PCR array for the antibacterial response genes

A human antibacterial response RT? profile PCR array
was performed as per the manufacturer’s instructions
(Qiagen, Valencia, CA, USA). Total RNA was extracted
from infected MIO-M1 cells and cDNA was prepared as
mentioned previously [19]. The cDNA was mixed with
RT? qPCR master mix supplied by the manufacturer and
real time PCR was performed in a 96-well plate format
using StepOnePlus™ Real-Time PCR system (Applied
Biosystems, Grand Island, NY, USA). The data were ana-
lyzed as per the manufacturer’s recommendation using
RT? profile PCR array data analysis templates V4.0.

Dot-blot analysis

MIO-M1 cells were infected with S. aureus for various
time periods (2, 4, 8, and 12 hours). PBS treated cells
were used as a vehicle control. After incubation, the cul-
ture supernatant was collected from each well and cen-
trifuged at 10,000 x g for ten minutes. to remove
bacteria and cell debris. The clear culture supernatants
were transferred to new tubes for use in the dot-blot
assay. The culture supernatants were loaded onto a
0.2 pm nitrocellulose membrane using a BIO-DOT™ ap-
paratus (Bio-Rad, Hercules, CA, USA) and vacuum suc-
tion. The membrane was fixed in 10% formaldehyde in
Tris buffer saline (TBS) for one hour at room temperature
(RT). The membrane was blocked in 5% skim milk made
up in TBST (TBS containing 0.05% tween 20) for one
hour at RT and incubated with primary antibody for vari-
ous antimicrobial peptides overnight at 4°C. On the fol-
lowing day, the blot was washed three times in TBST and
incubated with respective anti-mouse or anti-rabbit HRP
conjugates for one hour at RT. The blot was developed
using SuperSignal® West Femto maximum Sensitivity
Substrate (Thermo Scientific, Rockford, IL, USA) via
chemiluminescence using a Kodak image station 4000R
Pro, molecular imaging system (Carestream Health Inc,
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Rochester, NY, USA). Dot intensity was quantified using
Image | analysis software (NIH).

Measurement of intracellular ROS

ROS production was measured by both flow cytometry
and fluorescence microscopy using dicholoro-dihydro-
fluorescein diacetate (DCFH-DA). MIO-M1 cells were
infected with S. aureus (Multiplicity of Infection (MOI)
10:1) and, following incubation for the appropriate time
period, cells were collected, washed with cold PBS, re-
suspended in PBS containing 10 pM DCFH-DA, and in-
cubated for 30 minutes at 37°C in a CO, incubator. The
fluorescence intensity was measured at 488 nm excitation
and 525 nm emission using a flow cytometer BD Accu-
riC6 (BD Biosciences, Ann Arbor, MI, USA). For the
fluorescence microscopy, the MIO-M1 cells were grown
in a slide chamber and, following infection, cells were
washed with PBS and incubated in 50 pM of DCFH-DA
for 30 minutes at 37°C. The cells were then washed twice
with PBS and observed via fluorescence microscope.

Nitrite concentration assay

The production of NO was measured indirectly via its
stable metabolite nitrite using the Griess reagent, as per
manufacturer’s instructions (Cayman Chemical, Ann
Arbor, MI, USA). The conditioned growth media from
the MIO-M1 cell cultures were added, in sequence, to a
96-well plate. Both the Griess reagent R1 and Griess re-
agent R2 were then added to the 96-well plate. The 96-
well plates were allowed to develop for ten minutes at
RT, and the absorbance was measured using a plate
reader at 540 nm. The nitrite concentration was calcu-
lated via comparison to a standard reference.

In vitro bacterial killing assay

Our bacterial killing assay was based on a modification
of a method described elsewhere [26-28]. The MIO-M1
cells were washed with Hank’s balanced salt solution
(HBSS), and 8 x 10° MIO-MI1 cells were co-cultured
with 4 x 10®S. aureus cells (a 200:1 ratio) in HBSS for
one hour at 37°C. Following incubation, the tubes were
sonicated, serially diluted, plated onto TSA plates, and
incubated overnight at 37°C. The colony-forming units
(CFUs) of the co-cultured tubes were compared with the
CFUs of growth control tubes containing S. aureus only
(without MIO-M1 cells).

