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Abstract

by behavioral testing.

antagonist SB225002 attenuated BCP.

Background: Bone cancer pain (BCP) is one of the most disabling factors in patients suffering from primary bone
cancer or bone metastases. Recent studies show several chemokines (for example, CCL2, CXCL10) in the spinal cord
are involved in the pathogenesis of BCP. Here we investigated whether and how spinal CXCL1 contributes to BCP.

Methods: Mouse prostate tumor cell line, RM-1 cells were intramedullary injected into the femur to induce BCP.
The mRNA expression of CXCL1 and CXCR2 was detected by quantitative real-time PCR. The protein expression and
distribution of CXCL1, NFkB, and CXCR2 was examined by immunofluorescence staining and western blot. The
effect of CXCL1 neutralizing antibody, NFkB antagonist, and CXCR2 antagonist on pain hypersensitivity was checked

Results: Intramedullary injection of RM-1 cells into the femur induced cortical bone damage and persistent

(>21 days) mechanical allodynia and heat hyperalgesia. Tumor cell inoculation also produced CXCL1 upregulation
in activated astrocytes in the spinal cord for more than 21 days. Inhibition of CXCL1 by intrathecal administration of
CXCL1 neutralizing antibody at 7 days after inoculation attenuated mechanical allodynia and heat hyperalgesia. In
cultured astrocytes, TNF-a induced robust CXCL1 expression, which was dose-dependently decreased by NFkB
inhibitor. Furthermore, inoculation induced persistent NFkB phosphorylation in spinal astrocytes. Intrathecal injection
of NFkB inhibitor attenuated BCP and reduced CXCL1 increase in the spinal cord. Finally, CXCR2, the primary
receptor of CXCLT, was upregulated in dorsal horn neurons after inoculation. Inhibition of CXCR2 by its selective

Conclusion: NFkB mediates CXCL1 upregulation in spinal astrocytes in the BCP model. In addition, CXCLT may be
released from astrocytes and act on CXCR2 on neurons in the spinal cord and be involved in the maintenance of
BCP. Inhibition of the CXCL1 signaling may provide a new therapy for BCP management.

Keywords: Bone cancer pain, Chemokines, CXCL1, CXCR2, NFkB, Astrocytes, Astroglia-neuron interaction

Background

Bone cancer pain (BCP) is the most common symptom
detected in patients with advanced breast, prostate, and
lung cancer [1]. Current treatment strategies often pro-
vide inadequate analgesia and unacceptable side effects
[2]. Understanding the underlying mechanisms related
to the development of BCP is important for effectively
treating these patients.
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Glial cell-mediated neuroinflammation has been recently
shown to play a pivotal role in the pathogenesis of chronic
pain [3,4]. Tissue injury/inflammation, nerve injury, and
tumor growth can induce glial cells (astrocytes and micro-
glia) to be reactive and release a variety of inflammatory
mediators, including proinflammatory cytokines and che-
mokines, which may augment the nociceptive signals in the
spinal cord [5-8]. Chemokines are small secreted proteins
and are key molecules involved in the migration and
homeostasis of immune cells. Recent studies have shown
that some chemokines in the spinal cord are involved in
BCP. For example, CCL2 expression is increased in spinal
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astrocytes and microglia in mice with BCP [9]. Intrathecal
administration of CCL2 neutralizing antibody attenuates
tumoral hyperalgesia [9,10]. Tumor cell inoculation also in-
duces the increases of CXCL10 and its major receptor
CXCR3 in the spinal cord. Blocking the function of
CXCL10/CXCR3 pathway via anti-CXCL10 antibody or
CXCR3 antagonist prevents the development of BCP and
microglial activation [11].

CXCL1 is a member of CXC family and is also known
as keratinocyte-derived chemokines (KC) or growth-
related oncogene (GRO). CXCLL1 is highly expressed in
melanoma cell lines and promotes malignant melanoma
tumor progression [12]. CXCL1 also modulates neuronal
excitability of DRG neurons by increasing sodium cur-
rents, potassium currents, and the function of TRPV1
channels [13-15]. In the spinal cord, CXCL1 is upregu-
lated in astrocytes after spinal nerve ligation and con-
tribute to the maintenance of neuropathic pain [16].
However, little is known about whether CXCL1 partici-
pates in the maintenance of BCP.

Nuclear factor kappa B (NF«kB) is a transcription factor
which serves as a transducer between extracellular signals
and gene expression. NFkB is involved in CXCL1 transcrip-
tion in Hs294T malignant melanoma cells [17]. Moreover,
emerging evidence indicates that the activation of NF«B fol-
lowing tissue injury or nerve damage is related to the gen-
eration of chronic pain [18-20]. Whether NFkB mediates
CXCL1 expression in the spinal astrocytes and contributes
to BCP needs to be investigated.

