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Alzheimer's disease (AD) is a major public health problem with substantial economic and social impacts around the
world. The hallmarks of AD pathogenesis include deposition of amyloid 3 (AB), neurofibrillary tangles, and
neuroinflammation. For many years, research has been focused on A accumulation in senile plaques, as these
aggregations were perceived as the main cause of the neurodegeneration found in AD. However, increasing
evidence suggests that inflammation also plays a critical role in the pathogenesis of AD. Microglia cells are the
resident macrophages of the brain and act as the first line of defense in the central nervous system. In AD,
microglia play a dual role in disease progression, being essential for clearing AR deposits and releasing cytotoxic
mediators. AB activates microglia through a variety of innate immune receptors expressed on these cells. The
mechanisms through which amyloid deposits provoke an inflammatory response are not fully understood, but it is
believed that these receptors cooperate in the recognition, internalization, and clearance of Ap and in cell
activation. In this review, we discuss the role of several receptors expressed on microglia in A3 recognition, uptake,

Background

Alzheimer’s disease (AD) is a neurodegenerative disorder
characterized by a progressive decline in cognitive and
functional abilities. According to the World Health
Organization, more than 35 million people have demen-
tia and this number is expected to increase in the com-
ing years [1]. The neuropathological hallmarks of AD
include extracellular AP deposits, intracellular neurofib-
rillary tangles, and marked inflammation [2-4]. AB de-
position and tau protein are found in different areas of
the brain, leading to synaptic dysfunction, mitochondrial
damage, activation of microglia, and neuronal death
[5,6]. Inflammation in AD is characterized by reactive
microglia surrounding AP plaques, which maintain an
inflammatory status by secreting proinflammatory medi-
ators, contributing to neuronal loss.
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Microglia constitute the lesser portion of the total glial
cell population within the brain and are found in a rest-
ing state in the healthy central nervous system (CNS)
[7]. Under pathological conditions, activated microglia
undergo morphological changes and produce cytokines
and chemokines that affect surrounding cells [8]. In AD,
microglia cells play an important role in disease pro-
gression by clearing A deposits, initiating phagocytic
activity, and releasing cytotoxic mediators. Microglia
activated by AP in vitro induce the expression of proin-
flammatory cytokines including interleukin (IL)-1(, IL-6,
IL-8, tumor necrosis factor-a (TNF-«), chemokines and re-
active oxygen and nitrogen species, all of which cause
neuronal damage [9-11].

The mechanisms through which amyloid deposits pro-
voke inflammation are not fully understood. Microglia
cells express several receptors that cooperate in the rec-
ognition, internalization, and clearance of AP and in cell
activation. Microglia receptors, such as scavenger recep-
tors (SR-AI/II), CD36, RAGE (receptor for advanced
glycosylation endproducts), Fc receptors, TLRs (toll-like
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receptors), and complement receptors are involved in these
processes [12-14] (Figure 1). This review will examine the
various roles of microglia receptors in the amyloid cascade,
and the implications for AD.

Complement receptors

The complement system is formed of a number of sol-
uble and membrane-associated proteins that interact to
opsonize microorganisms and to induce an inflammatory
response that contributes to the resolution of the infec-
tious process [15]. The association of the complement
system with AD pathology has been known since the
1980s [16]. Proteins of the complement system have
been associated with senile plaques in the brains of AD
individuals [17]. Several proteins of the complement sys-
tem and their corresponding mRNAs are upregulated in
the brains of AD patients and seem to be involved in AP
induced inflammation, senile plaque formation, and Ap
phagocytosis [18].

The activation of the complement system takes place
via three main pathways known as classical, alternative,
and MB-lectin [18]. Fibrillar AP (fAp) activates the clas-
sical as well as the alternative pathways with consequent
C3 activation, C5a production, and membrane attack
complex (MAC) formation [19]. The role of the comple-
ment system in the removal of the infectious agent occurs
through the activation of a variety of receptors in-
cluding CR1 (CD35), CR2 (CD21), CR3 (CD11b/CD18),
CR4 (CD11¢/CD18), and C5aR (CD88 and C5L2). Some of
these receptors play a prominent role in the inflammatory
response induced in AD [12].

CR1 is a transmembrane receptor that plays a major
role in the regulation of the complement cascade activa-
tion. CR1 binds the complement factors C3b and C4b;
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high levels of this receptor have been detected in the
cerebrospinal fluid (CSF) of AD patients [20]. A recent
genome-wide association study in a Caucasian popula-
tion showed an association of some variants of CR1 with
late-onset AD risk, which has drawn increased attention
to the role of this receptor in the pathogenesis of AD [21].
Those CR1 variants were further correlated with character-
istic neuroimaging markers of the disease [22]. The associ-
ation between CR1 and AD risk has been reproduced in
case-control studies in other populations [23,24].