To estimate bacterial killing by MIO-M1 cells in an
adhered condition, MIO-M1 cells were grown in six-well
plates and infected with S. aureus at a multiplicity of in-
fection (MOI) of 10:1 for four hours. Following incuba-
tion, bacterial CFUs were estimated via dilution plating.
In the same plate, S. aureus growing alone (no cell con-
tact) in DMEM was used as control. Bacterial killing was
also estimated using MIO-M1 conditioned medium,
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deposited on top of S. aureus grown on coverslips, via
fluorescence microscopy. MIO-M1 cells were infected
with S. aureus at a multiplicity of infection (MOI) of
10:1 for four hours and the conditioned media were de-
posited on top of coverslips containing 24-hour growth
layers of S. aureus. The coverslips were incubated for an
additional four hours with after the conditioned medium
was added. DMEM medium without any infection was
used as a control. Following incubation, the coverslips
were stained with the Live/Dead® BacLight™ Bacterial
Viability Kit (Invitrogen, Carlsbad, CA, USA), washed
three times to remove excess stain and cell debris, and
examined under the microscope.

Phagocytosis assay

MIO-M1 cells (10° cells per well) were grown in small
(60 mm) Petri dishes in DMEM medium. The cells were
infected with S. awureus at a multiplicity of infection
(MOI) of 10:1 in each Petri dish and incubated for two
hours. Following incubation, the cells were washed and
treated with gentamicin (200 pug/ml) for two hours to kill
all extracellular and/or adherent bacteria. The absence
of extracellular bacteria was confirmed via CFU enumer-
ation on Tryptic Soy Agar (TSA) plates. Two hours after
the gentamicin was added, the cells were washed with
DMEM and incubated in fresh DMEM containing genta-
micin (200 pg/ml) for 2, 4, 8, 12, and 24 hours. For the
enumeration of phagocytized bacteria, following incuba-
tion the cells were washed three times with PBS and lysed
with 0.01% Triton X-100. The lysed cells were scraped
and centrifuged at 5,000 x g for five minutes. The cell pel-
lets were washed with PBS and centrifuged at 5,000 x g
for five minutes twice more. The pellets were then re-
suspended in 1 ml of sterile PBS. Serial dilutions were pre-
pared and the dilutions were plated on TSA plates and in-
cubated overnight at 37°C. The next day, the colonies
present on the TSA plates were counted and these counts
were expressed in terms of CFUs. Phagocytosis by MIO-
M1 cells was also detected by fluorescence microscopy
following infection with GFP expressing S. aureus.

Statistical analysis

The Statistical analyses were performed using GraphPad
Prism version 6.02 (Graphpad, San Diego, CA, USA).
Student’s t-test was used for comparison of two groups,
whereas one-way analyses of variance (ANOVA) was
used for > three groups.

Results

S. aureus evokes antibacterial gene expression in retinal
Miiller glia

In order to determine the innate response of Miiller glia
towards bacterial pathogens, we performed Human
Antibacterial Response RT? Profiler™ PCR arrays. Based
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on gene selection criteria (P<0.05 and fold change > 2),
26 genes demonstrated upregulation (Figure 1A). Among
them, inflammatory mediator genes (IL-6, IL-8, IL-1f,
TNEF-a, IL-12a, CXCL1, and CXCL2) were predominant,
followed by some antimicrobial genes (CAMP and MPO),
Toll-like receptors (TLR-2 and TLR-4), NLR and inflam-
masome signaling genes (NOD2 and PYCARD), apoptotic
genes (CARDY, CASP8, and JUN), and some other bac-
terial pattern recognition receptors (APCS, CRP, and
ZBAP1). Additionally, other genes involved in pathogen
recognition and initiation of innate responses were also
induced in activated Miiller glia, but their upregulation
was < two-fold (Figure 1B). These genes include TLR-5, -6,
and -9, MAP kinases (MAP2K1, MAP2K3, MAP2K4,
MAP3K7, MAPK3, and MAPKS), and inflammosomes
(NLRP3 and NLRC4). The central pathway analysis shows
that the NF-kB, MAPK, and TRAF2 are the key central
molecules (hub genes) regulating the expression of mul-
tiple effector genes involved in innate and antibacterial
responses (Figure 1C and D).