In this study, we examined CXCL1 expression and dis-
tribution in the spinal cord after inoculation of mouse
prostate cell line, RM-1 cells into the femur. We also
evaluated the role of NFkB in CXCL1 production and
pain hypersensitivity after tumor cell inoculation. As the
biological effects of chemokines are mediated via inter-
action with its G protein-coupled receptor, and CXCR2
is the primary receptor of CXCL1, we further investi-
gated the expression and distribution of CXCR2 in the
spinal cord and the antinociceptive effect of CXCR2
antagonist.

Methods

Animals and tumor inoculation

Experiments were performed on adult (8 weeks) male
C57Bl/6 mice. All mice had free access to food and water
with a 12/12 light/dark cycle. All animal procedures in this
study were performed according to the guidelines of the
International Association for the Study of Pain and ap-
proved by the Animal Care and Use Committee of Nantong
University. Mice prostate tumor cell line, RM-1, was pur-
chased from the Cell Bank of Type Culture Collection of
Chinese Academy of Sciences (Shanghai, China). RM-1
cells were grown in Dulbecco’s modified Eagle medium
(DMEM) containing 4,500 mg/L glucose, 100 mg/L
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penicillin, 100 mg/L streptomycin, and supplemented with
10% fetal bovine serum (FBS) at 37°C. The RM-1 cells were
collected following enzymatic digestion, centrifuged, and
resuspended in phosphate buffered saline (PBS) in a con-
centration of 5 x 10" cells/mL. The animals were anesthe-
tized with sodium pentobarbital (50 mg/kg, ip.). An
arthrotomy was done to expose the condyles of the distal
femur. PBS containing 10° RM-1 cells (20 pL) was injected
into the intramedullary space of the right femur with a
30 G needle and the injection site was sealed with bone
wax. Sham control mice were injected with same amount
of heat-inactivated RM-1 cells.

Radiology

To confirm cancer development in the femur, mice were
radiographed at 21 days following implantation. The ani-
mals were anesthetized with sodium pentobarbital, placed
in a prone position, and exposed to X-ray. The images were
collected by Digital Diagnost Dual Detector (Philips).

Drugs and administration

The CXCL1 neutralizing antibody was purchased from
Boster (Wuhan, China). SB225002, a potent and selective
antagonist of CXCR2, was purchased from Tocris (Bristol,
UK). BAY11-7082, a NF«B inhibitor, was purchased from
Merck (Merck KGaA, Darmstadt, Germany). Intrathecal
injection was made with a 30 G needle between the L5
and L6 intervertebral space to deliver the reagents to the
cerebral spinal fluid [21].

Behavioral analysis

Animals were habituated to the testing environment
daily for at least 2 days before baseline testing. The room
temperature remained stable for all experiments. For
testing mechanical sensitivity, animals were put in boxes
on an elevated metal mesh floor and allowed 30 min for
habituation before examination. The plantar surface of
each hindpaw was stimulated with a series of von Frey
hairs with logarithmically incrementing stiffness (0.02-
2.56 g, Stoelting, Wood Dale, IL, USA), presented per-
pendicular to the plantar surface (2 to 3 s for each hair).
The 50% paw withdrawal threshold was determined
using Dixon’s up-down method [22]. For testing heat
sensitivity, animals were put in plastic boxes and allowed
30 min for habituation. Heat sensitivity was tested by ra-
diant heat using Hargreaves apparatus (IITC Life Science
Inc., Woodland Hills, CA, USA) and expressed as paw
withdrawal latency (PWL). The radiant heat intensity
was adjusted so that basal PWL is between 10 and 14 s,
with a cutoff of 18 s to prevent tissue damage.

Primary astrocytes cultures
Primary astrocytes cultures were prepared from cerebral
cortexes of neonatal mice (P2) [23]. The cerebral hemi-
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spheres were isolated and transferred to ice-cold Hank’s
buffer and the meninges were carefully removed. Tissues
were then minced into approximately 1 mm pieces, tritu-
rated, filtered through a 100 um nylon screen, and col-
lected by centrifugation at 3,000 g for 5 min. The cell
pellets were dispersed with a pipette and resuspended in a
medium containing 10% EBS in low glucose DMEM. After
trituration, the cells were filtered through a 40 pm screen
and then plated into 6-well plates at a density of 2.5 x 10°
cells/cm?, and cultured for about 10 days. The medium
was replaced twice a week with 10% FBS. Dibutyryl cAMP
(0.15 mM, Sigma-Aldrich) was added to induce differenti-
ation when the cells were grown to 95% confluence. Prior
to stimulation with LPS, OPTI-MEM was replaced. Astro-
cytes were incubated with TNF-a for different time pe-
riods. The treatment of the BAY11-7082 (1, 5, 10 uM) was
started 30 min prior to TNF-a treatment. After the treat-
ment, the astrocytes were collected for ELISA or real-time
PCR. To check the expression of CXCL1, some cells were
cultured onto cover glasses at a density of 2.5 x 10* cells/
cm?, and fixed by 4% paraformaldehyde for 20 min. Fluor-
escence double staining of CXCL1 and GFAP were per-
formed (see below).