Activated microglia have increased expression levels of
CR1; activation of this receptor induces neuronal death
[25]. These detrimental effects appear to be associated
with enhanced superoxide generation and TNF-a and
IL-1p production. CR1 expressed on erythrocytes partic-
ipates in the clearance of peripheral Af, suggesting that
CR1 may play a role in the removal of AP in AD [26].
Polymorphisms in the CRI locus, which constitute a risk
for AD, have been correlated with increased levels of AP
in the CSF [27]. Owing to the role of CR1 in the clear-
ance of AP and regulation of complement activation, it
has been suggested that this receptor may have a benefi-
cial effect on the pathogenesis of AD [28], although the
mechanisms are unknown.

The complement factor C3 is an essential component
of the complement system. It induces phagocytosis of
pathogens through interactions with the CR3 receptor.
CR3, also known as Mac-1, is expressed in microglia,
and upregulation of this receptor has been detected in
the brains of AD individuals [29]. Studies have shown
that CR3 appears to be involved in the uptake and clear-
ance of AP in vivo and in vitro [30-32]. Fu et al. have re-
cently suggested that CR3 acts together with the scavenger
receptor A (SR-A) in the uptake of AP [32]. They also
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processes. CD33 seems to promote AR accumulation.

Figure 1 Microglia receptors involved in the amyloid cascade. A variety of microglia receptors are involved in AR clearance and in triggering
an inflammatory response. Some receptors (RAGE, NLRP3) are mainly implicated in the generation of an inflammatory response by triggering a
signaling cascade that results in the production of proinflammatory mediators. Other receptors (SR-Al, TREM2) are involved in the clearance of AB
by inducing internalization of A fibrils. Some receptors (complement receptors, Fc receptors, FPRL1/FPR2, CD36, TLRs) are involved in both
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showed that murine microglia treated with ligands of SR-A
reduced their capacity for Ap uptake.

CR3 has also been shown to colocalize with A pla-
ques in the brains of AD patients, providing evidence for
a possible direct CR3-Af interaction [29]. CR3 is par-
tially involved in AP activation of microglia in vivo and
in vitro and is implicated in microglia free-radical gener-
ation in response to AP [33]. These effects appear to be
dependent on the binding of AB to CR3. Reduced activa-
tion was observed in microglia obtained from knockout
mice for CR3 (MAC1™") after in vitro AP challenge com-
pared with microglia derived from control mice [33]. The
use of CR3 antagonists has been proposed as a potential
therapeutic approach for AD treatment aimed at reducing
the activation of proinflammatory mediators and reactive
oxygen species in microglia exposed to Af [33].

Cba is a highly proinflammatory molecule generated in
the process of complement activation. CD88 is a recep-
tor for C5a expressed on the surface of innate immune
cells, including microglia. The interaction between C5a
and CD88 leads to the production of inflammatory cyto-
kines, reactive oxygen species, and bioactive amines,
among other inflammatory mediators [34]. CD88 is a
chemotactic receptor and is involved in the in vitro and
in vivo recruitment and activation of microglia [34]. In-
creased levels of CD88 have been detected in microglia
located in the vicinity of amyloid plaques in the brains
of AD mouse models [35]. The co-stimulation of human
monocytes with Ap and C5a induces an increase in IL-1
and IL-6 secretion [36], potentially through a mechanism
involving cooperation between microglia receptors. The
detrimental role of CD88 in AD has been demonstrated by
the use of an antagonist of this receptor, which decreased
AP plaques, diminished glia activation, and improved con-
textual memory in two transgenic AD mouse models [37].
A second receptor for C5a, C5L2, has recently been de-
scribed as having an increased expression in AD brains
compared with normal-aged individuals [38], although its
role in AD pathology is still unknown.

Despite this evidence, suggesting a detrimental role of
the complement system in AD, some studies have shown
that it has beneficial effects in the course of the disease.
For example, APP mice deficient in the complement
component C3 exhibited increased AB deposition in the
brain, associated with a prominent neuronal loss at 17
months of age [30]. Similarly, overexpression of an in-
hibitor of the complement in a transgenic mouse model
of AD triggered higher deposition of AB and increased
neurodegeneration compared with controls [39]. In-
creased C3 mRNA levels have been associated with a re-
duction in AP deposition in mice expressing the human
amyloid precursor protein (hAPP) and TGF-f [39]. Neu-
roprotective functions have also been attributed to the
products of the complements C3a and C5a [40]. Overall,
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these results suggest that activation of complement
receptors may promote the clearance of Af, potentially re-
ducing AP accumulation and neurodegeneration in AD.
More studies are needed to clarify the role of the comple-
ment system in the brain and test its potential application
to the design of novel AD treatments.