Miiller glia express several antimicrobial peptides in
response to S. aureus challenge

We have previously shown that, in response to challenge
with S. aureus, Miiller glia secrete inflammatory cyto-
kines/chemokines and LL37 [29]. In order to investigate
whether bacterial stimulation induces the expression of
other AMPs such as defensins, time course studies were
performed. As shown in Figure 2, S. aureus induces the
time-dependent expression of HBD1, HBD2, and HBD3,
with significant increases at the four hour and eight hour
time points (Figure 2A). The expression pattern of an-
other antimicrobial molecule, hepcidin, follows the same
trend. As expected, the expression of LL37 was also in-
creased at four hour and eight hour. Concomitant with
increased mRNA expression, the activated Miller glia
secrete increased levels of HBD1, HBD2, HBD3, hepci-
din, and LL37 in culture media, as detected by the dot-
blot assay (Figure 3A). Densitometry analysis revealed
the time-dependent accumulation of AMPs (Figure 3B).
In contrast to Miiller glia, no induced expression and se-
cretion of AMPs was observed in control HEK/293 cells
following bacterial challenge (data not shown).

Activated Miiller glia exhibit oxidative stress

The oxidative burst, followed by the production of ROS
and RNS, is an important component of innate immun-
ity, which assists in the killing of not only the pathogen,
but pathogen-infected cells. We investigated the produc-
tion of ROS and RNS by Miiller glia in response to S.
aureus infection. The immunofluorescence (Figure 4A)
and flow cytometry (Figure 4B) assays revealed that
Miller glia produced reactive oxygen species (ROS) as a
part of an oxidative burst following S. aureus infection.
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Figure 1 S. aureus induces global antibacterial response genes in retinal Miiller glia. The human retinal Mdller glia cell line (MIO-M1) was
infected with S. aureus (SA) for four hours. Total RNA was extracted, reverse transcribed, and subjected to RT? PCR array for human antibacterial
response genes. The quantification of induced genes was determined via RT? profile PCR array data analysis software V4 (Qiagen, Valencia, CA,
USA). Genes which showed a > two-fold increase in their level of expression are shown in left panel (A), while genes which showed a < two-fold
increase are shown in the right panel (B). The data are represented as bar graph and it is a representative of two independent experiments. The
interaction among the genes was assessed using central pathway analysis and depicted in panels (C, D). The pathway analysis shows the interaction
map of all the upregulated genes following S. aureus infection with key central molecules MAPK, NF-kB, and TRAF2. The lines represent: red line,
downregulation; green line, upregulation; grey line, regulation; purple line, co-expression; blue line, chemical modifications; orange line,
physical interaction; dashed turquoise line, predicted protein interaction; dashed pink line, predicted T-factor regulation; black line, others; grey
diamond, neighboring key central molecule; purple circle, genes upregulated in this study; brown square, non-translatable.
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Figure 2 S. aureus up-regulates antimicrobial peptides (AMPs) expression in retinal Miiller glia. MIO-M1 cells were infected with S. aureus
(SA) for the indicated time points. Total RNA was extracted, reverse transcribed, and subjected to semi-quantitative RT-PCR using primers for specific
AMPs and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as the control (A). Real time PCR with a TagMan® probe was used for the quantification
of induced gene expression and the results were expressed as relative fold changes with respect to the GAPDH control (B). Statistical analysis
was performed using one-way ANOVA (*P < 0.05; **P < 0.005), for comparisons of control versus stimulated cells over the time. Data points and
bars represent mean + SD of triplicates from three independent experiments.
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Figure 3 S. aureus-activated Miiller glia secrete antimicrobial peptides (AMPs) into culture media. MIO-M1 cells were infected with S. aureus (SA)
for the indicated time points. The secretion of AMPs into the culture supernatant was detected via dot-blot (A), and the intensities of the dots
were quantitated by densitometric analysis and presented as fold-changes, using a value of 1 for the control samples (B). Statistical analysis was
performed using one-way ANOVA (*P < 0.05; **P < 0.005), for comparisons of control versus stimulated cells over the time. Data points and bars
represent mean + SD of triplicates from three independent experiments.
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level of inducible nitric oxide synthase (iNOS) is elevated  from the S. aureus infected MIO-M1 cells, termed ‘acti-
in a time-dependent manner (Figure 5B). Together, these  vated, showed an increased number of dead bacterial cells,
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Figure 4 S. aureus evokes oxidative stress in Mller glia. MIO-M1 cells were challenged with S. aureus (SA) for four hours. The generation of re-
active oxygen species (ROS) was detected via immunostaining (A) and ROS quantification was performed using flow cytometry and the data are pre-
sented as the mean fluorescent intensity (MFI) after DCFH-DA staining (B). The data represent the mean + SD of triplicates from three independent
experiments. Statistical analysis was performed using a student’s t-test for comparison of SA infected cells versus uninfected control cells (*P < 0.05).
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Figure 5 Miiller glia produce reactive nitrogen species following
S. aureus challenge. MIO-M1 cells were challenged with S. aureus (SA)
for the indicated time points. The level of NO in the culture media was
determined by measuring the concentration of one of its stable
metabolites, nitrite, using the Griess reagent (A). RNA extraction
and RT-PCR for inducible nitric oxide synthase (iNOS) expression
was performed on the cells. (B). The data represent mean + SD of
triplicates from three independent experiments. Statistical analysis
was performed using one-way ANOVA, for comparisons of control