Immunohistochemistry and immunocytochemistry
After appropriate survival times, animals were deeply anes-
thetized with isoflurane and perfused through the ascend-
ing aorta with PBS followed by 4% paraformaldehyde with
1.5% picric acid in 0.16 M PB. After the perfusion, the L4-
L5 spinal cord segments were removed and postfixed in the
same fixative overnight. Spinal cord sections (30 pum, free-
floating) were cut in a cryostat and processed for immuno-
fluorescence as we described previously [23]. The sections
were first blocked with 2% goat serum for 1 h at room
temperature. The sections were then incubated overnight
at 4°C with the following primary antibodies: CXCL1 anti-
body (rabbit, 1:100; Boster), CXCR2 antibody (rabbit, 1:100;
Boster), phospho-NF-kB p65 (Ser536) (pNF«B) antibody
(mouse, 1:500; Sigma), GFAP antibody (mouse, 1:6,000;
Millipore, Billerica, MA, USA), CD11b antibody (Mouse,
1:100, Serotec, Kidlington, UK), NeuN antibody (mouse,
1:3,000, Millipore). The sections were then incubated for
1 h at room temperature with Cy3- or FITC-conjugated
secondary antibodies (1:1,000, Jackson ImmunoResearch).
For double immunofluorescence, sections were incubated
with a mixture of mouse and rabbit primary antibodies
followed by a mixture of Cy3- and FITC-conjugated sec-
ondary antibodies. The stained sections were examined
with a Leica fluorescence microscope, and images were
captured with a CCD Spot camera. The specificity of
CXCL1 and CXCR2 primary antibodies was tested by pre-
absorption experiment (Zhang et al. [16]).

For immunocytochemistry, cultured astrocytes were fixed
with 4% paraformaldehyde for 20 min and processed for
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immunofluorescence with CXCL1 (rabbit, 1:100, Boster)
and GFAP (mouse, 1:5,000; Millipore) antibody as shown
above.

Real-time PCR

Total RNA was extracted from L4-5 spinal cord with the
Trizol reagent (Invitrogen, Carlsbad, CA, USA). One
microgram of total RNA was converted into cDNA
using PrimeScript RT reagent kit (Takara, Shiga, Japan).
The ¢cDNA was amplified using the following primers:
CXCL1 forward, 5'-GCT TGA AGG TGT TGC CCT
CAG -3’; CXCL1 reverse, 5'-AGA AGC CAG CGT
TCA CCA GAC-3'; CXCR2 forward, 5'-TCT GCT CAC
AAA CAG CGT CGT A-3'; CXCR2 reverse, 5'-GAG
TGG CAT GGG ACA GCA TC-3'; GAPDH forward,
5-AAA TGG TGA AGG TCG GTG TGA AC-3';
GAPDH reverse, 5'-CAA CAA TCT CCA CTT TGC
CAC TG-3". The SYBR Premix Ex Taq™ 11 kit (Takara)
was used for all PCR reactions, which were run on a
Rotor-Gene 6000 RT-PCR machine (Hamburg, Germany).
The PCR amplifications were performed at 95°C for
30 s, followed by 45 cycles at 95°C for 5 s, 56°C for
30 s, and 72°C for 30 s. The melting curves were per-
formed to validate the utility and specificity of each PCR
product. The data were analyzed using Rotor-Gene 6000
series software, and evaluated using the Comparative CT
Method (244°T).

ELISA

Mouse CXCL1 ELISA kit was purchased from R&D.
Cultured cells were collected after treatment and ho-
mogenized in a lysis buffer containing protease and
phosphatase inhibitors (Sigma). Protein concentrations
were determined by BCA Protein Assay (Pierce, Rockford,
IL, USA). For each reaction in a 96-well plate, 100 pg of
proteins were used, and ELISA was performed according
to manufacturer’s protocol. The standard curve was in-
cluded in each experiment.