Fc receptors

Fc receptors (FcRs) bind the constant domain (Fc) of im-
munoglobulins (Ig). Specific FcRs exist for each isotype
class and sub-class of Ig; for example, IgA is the ligand
for FcaR, IgD for FcdR, IgM for FcpR, IgE for FceR, and
IgG for FcyR [41]. FcR engagement in immune cells acti-
vates phagocytosis, degranulation and cytokine and che-
mokine secretion. FcRs are expressed in brain cells,
including microglia, which express all classes of FcRs
[41]. Mitogen-activated protein kinases (MAPKs), nuclear
factor-kB, Src, and Syk kinases are all involved in the acti-
vation of FcyR in microglia [42,43]. The role of FcRs
expressed in microglia in AD and healthy brains was first
suggested by Peress et al. [44]. There is evidence that Ig
bound to neuronal antigens activates a microglial inflam-
matory response through FcRs expressed on these cells,
which may be responsible for the neurodegeneration ob-
served in AD [45].

Active and passive AP immunization in studies with
AD animal models has demonstrated an effect of anti-
AP antibodies on A clearance and the reduction of cog-
nitive decline [46-48]. FcRs in microglia have been
shown to mediate AP phagocytosis in the presence of
antibodies [47,48]. In contrast, other studies have shown
that increased AP clearance in vivo in the presence of
anti-Ap antibodies is not dependent on FcR-mediated
phagocytosis [49]. In addition to Fc-mediated phagocyt-
osis, a non-Fc-mediated disruption of plaque structure
occurs in vivo in the presence of antibodies bound to Ap
deposits [50]. Both AP clearance pathways involving
antibodies do not seem to be mutually exclusive and
might occur in parallel or sequentially.

In addition, increased levels of IgG in the CSF of
patients with AD have been reported [51,52]. In patho-
logical conditions in which the integrity of the blood
brain barrier has been compromised, as in the case for
AD, Igs may pass through the blood brain barrier, and
thereby mediate neurotoxicity and inflammation [53].
Some authors have proposed that there is intra-blood-
brain-barrier synthesis of Igs in patients with AD [51].
However, the role of FcRs in the activation of microglia
by naturally produced antibodies during the course of
AD is not well understood.

FcyRs expressed on neurons have also been implicated in
neurotoxicity and inflammation occurring directly in these
cells [54,55]. Likewise, a recent study demonstrated that
there is a physical interaction between FcyRIIb and APy,
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which mediates neurotoxicity [56]. Together, these results
do not rule out the possibility of a potential ‘crosstalk’
between FcyRs and other AP receptors in the cell.

Several hypotheses have tried to explain the use of Af
immunotherapy as a treatment strategy for AD [57].
One of these hypotheses concerns the role of FcR in
mediating phagocytosis of opsonized AP by microglia.
Several active and passive Ap immunotherapies are cur-
rently being trialed in preclinical and clinical studies.
Although these approaches have had an effect on the
clearance of AP plaques in AD patients, little or no im-
provement has been observed in cognitive performance
once extensive neuronal damage has occurred. This
topic has recently been reviewed elsewhere [57-59].

The results presented so far demonstrate the complex-
ity of the role that FcRs play in AD progression. Experi-
mental variability, manifested in the variety of animal
models used, the timing of the development of AD-like
pathology, the use of different antibodies, doses, and
routes of inoculation, and other factors, make it difficult
to clarify the capacity of these receptors to modulate the
development of the disease. Brain cells’ responses to
antibodies, whether or not they are mediated by FcRs,
can have multiple effects on CNS function [60]. Further
studies are required to understand the role of FcR-
mediated AP clearance in response to naturally gener-
ated antibodies in AD pathogenesis.

Formyl peptide receptors (FPRs)
The FPRs are receptors for the bacterial chemotactic
peptide fMLP [61]. The FPRs are members of a family of
seven transmembrane domains, G-protein-coupled recep-
tors, and are involved in host defense against pathogens
and endogenous molecules. Two FPRs have been identified
in human beings, FPR1 and FPRL1, along with their coun-
terparts FPR1 and FPR2 in mice. FPRL1 interacts with
several host-derived chemotactic agonists, including HIV-1
envelope protein, serum amyloid A, and Ay, [61-63].
FPRLI interacts with A4, through the N-terminus as
well as a segment between the fourth transmembrane
domain and the third extracellular loop [64]. On mono-
nuclear phagocytes, FPRL1 and FPR2 have been identi-
fied as functional receptors for Ap,,-induced IL-1f and
superoxide secretion [61,65]. AP induces cell migration
and calcium mobilization in HEK293 cells transfected
with FPRL1 [61]. The complex AB4,-FPRLL1 is internal-
ized into the cytoplasmic compartment of macrophages
and HEK293 cells overexpressing FPRL1 [66]. Subtrac-
tion of APy, from the culture results in a progressive
recycling of FPRL1 to the cell membrane, whereas con-
tinuous exposure to APy, results in intracellular accu-
mulation of APg/FPRL1 complex [66]. Further studies
have supported the role of FPRL1 and FPR2 in the endo-
cytosis of APy, [67,68].
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The expression of FPR2 is increased in primary micro-
glia and N9 cells after lipopolysaccharide (LPS) treat-
ment [69]. LPS-stimulated microglia cells exhibit calcium
mobilization and chemotaxis in response to FPR2 agonists
including A4, Moreover, the stimulation of microglia
cells with IFN-y increases FPR2 expression levels and cell
migration in response to several FPR2 agonist peptides,
such as APy, [70]. These results suggest that endogenous
or exogenous agents modulate the response to AP by regu-
lating the expression of FPR, and point to potential effects
on AD pathology.