versus infected cells over time. (*P < 0.05; ns, not significant).

CA, USA). In contrast, the normal conditioned media
(media in contact with non-infected MIO-M1 cells) or
plain DMEM (no cell contact, just bacterial growth
media), when deposited on top of S. aureus biofilms,
showed heavy green staining due to the Syto9 compo-
nent of the Live/Dead” stain (Invitrogen, Carlsbad, CA,
USA), indicating viable bacteria. Similarly, proteinase K
(20 pg/ml for 30 minutes) treatment of the conditioned
media showed significantly reduced bactericidal activity,
that is increased green fluorescent staining. To further
demonstrate the pathogen killing ability of Miiller glia,
we performed an in vitro killing assay in both adhered
(Figure 7A) and suspension culture (Figure 7B) of MIO-
M1 cells. Both of these assays revealed that Miiller glia
possess the ability to kill S. aureus, as evidenced by the
reduced number of viable CFUs when compared to
controls.

Miiller glia possess bacterial phagocytic activity

Having demonstrated the bactericidal activity of Miiller
glia-conditioned media, we next sought to determine
whether Miiller glia can phagocytize the bacteria (specif-
ically, S. aureus), an ability commonly exhibited by in-
nate immune cells. Using a gentamicin protection assay
(Figure 8), our data showed that at eight hours, a signifi-
cantly increased number of bacteria were internalized by
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Miiller glia, indicating phagocytic activity. At the 12-hour
time point, the recovery of viable intracellular bacteria
dropped below the level at four hours (the time of inva-
sion). This trend continued, with a drastically reduced
number of phagocytized bacteria at 24 hours. Fluores-
cence microscopy results also indicate the phagocytosis of
GFP expressing S. aureus by Miiller glia. Taken together,
these results indicate that Miiller glia can phagocytize and
kill bacteria.

Discussion

In this study, we demonstrated that, in addition to the
inflammatory response, the activated Miiller glia exhibit
antibacterial responses, as evidenced by the increased
expression and production of AMPs (defensins and
LL37), ROS, and NO, a phenotype commonly displayed
by mucosal epithelial cells. We also elucidated the func-
tional role (that is, the bactericidal activity) of activated
Miiller glia derived AMPs. Furthermore, Miiller glia
were also found to kill the bacteria by internalization, a
phenomenon exhibited by classical immune cells (poly-
morphonuclear neutrophils (PMNs) and macrophages).
Taken together, our data provide evidence that Miiller
glia produce various antimicrobials to inhibit bacterial
growth, suggesting their critical role in retinal innate
defense.