Western blot

Protein samples were prepared in the same way as for
ELISA analysis, and 30 pg of proteins were loaded for
each lane and separated on SDS-PAGE gel (10%). After
the transfer, the blots were incubated overnight at 4°C
with polyclonal antibodies against CXCR2 (1:100, rabbit,
Boster) or pNFkB (1:1,000, rabbit, Cell Signaling Tech-
nology). For loading control, the blots were probed with
GAPDH antibody (1:20,000, mouse, Sigma). These blots
were further incubated with HRP-conjugated secondary
antibody, developed in ECL solution, and exposed onto
film (Millipore) for 1 to 5 min. Specific bands were eval-
uated by apparent molecular size. The intensity of the
selected bands was analyzed using Image ] software
(NIH, Bethesda, MD, USA).
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Quantification and statistics

The behavioral and real-time PCR data were analyzed by
one-way analysis of variance (ANOVA) followed by
Newman-Keuls post hoc test. For western blot, the dens-
ity of specific bands was measured with Image J. CXCR2
and p-NF«B levels were normalized to loading control
(GAPDH) [24]. For the analysis of CXCL1- or GFAP-
immunoreactivity, four to five sections from the L4-L5
spinal cord segments were randomly selected. An image
in a square on the medial two-thirds of the superficial
dorsal horn (laminae I-III) was captured under x 20 ob-
jective [25]. A numerical value of the immunofluores-
cence intensity was calculated with Image ] (NIH). The
intensity of the background was subtracted in each sec-
tion and the CXCL1 or GFAP intensity was expressed as
fold increase compared to control [24]. All data were
expressed as mean + SEM. Differences between two
groups were compared using Student’s t-test. The criter-
ion for statistical significance was P <0.05.

Results

Intramedullary inoculation of RM-1 cells produces the
destruction of cortical bone and bone cancer pain

After RM-1 prostate tumor cells were inoculated into
the intramedullary space of mouse femur, the overall
conditions of mice were good and the body weight was
gradually increased in 3 weeks (Figure 1A). By day 21
after inoculation, the loss of medullary bone and
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destruction of cortical bone were clearly observed in the
distal one-third of the right femur (Figure 1B). No radio-
logical change was found in the contralateral femur
(Figure 1B) or control animals treated with heat-
inactivated tumor cells.

Pain behavioral studies showed that tumor cell in-
oculation produced an obvious pain hypersensitivity,
which was characterized by heat hyperalgesia (increased
response to a noxious heat stimulus) and mechanical
allodynia (painful response to a normally innocuous
mechanical stimulus) in the right hindpaws of inoculated
mice. For heat sensitivity, the paw withdrawal latency
(PWL) of inoculated mice to heat stimulation was de-
creased from 12.8 + 0.4 s before inoculation to 7.2+ 0.5 s
on day 7 (P <0.001), and maintained on day 10 (7.4 + 0.4 s,
P <0.001), day 14 (6.7 + 1.1 s, P <0.01), and day 21 (7.2 +
0.6 s, P <0.001) (Figure 1C), indicating the development
of heat hyperalgesia. For mechanical sensitivity, the
paw withdrawal threshold (PWT) of the ipsilateral paw,
in response to von Frey hair stimulation, was decreased
from 1.9+ 0.16 g before inoculation to 0.9 +0.09 g on
day 7 (P <0.001), 0.3+0.10 g on day 10 (P <0.001),
0.12+0.05 g on day 14 (P <0.01), and 0.15+0.05 g on
day 21 (P <0.001, Figure 1D), indicating the progressive
development of mechanical allodynia. The contralateral
paw of inoculated mice or bilateral paws of sham-
treated mice did not show changes in pain sensitivity
(Figure 1C,D).

A 307
Gl
8, &_\ﬁ/__ﬁ_éﬁ:‘:;‘a
i —
=
S
- —/x— Sham (n=6)
3 201
2 —&— Tumor (n=6)
15 T T T T v
Baseline 7d 10d 14d 21d
161
14 1
121
101
] *k P— *k *kk

J -0~ Sham-contra —- Tumor-contra

Paw withdrawal latency (s) ()

8
6
4 1 —&— Sham-ipsi (n=6) —&— Tumor-ipsi (n=6)
2
0

Baseline 7d 10d 14d 21d

Figure 1 RM-1 cell inoculation induces BCP. (A) The animals’ body weight was increased in 21 days in both sham-control and tumor-inoculated
animals. (B) Radiography shows cortical bone damage in the distal one-third of the right femur (arrows) at 21 days after inoculation. (C, D) Behavioral
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at 7 days and maintained for more than 21 days (C). The PWT progressively decreased from 7 days to 14 days and maintained at 21 days (D).