FPR2/FPRL1 has been proposed as a potential thera-
peutic target for AD based on observations that FPR2
antagonists reduced the proinflammatory response in-
duced by AP in monocytes [71]. However, most studies
demonstrating a role of FPRs in AP uptake and micro-
glia activation have been performed in vitro; thus, the
in vivo relevance of this receptor remains uncertain.

Scavenger receptors

Scavenger receptors (SR) are structurally diverse cell sur-
face receptors that participate in cellular adhesion and
uptake of ligands [72]. Goldstein first described these re-
ceptors in 1979 as macrophage receptors with the ability
to bind and internalize acetylated low-density lipopro-
teins (acLDL) and a variety of lipids [73,74]. The SR
family can be classified into at least eight classes in
mammalian species; most of them are related to athero-
sclerosis pathogenesis [75,76]. Two classes of SR have
been described in the CNS. Class A (SR-A) receptors are
expressed on microglial and astrocytes and class B scav-
enger receptor type 2 (also known as CD36) is expressed
on microglia and endothelial cells [77,78]. Class A and B
SRs have been associated with AD pathogenesis because
both are able to bind and internalize AP, triggering an
inflammatory response [79].

Scavenger receptor A
SR-A type [ is a trimeric receptor with a short cytoplas-
mic tail, a transmembrane region, an « helical coiled
domain, a collagenous-like region and a cysteine-rich
domain in the C-terminal position [80]. Three isoforms
of SR-A have been identified: SR-AI, SR-AII, and SR-
AIIL, all of which are generated by alternative splicing of
a single gene [81,82]. SR-AI was first described as an
acetylated low-density lipoprotein (LDL) receptor but it
is now known that it binds to a broad diversity of
ligands, such as microbial ligands, acLDL, endotoxins,
and AP [83-85]. The uptake of ligands by SR-AI is asso-
ciated with several conditions, including AD and athero-
sclerosis [85,86].

SR-AI has been detected on activated microglia in the
vicinity of senile plaques from human brain tissue [80].
Evidence shows that SR-Al-binding to AP promotes AP
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internalization and clearance [85,87,88]. The role of SR-
Al in AP clearance was demonstrated by reduced Af in-
ternalization levels found in mouse microglia treated
with neutralizing anti-SR-AI antibodies [88]. Moreover,
SR-AI expression levels and AP clearance are reduced
when microglia activation is sustained for a long period
of time [85]. In addition, PS1/APP transgenic mice with
a SR-AI deficiency have increased AP deposition levels
in the brain, which are, in turn, associated with an in-
crease in mortality [89]. Thus, owing to its role in Af
internalization and clearance, the upregulation of SR-AI
expression has been proposed as a possible therapeutic
target for AD.

CD36 receptor

CD36 is a type B scavenger receptor found in a variety
of cell types, such as macrophages [90], dendritic cells
[91], microglia [77], adipocytes [92], platelets [93], endo-
thelial cells [94], and sensory cells of the retina [95].
CD36 was first described as a thrombospondin receptor
and as a receptor for other molecules containing the
thrombospondin-type repeat domain [96]. The CD36
receptor consists of an extracellular domain and two
cytoplasmic fragments containing the C-terminal and
N-terminal domains [97]. CD36, considered a pattern
recognition receptor, recognizes exogenous molecules,
such as microbial components [98], as well as endogen-
ous molecules, such as low-density lipoproteins, oxidized
phospholipids [99], apoptotic cells, and AB [90]. CD36
has been implicated in the pathogenesis of several diseases,
including AD [13], atherosclerosis [100], and malaria [101],
and has been identified as an endogenous negative regula-
tor for angiogenesis [94].

The role of CD36 in AD has been demonstrated by its
effect on microglia recruitment [102] and activation in
response to fAB [77,102,103]. Decreases in cytokine and
chemokine expression (MCP-1, IL-1f, MIP-1a, MIP1§,
MIP-2, TNFa, and KC) have been observed in macro-
phages and microglia from CD36-deficient mice stim-
ulated with fAp [102]. Notably, there was elevated
expression of CD36 in human brains with AP deposits,
whereas CD36 was undetectable in healthy brains without
AP deposition [104].

In addition, CD36 forms complexes with other pattern
recognition receptors to bind fibrillar proteins. The first
complex identified in microglia for fAB recognition
was composed of CD36, agf3; integrin and CD47 [105].
Arrangement of this complex was shown to activate a
tyrosine-kinase signaling cascade that led to reactive
oxygen species (ROS) production, cytokine expression,
and phagocytosis induction. Recent evidence indicates
that CD36 also forms a complex with TLR4 and TLR6
[106]. CD36 acts as a co-receptor of TLR4 and TLR6,
providing signals for assembly of the CD36-TLR4-TLR6
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complex and subsequent activation of the TLRs signaling
cascades.