Innate immune cells use several strategies to limit bac-
terial growth in infected tissues [30]. On mucosal surfaces,
these innate immune defenses include the secretion of
antibacterial factors, such as antimicrobial peptides [21].
Since the mucosal surfaces are constantly exposed to a
wide variety of physical, chemical, and biological insults,
the expression of AMPs could be either constitutive or in-
ducible. By contrast, whether or not similar mechanisms
operate in the retina, a tissue that is never exposed to
the external environment, is largely unexplored. Although
clinical evidence does support the presence of AMPs
(p-defensins) in human vitreous, albeit at a low level,
which retinal cells produce the AMPs in the vitreous is
still unknown. In this study, we provide the first evidence
that retinal Miiller glia contribute towards the production
of B-defensins. Furthermore, their expression is inducible
in response to bacterial challenge, implicating their role in
the antimicrobial defense in the retina. Defensins are a
class of particularly abundant and widely distributed
AMPs characterized by a cationic, -sheet rich amphi-
pathic structure stabilized by a conserved three-
disulfide motif ranging in size from 29 to 47 amino
acids. It was once believed that the expression of -
defensins was limited to epithelial cells. However, several
studies have now shown that they can also be secreted by
other cell types. For example, Lehman et al have shown
the expression of defensin 1 and 2 by kidney cells with
chronic bacterial infections. Similarly, Gambichler et al.



Singh et al. Journal of Neuroinflammation 2014, 11:33
http://www.jneuroinflammation.com/content/11/1/33

Page 8 of 12

A \/\ \ Activated conditioned
\ media (1)
., ~
Bacterial Proteinase K leealaila::@i _“‘t
ﬁ. " media (4 |
Stimulation * gyrEEES “@ SA growing on coverslips -

SA growing .i" Bacterial growth media (3)
culture media

(no cells)
B Media (1)

Dead (PI) Live (syto-9)

Merged

Muller glia
@ Normal conditioned media (2)

Media (2)

Figure 6 Activated Miiller glia-conditioned media possesses antibacterial properties. MIO-M1 cells were left either untreated or infected
with S. aureus (SA) for four hours, the respective ‘normal’ (untreated), ‘activated’ (SA challenged), and proteinase K (20pg/ml for 30 minutes)
treated culture media were collected. In a separate set of wells, bacteria were cultured in DMEM media for four hours without cells. All condi-
tioned media were passed through a 0.22 um syringe filters (bacteria/cell free) and applied to cover slips containing SA biofilms for four hours
(A). Bacterial killing was assessed via Live/Dead® staining and subsequent fluorescent microscopy (B). In comparision to untreated, bacterial
growth, and proteinase K treated conditioned media, the activated conditioned medium exhibited antibacterial properties, as evidenced by the
increased red staining. The experiment was repeated three times independently and the representative Figure is shown.

Media (3) . Meda (4)

have shown the expression of B-defensins in basal cell
carcinoma [31,32]. Our data also revealed that Miiller
glia have the ability to produce HBD1, HBD2, and HBD3
in response to bacterial (S. aureus) infection.

In addition to B-defensins, Miiller glia were also found
to express and secrete LL37, the only cathelicidin anti-
microbial host defense peptide expressed in humans. This
observation is consistent with our previous study [29].
The important antimicrobial property of LL37 in vivo re-
lates to its potent anti-inflammatory activity and its select-
ive ability to modulate a favorable immune response. For
example, LL37 not only kills bacteria, but it also inhibits
biofilm formation [33,34], an important virulence factor in
the pathogenesis of staphylococcal endophthalmitis [35].
LL37 is also reported to influence many aspects of innate
immunity, such as chemotaxis, angiogenesis, and wound
healing. However, it is not completely understood whether
these activities are associated with certain cell receptors
and/or epidermal growth factor receptor (EGFR) [36-38].
Taken together, our study demonstrates that Miiller glia
produce multiple AMPs in response to bacterial infection.

Furthermore, our data show that the secreted AMPs con-
tributes to the observed bactericidal activity of Miiller glia
conditioned media, as evidenced by loss of this activity by
proteinase K treatment (Figure 6). However, further stud-
ies are warranted to define the contribution of each indi-
vidual AMP.