**P <0.01, ***P <0.001 vs. sham-ipsi. One-way ANOVA followed by Newman-Keuls test. n = 6 mice per group.

Ipsilateral

Contralateral

D 25
C
2 2
F
]
e 15
© ok ok
; 1
2
3 &k
E as " *kk
=
g 0
Baseline 7d 10d 14d 21d




Xu et al. Journal of Neuroinflammation 2014, 11:38
http://www.jneuroinflammation.com/content/11/1/38

CXCL1 is persistently increased in spinal cord astrocytes
after RM-1 cell inoculation

To examine CXCL1 expression in the spinal cord, we
first performed quantitative real-time PCR. As shown
in Figure 2A, CXCL1 mRNA expression was not
changed in sham animals, but significantly increased
at 7 days (P <0.05), 14 days (P <0.05), and 21 days
(P <0.05) in inoculated animals. We then checked
CXCL1 protein expression by immunostaining. Tumor
cell inoculation induced a marked increase of CXCL1
expression in the ipsilateral spinal cord at 7 days,
14 days, and 21 days (Figure 2B-D). The statistical
analysis of CXCL1-immunoreactive (IR) intensity showed
a gradual increase from 7 days to 21 days after tumor cell
inoculation (P <0.001, Figure 2B).

To define the cellular distribution of CXCL1, we per-
formed double staining of CXCL1 with different cell
markers. The results showed that CXCL1-IR was coloca-
lized with the astrocytic marker GFAP (Figure 2G), but
not with microglial marker CD11b (Figure 2H) or neur-
onal marker NeuN (Figure 2I), indicating the expression
of CXCL1 by astrocytes.
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Inhibition of CXCL1 by neutralizing antibody attenuates
RM-1 cell inoculation-induced pain hypersensitivity

To investigate the role of endogenous CXCL1 in BCP,
we intrathecally injected a CXCL1 neutralizing antibody
at 7 days after inoculation and checked pain behaviors.
CXCL1 neutralizing antibody at the dose of 4 pg partly
attenuated mechanical allodynia at 1 h (P <0.001), 3 h
(P <0.01), and 6 h (P <0.05). High dose (8 pg) of CXCL1
neutralizing antibody almost reversed mechanical allody-
nia for 6 h (Figure 3A). Meanwhile, CXCL1 neutralizing
antibody at doses of 4 pg and 8 pg attenuated heat
hyperalgesia at 1 h, 3 h and 6 h (P <0.001, Figure 3B).
These data suggest CXCL1 is involved in tumor cell
inoculation-induced pain hypersensitivity.

Astrocytes activation in the spinal cord after RM-1

cell inoculation

Because tumor cell inoculation induced CXCL1 increase
in spinal astrocytes, we then examined astrocytes activa-
tion by checking GFAP expression in the spinal cord. In
naive animals, GFAP-positive astrocytes appeared to be
in a resting state (Figure 4A). At 7 days after tumor cell
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Figure 2 RM-1 cell inoculation induces CXCL1 upregulation in spinal astrocytes. (A) Real-time PCR results show the increase of CXCL1
mRNA expression in the spinal cord after inoculation. CXCLT mRNA upregulation was gradually increased from 7 days to 21 days. *P <0.05 vs.
sham control. n =4 mice per group. (B-F) Immunostaining shows the CXCL1-IR was increased in the spinal cord at 7 days (D), 14 days (E), and
21 days (F). ***P <0.001 vs. naive. n =4 mice per group. (G-1) Double staining shows CXCL1 was colocalized with astrocytic marker, GFAP (G), but
not with microglial marker CD11b (H) or neuronal marker NeuN (I).
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Figure 3 Intrathecal injection of CXCL1 neutralizing antibody
attenuates bone cancer pain. CXCL1 neutralizing antibody at a
lower dose (4 pg) had mild effect on RM-1 cell inoculation-induced
pain hypersensitivity (A, B), whereas the neutralizing antibody at a
higher dose (8 ug) reversed inoculation-induced mechanical
allodynia (A) and heat hyperalgesia (B) for more than 6 h. *P <0.05,
**p <0.01, **P <0.001 vs. control serum. n =6 mice per group.

inoculation, the astrocyte profiles appeared larger and
had more processes compared to naive (Figure 4A,B).
Intense astrocytic responses were discernible on day 14
(Figure 4C) and day 21 (Figure 4D). The statistical ana-
lysis of GFAP-IR intensity showed a gradual increase of
GFAP expression in 21 days after tumor cell inoculation.
GFAP expression was not increased in sham animals
(Figure 4E).