In summary, these results demonstrate that CD36 is a
key element for fAB-induced microglia and macrophage
activation. Recently, a cell-based assay was developed to
screen for small molecules that inhibit binding between
AP and CD36 [107]. This bioassay identified ursolic acid
as an inhibitor of the AB-CD36 interaction and ROS
production in Chinese hamster ovary cells expressing
human CD36. Thus, the inhibition of AB-CD36 binding
is a potential strategy for interrupting the pathogenic
processes induced by Ap.

Receptor for advanced glycosylation endproducts
(RAGE)

RAGE was originally described as a receptor of advanced
glycosylation endproducts (AGE), which is formed when
a reduced sugar, such as glucose, reacts with proteins
[108]. RAGE was later described as a multiligand recep-
tor member of the immunoglobulin super family, which
is able to bind S100 proteins, high mobility group box 1,
AP peptide, and P-sheet fibrils, among other ligands
[109-111]. RAGE is expressed in endothelial cells, mac-
rophages, smooth muscle cells, and neurons [112].
RAGE is implicated in the transport of AP through
the blood brain barrier [113]. AP induces NF-kB activa-
tion in neurons, microglia, and endothelial cells, and pro-
motes the production of proinflammatory molecules
through the interaction with RAGE [114,115]. Several
studies have revealed that neuronal dysfunction and in-
flammatory processes found in AD are linked to microglia
activation by AP recognition through RAGE [113,116-118].
Moreover, it has been suggested that RAGE interacts phys-
ically and functionally with FPRL1 to transduce signaling
in glia cells [119].

Evidence indicates that the interaction between RAGE
expressed on brain endothelial cells and A leads to the
activation of MAPKSs, c-Jun N-terminal kinases, and
extracellular signal-regulated kinases (ERKs) [120]. The
activation of these pathways promotes endothelial matrix
metalloproteinase-2 production, which is associated with
the vascular inflammatory responses also found in AD
[120]. Evidence suggests that microglia activation by the
RAGE-Ap interaction also involves the p38 MAPK
signaling pathways [111,117]. Fang and colleagues demon-
strated that microglia overexpression of RAGE in a trans-
genic AD animal model (transgenic mAPP) increased the
production of proinflammatory mediators such as IL-1p
and TNF-« after AP stimulation. This increase was associ-
ated with higher levels of phosphorylated p38 and ERK1/2
[111]. Accordingly, the elevated levels of proinflam-
matory molecules due to microglia RAGE-Ap inter-
action are likely to cause the neuronal damage that leads to
deficits in learning and memory. However, early studies
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demonstrated that RAGE-Af interactions on the sur-
face of neurons mediate neurotoxicity by inducing oxi-
dative stress [121].

Some research groups have focused on identifying
small molecules that might be able to block the Af-
RAGE interaction as a possible therapeutic strategy. Pfi-
zer reached phase II clinical trials for the small molecule
RAGE-AP inhibitor, called PF-04494700, as an AD phar-
macotherapeutic [122]. Later, trials were discontinued
when it was confirmed that the treatment did not pro-
duce significant effects on secondary outcomes. More
recently, a small molecule (FPS ZM1) was discovered
that was capable of blocking this interaction in vitro by
binding to the RAGE V domain, inhibiting its ability to
recognize AP and resulting in a reduction in cellular oxi-
dative stress [123].

Toll-like receptors (TLRs)

TLRs are a family of membrane proteins that recognize
a variety of molecules referred to as danger- and
pathogen-associated molecular patterns. Toll receptors
were first described in Drosophila melanogaster for their
role in embryo development and the response to fungal
infection in adult flies [124,125]. In mammals, 12 TLRs
have been described and are expressed in a variety of
cells, including microglia and astrocytes [126,127]. The
activation of TLRs triggers different signaling pathways,
leading to the production of proinflammatory mediators,
such as cytokines, nitric oxide, and ROS [128].

Microglia expression of TLRs in the CNS is crucial as
a first line of defense against exogenous and endogenous
molecules [126]. Microglia express TLRs 1 to 9, and most
of these receptors have been associated with microglia
activation and neurotoxicity in both mice and human be-
ings [127,129]. High levels of mRNA for TLR2, TLR4,
TLR5, TLR7, and TLR9 have been detected in plaque-
associated brain tissue of APP23 transgenic mice [130].
TLRs have been implicated in AP signaling, where they
trigger an intracellular cascade, resulting in the produc-
tion of proinflammatory molecules and the uptake and
clearance of AP [131,132].