Both the host and the bacteria require iron for metab-
olism and growth. Thus, the availability of free iron is an
important factor in bacterial pathogenesis. The host has
evolved mechanisms of ‘withholding’ iron from tissue
fluids in an attempt to limit bacterial growth. Systemic
iron homeostasis in humans is controlled by the 25
amino acid peptide hormone hepcidin, produced by he-
patocytes. The expression of hepcidin has been reported
in retinal pigmented epithelial (RPE) cells [39,40], as well
as in mouse Miiller glia and photoreceptor cells [40].
The induced expression of hepcidin in Miller glia in
response to bacterial challenge suggests that hepcidin
production during the innate immune response in en-
dophthalmitis may enable the retina to withhold iron
from extracellular pathogens such as S. aureus. By inhibiting
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ferroportin function in macrophages and other innate
cells, hepcidin reduces iron availability in the vitreous and,
by extension, potentially limits growth of the pathogen.
The in vivo phagocytic activity of Miiller cells was de-
scribed more than eight decades ago [4,41]. Studies have
shown that Miiller cells can phagocytize type II collagen
and cellular debris from dead cells and latex beads [4,42].
To our knowledge, there is no evidence that these cells
can phagocytize pathogens. In this study, we evaluated the
phagocytotic properties of Miiller cells following S. aureus
infection. Our data showed that Miiller cells can not only
phagocytize bacteria, but can kill them intracellularly, as
evidenced by reduced bacterial CFUs in two independent
experiments (both adherent and suspension cell cultures).
In order to understand the mechanism of intracellular kill-
ing by Miiller glia, we hypothesized that, similar to other
innate immune cells (for example, neutrophils), Miiller
glia may generate ROS and RNS. To this end our data
showed that Miiller glia produces ROS in response to S.
aureus challenge. Few reports have linked ROS generation
and TLR2/4 signaling [43,44]. Since, our previous study
showed that Miiller glial innate responses towards S. aur-
eus are mediated via TLR-2 [5], we cannot rule out the
possible involvement of TLR2-signaling in ROS gener-
ation by Miller glia. Moreover, as ROS play an important
role in anti-bacterial defense, it is not surprising that sig-
naling from cell-surface TLRs, which predominantly
recognize ligands derived from bacteria, induce the gener-
ation of ROS. Similar to ROS, NO produced by iNOS is
another common component of the host’s innate immune
response against a wide variety of pathogens. The killing
of a microorganism by NO is quite remarkable, as most of
the antimicrobial actions exerted by this diatomic radical
against most microorganisms manifest via cytosis [45,46].
NO can also arrest the replication of phylogenetically
diverse microorganisms such as Candida albicans, E.
coli, Salmonella enterica, and Burkholderia pseudomallei
[46-49]. In the current study, we showed that Miiller
glia can produce NO following S. aureus infection, impli-
cating its role in bacterial killing during ocular infections.
Although, our data showed that Miiller glia produce
ROS and NO in response to bacterial challenge, it should
be noted that these reactive oxidant species are involved
in multiple complex interactions between the invading
pathogen and the host [50]. During microbial infection,
the pathogen produces these oxidants to enable them to
have a survival advantage in the host environment. On the
other hand, the host cells, especially the phagocytes, pro-
duce them as a counteractive mechanism to kill patho-
gens. However, if this vicious cycle continues it may lead
to inflammatory tissue damage in the retina. Thus, the
host cells including Miiller glia have evolved complex
adaptive mechanisms to deflect oxidant-mediated damage,
including enzymatic and nonenzymatic oxidant-scavenging
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Figure 9 The mechanisms of the Miiller glial antimicrobial
response. Following microbial (bacteria) insult, Muller glia elicit
innate defense responses in an attempt to limit bacterial growth.
These include the production of antimicrobial peptides (AMPs),
reactive oxygen species (ROS), and reactive nitrogen species (RNS),
which possess the ability to kill the bacteria directly. Additionally,
Mdller glia can phagocytize and kill the pathogens intracellularly.

systems [51]. Furthermore, the Miiller glia release neuro-
trophic factors, they uptake and degrade excitotoxins, glu-
tamate, and secrete glutathione (a potent antioxidant) to
protect retinal neurons [52].

Conclusions

To conclude, our study suggests that in addition to serving
as a supportive cell, retinal Miller glia actively participate
in the retinal innate defense against microbial pathogens.
Miiller glia directly contribute to bacterial killing via the
production of AMPs (for example, defensins, LL37), the
generation of ROS/RNS, and phagocytosis (Figure 9). In
view of the alarming increase in antibiotic resistance, the
endogenous production of antimicrobial molecules exert-
ing additive or synergistic effects could be a novel ap-
proach to the prevention of ocular infections such as
endophthalmitis. Thus, understanding the processes and
mechanisms by which the innate immune system operates
in the retina will help in developing new therapies that will
not only treat retinal disease, but could also aid in the pre-
vention of retinal disease.
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