TNF-a induces CXCL1 upregulation via activation of NFkB
in cultured astrocytes

NFkB is a transcriptional factor and has been demon-
strated to regulate the transcription of many inflamma-
tory mediators, including those for chemokines and
proinflammatory cytokines [20,26]. To check if NF«B is
involved in CXCL1 production in astrocytes, we first
prepared primary astrocyte cultures from cerebral cor-
texes of neonatal mice (P2) and stimulated with TNF-a.
As shown in Figure 5A, TNF-a incubation for 1 h in-
creased CXCL1-IR (Figure 5A,B). Double staining with
GFAP showed that majority of CXCL1-IR was coloca-
lized with astrocytes (Figure 5C,D). We then examined
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the effects of NFkB inhibitor, BAY11-7082 on CXCL1
expression by ELISA and RT-PCR. Pretreatment of
BAY11-7082, 30 min before TNF-a treatment, decreased
CXCL1 protein expression by 24.4% and 40.9% at the
doses of 1 uM and 10 puM, respectively (Figure 5E). In
addition, BAY11-7082 decreased CXCL1 mRNA expres-
sion by 50.0%, 60.7%, and 74.2% at the doses of 1 pM,
5 puM, and 10 uM, respectively (Figure 5F). These data
suggest NF«B is critical for mediating TNF-a-induced
CXCL1 production in cultured astrocytes.

NFkB activation in spinal astrocytes after RM-1

cell inoculation

To check whether NFkB-CXCL1 pathway would be in-
volved in tumor cell inoculation-induced CXCL1 upreg-
ulation and pain hypersensitivity, we first checked NF«xB
activation in the spinal cord after tumor cell inoculation.
Western blot showed phosphorylated NFkB (pNFkB)
expression was gradually increased from 7 days to 21 days
(Figure 6A,B). Immunostaining further showed a low
expression of pNF«B in sham-treated mice (Figure 6C)
and an increased expression in inoculated mice (Figure 6D).
Double staining showed pNF«B was predominantly colo-
calized with GFAP (Figure 6E-G).

Inhibition of NFkB attenuated bone cancer pain and
decreased CXCL1 upregulation in the spinal cord

We then check the role of NF«B in the maintenance of
BCP. We intrathecally injected BAY11-7082 (0.4 pg and
4 ug) at 7 days after inoculation. BAY11-7082 at the
dose of 0.4 pg had no effect on mechanical allodynia,
but 4 pg of this compound significantly attenuated
mechanical allodynia at 1 h (P <0.01) and 3 h (P <0.05,
Figure 7A). The high dose of BAY11-7082 also attenu-
ated heat hyperalgesia at 1 h (P <0.01) and 3 h
(P <0.001, Figure 7B). BAY11-7082 also significantly
decreased CXCLI1-IR in the spinal cord (P <0.001,
Figure 7C-E). These data suggest that NFkB is involved
in the tumor cell inoculation-induced CXCL1 upregula-
tion in spinal astrocytes and pain hypersensitivity.

CXCR2 is persistently upregulated in spinal neurons and
involved in bone cancer pain

CXCR2 is the major receptor of CXCL1. We further in-
vestigated CXCR2 expression and distribution in the
spinal cord after tumor cell inoculation. RT-PCR showed
CXCR2 mRNA was increased at 7 days and maintained
for more than 21 days (P <0.05, Figure 8A). Western
blot showed CXCR2 expression was gradually increased
from 7 days to 21 days (Figure 8B). Immunostaining fur-
ther showed a low expression of CXCR2 in naive mice
(Figure 8C) and an increased expression in inoculated
mice (Figure 8D). Double staining showed that majority
CXCR2-IR was colocalized with NeuN, indicating the
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7 days (B), 14 days (C), and 21 days (D) in inoculated mice. (E) Statistical analysis shows increased GFAP intensity after RM-1 cell inoculation.

predominant production of CXCR2 by spinal neurons
(Figure 8E-QG).

To investigate the role of CXCR2 in the BCP, a select-
ive and potent CXCR2 antagonist, SB225002 (5 ug and
20 pg) was intrathecally injected at 7 days after tumor
cell inoculation. SB225002 at the dose of 5 ug had no ef-
fect on mechanical allodynia or heat hyperalgesia, but
SB225002 at the dose of 20 pg significantly attenuated
mechanical allodynia and heat hyperalgesia at 1 h and
3 h (Figure 8H,I), suggesting the involvement of CXCR2
in BCP.