TLR4 has traditionally been described as a LPS re-
ceptor [133] but is capable of recognizing other en-
dogenous and exogenous molecules [134,135]. Several
studies have pointed to the importance of microglia
activation through the TLR4 pathway [132,136,137]. In
addition to the role of TLR4 in recognizing LPS by
microglia, studies have shown its relevance in response
to microglia-Ap activation [138]. The activation of mur-
ine microglia by AP depends on a functional TLR4
coupled with CD14 and myeloid differentiation protein 2
[138]. This microglia activation was implicated in neuro-
toxicity based on observations of a decrease in the death
of hippocampal neurons cell cultures after contact with
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supernatant of AB-stimulated microglia from TLR4 mu-
tated mice [138].

Microglia cells stimulated with TLR4 ligands, such as
LPS, showed an increase in AP uptake in vitro [132]. In
addition, mice with a deficient lipopolysaccharide re-
sponse (TIr4"?*%) showed an increase in AB load in vivo
and a decrease in AP uptake by microglia in vitro [132].
Taken together, these findings suggest that TLR4 might
be involved in the clearance of AP. Furthermore, in vivo
experiments with a TLR4-mutated AD mouse model
showed spatial learning deficits and elevated levels of
APy in the brain [137].

A recent study suggested that the monophosphoryl
lipid A (MPL), a TLR4 agonist with lower toxicity than
LPS, acts as an AP clearance booster [139]. MPL in-
duced a mild inflammatory response in microglia while
increasing the ability of these cells to internalize AP, a
mechanism that involves the activation of p38 and the
expression of the SR-AI [139].

Overall, these results suggest different roles for TLR4
signaling, which appear to be associated with both bene-
ficial (clearance of AP) and detrimental (neurotoxicity)
processes. Different therapeutic approaches for AD can
be addressed to overcome the detrimental functions of
TLR4. Blocking TLR4 signaling would inhibit microglia
activation, thus reducing cytokine production, but would
impair AP uptake and increase AP deposition. On the
other hand, the induction of TLR4 signaling through
MPL-like activation could increase AP uptake with re-
duced production of proinflammatory cytokines.

TLR2 has also been implicated in the inflammatory
response of microglia to Ap. Increased levels of mRNA
for TLR2 have been found in the brains of AD patients
and AD mouse models [140,141]. Activation of TLR2 in
microglia cells by peptidoglycan increases AP internal-
ization, inducing the G-protein-coupled receptor FPR2
[141]. Deficiency of TLR2 in a mAPP mouse model led
to impaired spatial and nonspatial memory after the
third month [142]. In vitro experiments using microglia
from TLR2 knockdown mice showed a reduction in the
expression of TNF-«, iNOS, IL-1p, IL-6, CD11a, CD11b,
and CD68 in response to AP [143]. TLR2 knockdown
mice have a deficiency in the expression of proinflam-
matory molecules in cortical sections after microinjec-
tion of fibrillar AB;_4, into the cortex [143]. Moreover,
colocalization of AB4, and TLR2 has been shown in pri-
mary murine microglia, while the leucine-rich repeat on
the N-terminal ectodomain has been identified as the
ligand receptor interaction site [144].

Liu et al. have also shown that TLR2-deficient bone
marrow in chimeric APP transgenic mice treated with
AP underwent a reduction in the inflammatory response
and an increase in AP internalization by phagocytosis
[144]. Thus, TLR2 inhibition could slow AD pathogenesis
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by reducing inflammation and enhancing Af clearance.
However, TLR2 inhibition might interfere with the inflam-
matory response to other pathogens recognized by this
receptor, making it an unlikely therapeutic target.

Increased expression of CD14, TLR2, and TLR4 in AD
human brains and animal models has highlighted their
role in AD pathology [145]. Treating human monocytes
and murine microglia with neutralizing antibodies for
CD14, TLR2, and TLR4 followed by fAf stimulation re-
duces fAB binding to cells and the phagocytic response
[145]. Microglia cultures from CD1477, TLR4™", or
TLR2”~ mice treated with fAB showed a reduction in
ROS production, which links these receptors to the oxi-
dative response induced by AP. These deficient cells did
not activate p38 MAPK in response to fAp, implicating
this pathway in fAp signaling and microglia activation
through TLRs [145]. Further evidence has been pro-
vided by studies that showed a reduction in IL-1p and
TNEF-a production induced by fAp in microglia after p38
inhibition [146].

TLRY is another member of the TLR family that is
highly expressed when microglia are stimulated with
Ap. Activation of N9 microglia with the TLR9 ligand
unmethylated cytosine-guanosine (CpG) increases A
uptake through a mechanism that involves the upregula-
tion of FPR2 [147]. A study using a microglia-neuron co-
culture system showed that pre-treating microglia with
CpG attenuated the neurotoxicity caused by AP oligo-
mers [148]. Intracerebroventricular administration of
CpG and AP oligomers in a transgenic AD model re-
sulted in improvements in cognitive impairment [148].
These results suggest a beneficial role of TLR9 expression
in AD pathogenesis.