Discussion

To investigate the mechanisms involved in the pathogenesis
of BCP, animal models have been developed by injecting
tumor cells lines (for example, osterolytic 2472 sarcoma,
B16 melanoma, Walker 256 mammary gland carcinoma)
into bones (for example, femur or tibia) [27]. Studies have
shown that different cell line has unique phenotype in the
extent of bone destruction, the type and severity of pain be-
haviors [27,28]. Here, we, for the first time injected mouse
prostate cell line, RM-1 cells into mice femur. This cell line

induced obvious cortical bone destruction of the femur and
severe and persistent mechanical allodynia and heat hyper-
algesia, suggesting it is suitable for BCP model. Using this
model, our study demonstrated first that CXCL1 was dra-
matically increased in activated astrocytes in the spinal cord
after tumor cell inoculation. Inhibition of CXCL1 attenu-
ated inoculation-induced pain hypersensitivity. Second,
NF-kB was involved in CXCL1 production in cultured as-
trocytes and was activated in spinal astrocytes after inocula-
tion. Inhibition of NF«B not only alleviated BCP but also
decreased CXCL1 upregulation in the spinal cord. Third,
CXCR2, the major receptor of CXCL1 was increased in
spinal cord neurons. Intrathecal injection of CXCR2
antagonist attenuated BCP. These data suggest that
NF«kB/CXCL1 and CXCR2 play an important role in
the maintenance of BCP via astroglial-neuronal inter-
action in the spinal cord.

CXCL1 upregulation in activated astrocytes in the spinal
cord and the involvement in bone cancer pain

Recent studies have shown that CXCL1 expression in
the spinal cord is changed in different pain models.
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Contusion injury of spinal cord induces rapid but transi-
ent (6 h) CXCL1 mRNA in the spinal cord [29]. Spinal
nerve ligation induces persistent CXCL1 mRNA and
protein increase, which was peaked at 10 days, declined
at 21 days [16]. In this study, CXCL1 mRNA and protein
was progressively increased in 21 days after tumor cell
inoculation, indicating CXCL1 play distinct roles in dif-
ferent pain conditions.

Accumulating evidence supports that glial cells (astro-
cytes and microglia) are activated in the spinal cord after
tumor cells inoculation in the skin or bone marrow
[30-35]. Consistent with these studies, we found that the
expression of astrocytic marker, GFAP was increased
from 7 days to 21 days in the spinal cord. Spinal micro-
glia was also activated for more than 21 days in this
model (unpublished observation). In addition, the glial
activation was correlated with the pain behavior. It has
been shown that intrathecal injection of glial function
inhibitor, fluorocitrate or microglia inhibitor, minocy-
cline attenuated allodynia induced by Walker 256 in-
oculation [33,36,37], supporting the view that spinal
astrocytes and microglia are involved in the pathogen-
esis of BCP.

It is increasingly recognized that astrocytes mediate
neuroinflammation by the release of gliotransmitters
such as proinflammatory cytokines (for example, IL-1p)
[30,38] and chemokines (for example, CCL2 and CCL7)
[23,39]. Our present study showed that CXCL1 was pro-
duced by spinal astrocytes after tumor cells inoculation.
In agreement with present results, CXCL1 mRNA is
found to be upregulated in spinal astrocytes after spinal
cord injury in rats [40] or spinal nerve ligation in mice

[16]. CXCL1 is induced in brain astrocytes by neuronal
injury and intracerebroventricular administration of en-
dothelin-1 [41,42]. CXCL1 is also selectively expressed
in hypertropic astrocytes after active multiple sclerosis
lesions in humans [43,44]. These data suggest that
CXCL1 is one of astrogliotransmitters that regulate
neuroinflammation.

Several chemokines, such as CCL2, CX3CL1, CCLS5, or
CXCL10 are recently found to be involved in BCP
[10,11,45,46]. In our study, intrathecal injection of
CXCL1 neutralizing antibody at 7 days after inoculation
attenuated tumor cell inoculation-induced mechanical
allodynia and heat hyperalgesia. This antibody also
attenuated spinal nerve ligation-induced neuropathic
pain at 10 days, but not at 1 day after ligation [16], in-
dicating the major role of CXCL1 in the maintenance
of chronic pain.

NFkB mediates CXCL1 upregulation and contributes to
bone cancer pain

The proinflammatory cytokine TNF-a is an essential
trigger for the development of neuropathic pain [16,47].
TNF-a mRNA is rapidly (1 d) and dramatically (five-
fold) increased in the spinal cord after spinal nerve
ligation [16]. TNF-a protein is upregulated in the spinal
cord at 3 days after tumor cell inoculation [48]. In
addition, combined deletion of TNF receptor (TNFR) 1
and TNFR2 inhibits fibrosarcoma inoculation-induced
astrogliosis in the spinal cord and mechanical allodynia
[35]. These data indicate that TNF-a can be rapidly in-
creased in the spinal cord and acts on astrocytes to initi-
ate astrocytes activation and BCP. In cultured astrocytes,
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TNEF-a induces rapid and dramatic CXCL1 upregulation
[16]. Intrathecal injection TNF-a not only increases
CXCL1 expression in spinal astrocytes but also induces
heat hyperalgesia [16]. These data suggest that the acti-
vation of NFkB/CXCLL1 signaling after tumor cell inocu-
lation may also be triggered by TNF-a increase.

NF«B regulates the transcription of many inflamma-
tory mediators, including those for chemokines, proin-
flammatory cytokines, and adhesion molecules [20,26].
NFkB is found to regulate CXCL1 transcription in
Hs294T malignant melanoma cells [17]. Here, NFkB me-
diated CXCL1 production in cultured astrocytes and
spinal astrocytes. In addition, inoculation persistently in-
creased NF«B activation in the spinal cord. Evidence
suggests that the activation of NF«B following tissue in-
jury or nerve damage is related to the development and

maintenance of neuropathic pain. For example, inhib-
ition of NF«B activation in the spinal level by specific
inhibitors or lentivirus partly prevents the development
of neuropathic pain [20,26]. NFkB inhibitor also attenu-
ates established neuropathic pain [20,49]. Our results
showed that intrathecal NFkB inhibitor at 7 days after
inoculation attenuated tumoral hypersensitivity and de-
creased CXCL1 level, supporting the role of NFkB in
the maintenance of BCP via CXCL1 production in the
spinal cord.

Our data further showed that NFkB was predomin-
antly expressed in astrocytes of the spinal cord. Consist-
ently, pNF«kB expression in astrocytes was found in the
spinal cord following spinal nerve injury [24] and in the
medullary dorsal horn following the inferior alveolar
nerve injury [49]. However, activated NF«B is also found
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in macrophages/microglia in the spinal cord after spinal
cord injury [50] or spinal nerve injury in rats [51]. The
discrepency of the cellular distribution of NFkB in the
spinal cord may be due to different animal species or
different antibodies, which need to be further clarified in
the future.

CXCL1/CXCR2 signaling mediates astroglial-neuronal
interaction in bone cancer pain

Chemokines act through a family of seven transmem-
brane G protein-coupled receptors to exert their bio-
logical effects. CXCR2 is the major receptor of CXCL1
[52,53]. The CXCR2 receptor has been detected on
neurons [54,55], oligodendrocyte progenitors [44,56],
and microglia [57,58] in brain. In DRG, CXCR2 are
expressed in neurons and CXCL1 increases the sodium
currents, potassium currents in small diameter rat sensory
neurons [13,14]. In this study, tumor cell inoculation in-
creased CXCR2 expression in spinal neurons. Inhibition of
CXCR2 by its selective antagonist attenuated tumoral
hypersensitivity, suggesting the involvement of neuronal
CXCR2 in BCP.

Glial-neuronal interaction has been implicated to con-
tribute to central sensitization under pathological condi-
tions [5]. Here the respective expression of CXCL1 and
CXCR?2 in astrocytes and neurons suggest they may be
involved in astroglial-neuronal interaction. Our recent
data showed that intrathecal injection of CXCL1 induced
rapid, CXCR2-dependent ERK and CREB activation
mainly in spinal cord neurons. It is known that the acti-
vated ERK can be translocated into nucleus, activates
transcription factors including CREB, and further regu-
lates gene transcription (for example, c-Fos and COX-2)
to maintain central sensitization and chronic pain [59].
Therefore, CXCL1 may regulate BCP through upregula-
tion of pain-related proteins. In addition, we observed
that CXCL1 increases NMDA-induced currents on
Lamina II neurons of the spinal cord (unpublished
observation), suggesting CXCL1 may also be involved
in the maintenance of central sensitization through
direct regulation of neuronal excitability.

Conclusions

In this study, we found that inoculation of RM-1 cells
into mouse femur induced bone destruction and pain
hypersensitivity. In association with these changes, chemo-
kine CXCL1 and its receptor CXCR2 were, respectively,
increased in spinal astrocytes and neurons. Moreover,
NFkB was involved in the production of CXCL1 in spinal
astrocytes. Our data suggest that CXCL1/CXCR2-medi-
ated astroglial-neuronal interaction contributes to the
maintenance of tumoral hypersensitivity. CXCL1 sig-
naling may serve as a novel target for the treatment of
metastatic prostate cancer-induced BCP.
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