Overall, research on TLRs suggests that these receptors
play a dual role in AD pathogenesis. TLRs are neuropro-
tective, owing to their contribution to A( clearance.
Conversely, TLR-triggered inflammatory responses by
AP can lead to neurotoxic effects. TLRs 2, 4 and 9 have
been suggested as therapeutic targets for AD treatment
[139,144,148]. However, considering the role of TLRs in
the innate immune response to microbial infections and
danger signals, modulation of TLR signaling as a potential
therapeutic approach presents significant challenges.

NOD-, LRR- and pyrin domain-containing 3
(NLRP3) inflammasome

Inflammasomes are intracellular multiprotein complexes
that sense exogenous and endogenous molecules and are
involved in the first line of defense. NLRP3 belongs to
the family of the nucleotide-binding domain leucine-rich
repeat (LRR)-containing receptors (NOD-like receptors,
NLRs) and is a core component of one of the inflamma-
some complexes. NLRP3 is activated for a variety of
molecules including bacterial RNA, toxins, viruses, ATP,
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uric acid, AP, asbestos, silica, and alum [149-151]. This
complex is composed of an NLR protein (NLRP3), the
adaptor molecule apoptotic speck-containing protein with
a card (ASC), and pro-caspase-1. Inflammasomes are the
platforms for caspase-1 activation, which mediates the
cleavage of inactive IL-1f and IL-18 precursors, an essen-
tial step in the secretion of mature cytokine [152].

Activation of microglia cells by Ap induces the release
of the cytokine IL-1B [153]. The first evidence for the
role of NLRP3 in IL-1B secretion in AD was provided
by Halle et al, who showed that NLRP3 dependent
caspase-1 activation occurred in microglia cells after
stimulation with AP [149]. These authors demonstrated
that bone-marrow macrophages from NLRP3-deficient
mice failed to release IL-1p in response to AP stimuli,
and inhibition of AP phagocytosis diminished NLRP3-
mediated IL-1p release in vitro [149]. These results indi-
cate that AP phagocytosis is necessary for NLRP3
inflammasome induction of IL-1p. Phagocytosis of AP
induces lysosomal destabilization and dysfunction, with
a consequent cytosolic release of lysosomal enzymes,
such as cathepsin B [149]. Cathepsin B seems to be in-
volved in NLRP3 dependent caspase-1 activation, IL-1p
secretion and the subsequent release of several proin-
flammatory and chemotactic mediators [149].

There is an increase in caspase-1 processing in AD indi-
viduals, corroborating the role of inflammasome activation
in AD [154]. The role of NLRP3 in AD has also been con-
firmed in AD animal models. APP/PS1/NLRP3™~ and
APP/PS1/Caspl™~ mice showed reductions in Ap depos-
ition and in spatial memory impairment compared with
APP/PS1 animals [154].

The NLRP3 inflammasome has also been related to
the CD36 receptor. CD36 has been shown to play a role
in inflammasome activation in AD, atherosclerosis and
type 2 diabetes [106,155]. Recognition of oxidized LDL,
AP, and amylin peptides by CD36 triggers TLR4-TLR6
heterodimer assembly, creating the first signal for NLRP3
activation. CD36 also mediates the internalization of these
ligands into the lysosomal compartment, sending a second
signal for NLRP3 activation [106,155]. These results further
illustrate the cooperation between immune receptors in
the response to AP in AD (Figure 2).

Other receptors

Other receptors are involved in AD pathogenesis, such
as CD33 and the triggering receptor expressed by mye-
loid cells 2 (TREM2). Recently, a genome-wide analysis
identified different AD risk alleles, including a gene en-
coding the human protein CD33 [156]. CD33 is a trans-
membrane protein, a member of the sialic acid-binding
immunoglobulin-like lectins, and is expressed in myeloid
progenitor cells, including in microglia cells [157-159].
A recent analysis of post-mortem brain samples of patients
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Figure 2 Cooperation among microglia receptors in Ap recognition, uptake and signaling. (a) AR fibrils are recognized by the complex
CD36-a6P34-CD47, generating ROS production. The interaction between CD36 and AR provides signals for the assembly of the heterodimer
TLR4-TLR6 complex. (b) CD36-TLR4-TLR6 complex activation constitutes the first signal for the transcription of Nirp3 and il16. (¢) CD36 mediates the
internalization of A{ into the lysosomal compartment. Lysosomal disruption constitutes the second signal for the NLRP3 assembly and the
subsequent cleavage of pro-IL-1B, rendering the mature IL-13. (d) The activation of TLR4 also induces the overexpression of SR-Al, which
contributes to the clearance of AB.

Table 1 Summary of microglia receptors and their effects in AD pathogenesis

Receptors

Expression in brain cells

Role in AD pathogenesis

References

Complement receptors

Fc receptors

FPRL1/FPR2

SR-A
CD36
RAGE
TLR

NLRP3
CD33
TREM2

Neurons, microglia, astrocytes and
oligodendrocytes

Neurons, microglia, astrocytes and
oligodendrocytes

Microglia, astrocytes

Microglia, astrocytes
Neurons, microglia, astrocytes
Neurons, microglia and astrocytes

Microglia, astrocytes

Microglia
Microglia

Microglia, neurons

Microglia activation, cytokine expression and
AR clearance

Inflammatory response and AR clearance

Microglia activation, inflammatory response and
AB internalization

AR internalization and clearance
Microglia recruitment, activation and A phagocytosis
Microglia activation and cytokine expression

Microglia activation, inflammatory response and
AB clearance

Cytokine expression
Impairs microglia AR clearance

AB clearance

[25,26,28,30,31,33,34,37]
[41,45]
[61,65,66,68,71,167]

[85,88]
[77,102,106,155]
[113,115-118]
[131,132,139,143-145,148]

[149,153]
[159,160]
[162-166]

AB, amyloid f; AD, Alzheimer's disease; FPR, formyl peptide receptors; NLRP, nod-like-receptor protein; RAGE, receptor for advanced glycosylation endproducts;
SR-A, scavenger receptor A; TLR, toll-like receptor; Trem2, triggering receptor expressed by myeloid cells 2.
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with AD showed high expression levels of CD33 in micro-
glia surrounding AP plaques [160]. In vitro assays revealed
a negative relationship between CD33 levels and AP clear-
ance [160]. Specifically, CD337/~ microglia showed an
enhanced capacity to internalize A, whereas the overex-
pression of CD33 impaired A uptake. AD mice deficient
in CD33 exhibited a reduction in AB plaques, suggesting
that CD33 favors AP accumulation [160].

TREM2 is a transmembrane protein that forms a
complex with the TYRO protein tyrosine-kinase-binding
protein, also known as Dapl2. TREM2 is expressed in
microglia and neurons and appears to be involved in pro-
moting phagocytosis and in inhibiting the production of
inflammatory mediators by these cells [161-163]. TREM2
and its adaptor protein Dapl2 are highly expressed in
amyloid plaque-associated microglia in APP23 transgenic
mice [164]. The role of TREM2 in AD has also been
demonstrated in an exome sequencing and whole gen-
ome sequencing study [165,166]. A rare mutation in exon
2 of TREM?2, which encodes for a substitution of histi-
dine for arginine at position 47, represents a risk factor
for late-onset AD [165,166]. The loss of function of
TREM2 due to this mutation is thought to be the main
source of the pathogenic effect of the risk variant [165].
Clinical evidence has shown that carriers of this variant
performed worse in cognitive tests than noncarriers and
were more susceptible to the development of late-onset
CNS diseases [165]. To date, there is an incomplete un-
derstanding of specific TREM2 ligands and functions,
which makes it difficult to determine the contribution of
TREM2 variants to AD progress.

Conclusions

Existing drugs for AD only treat the symptoms of the
disease but do not decelerate or cure AD. Furthermore,
the last drug to be approved by the Food and Drug
Administration for therapeutic AD treatment was mem-
antine, in 2003. In the last decade, several candidate
drugs have failed to reach statistical significance in their
primary outcomes. The drugs currently under test in
clinical trials are cholinesterase inhibitors, N-methyl-D-
aspartate antagonists, inhibitors of AP aggregation, and
AB immunotherapies.

In recent years, the role of microglia in AD pathology
has received more attention. In AD, microglia are acti-
vated by AP, generating a proinflammatory response
sustained over time that can cause neuronal death. The
damaged neurons release signals that can overactivate
microglia, inducing a cycle of neuron damage; this process
is known as reactive microgliosis. The AB-induced micro-
glia activation pathways are not well understood but the in-
volvement of several receptors in this process is evident.
The data discussed here suggest that microglia receptors
play a redundant role in the activation of microglia by Ap.
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It is unlikely that a single pathway is involved; rather, mul-
tiple pathways likely contribute to AD pathogenesis. Table 1
summarizes the receptors discussed here and their poten-
tial effects in AD pathogenesis.

Over the last decade, advances have been made in un-
derstanding the signal transduction pathways involved in
the expression of proinflammatory molecules in AD.
Phosphorylation and activation of specific intracellular
kinases represent common events in the signaling cas-
cades triggered in AP responses. Therefore, those signal-
ing molecules can also be considered targets for new AD
drugs. The therapeutic targeting of microglia receptors
implicated in the response to AP and their associated
signaling pathways could reduce the inflammation found
in AD. Further studies are necessary to better under-
stand all the molecular mechanisms occurring in this re-
sponse, so as to establish new therapeutic strategies. The
available data strongly suggest that modulating microglia
activation and neuroinflammation through microglia re-
ceptors could attenuate the AB-induced neurodegenera-
tion found in AD patients. However, the immune status
and the stage of disease progression are critical factors
to consider. The data reviewed here support a multi-
targeted immunomodulation approach as a potential
treatment to mitigate AD progression and symptoms.
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