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Abstract

Chronic inflammation may contribute to neuropsychological impairments in individuals with HIV, and modulation
of this inflammatory response by opiate receptor ligands is important in light of the prevalence of drug use in HIV
populations. Exogenous MOR and KOR agonists have differential effects on central nervous system (CNS) immunity
and, while some data suggest KOR agonists are immunosuppressive, the KOR agonist dynorphin has been shown
to stimulate human monocyte chemotaxis. In this study, we examined mRNA levels of endogenous opioid
receptors OPRK1 and OPRM1, prodynorphin (PDYN), macrophage scavenger receptor CD163, and microglia/macrophage
marker CD68 in the caudate and anterior cingulate of postmortem brains from HIV-positive and HIV-negative subjects.
Brain tissues of HIV-infected (n = 24) and control subjects (n = 15) were obtained from the Manhattan HIV Brain Bank.
Quantification of the gene mRNA was performed using SYBR Green RT-PCR. CD68 and CD163 were increased in
HIV-positive (HIV+) compared to HIV-negative (HIV-) individuals in both brain regions. There were higher
OPRK1 (P <0.005), and lower PDYN mRNA (P <0.005) levels in the anterior cingulate of HIV+ compared to HIV- subjects.
This difference between the clinical groups was not found in the caudate. There was no difference in the levels of OPRM1
mRNA between HIV+ and HIV- subjects. Using linear regression analysis, we examined the relationship of OPRK1 and PDYN
mRNA levels in the HIV+ subjects with seven cognitive domain T scores of a neuropsychological test battery. Within the
HIV+ subjects, there was a positive correlation between anterior cingulate PDYN mRNA levels and better T-scores in the
motor domain. Within the HIV+ subjects there were also positive correlations of both OPRK1 and PDYN mRNA levels with
the anti-inflammatory marker CD163, but not with proinflammatory CD68 levels. In this setting, decreased PDYN mRNA
may reflect a homeostatic mechanism to reduce monocyte migration, accompanied by compensatory increases in
the cognate receptor (KOR) to dampen pro-inflammatory responses. It is possible that enhanced neuroprotection
and better motor performance are associated with higher levels of dynorphin and the recruitment of neuroprotective
CD163-positive macrophages. Further studies are needed to test this hypothesis.
Background
Despite the availability of combination antiretroviral
therapy (CART), which has successfully controlled HIV
viremia and improved immune function in many treated
HIV-infected patients, HIV-associated neurocognitive
disorder (HAND) remains highly prevalent [1]. The
pathogenesis of HAND is still unclear, and is very often
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associated with nonviral neurobiological factors [2,3].
Numerous studies suggest that HAND is primarily the
result of neuronal loss/dysfunction from direct or indir-
ect viral effects, inclusive of inflammation driven by
chronic low-level infection, loss of trophic factors, and
elaboration of excitotoxic molecules (for example, [4]).
Morphologically, HIV-associated cognitive impairment
has been linked to alterations in the synaptodendritic net-
work in HIV-infected brain [5,6]. Currently, it is com-
monly accepted that cytokines and chemokines secreted
by activated microglia and astrocytes in inflammatory
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conditions lead to alterations in synapse and dendritic
spine structures in HIV-infected subjects, with a major
role ascribed to glutamate neurotoxicity.
Despite numerous reports of effects of exogenous opiates,

particularly drugs of abuse, on replication of HIV, HIV-
associated neurotoxicity and modulation of immune re-
sponses in cell culture, animal models, and AIDS pathology
in humans, (for example, [7,8]) much less is known of the
impact of the endogenous opioid system on HIV neuro-
pathogenesis and HIV-associated neurocognitive impair-
ment. The opioid system comprises the mu (MOR), delta
(DOR) and kappa (KOR) opioid receptors, which are acti-
vated by the endogenous opioid peptides beta-endorphin,
enkephalin and dynorphin, respectively (for example, [9]
for review). In vivo and in vitro studies showed that stimu-
lation of opioid receptors by exogenous MOP agonists like
morphine leads to suppression of multiple components of
the immune response including phagocytosis, natural killer
cell activity, chemokine-induced chemotaxis, antibody re-
sponse and cell-mediated immunity ( for review [10]). Sev-
eral reports demonstrate that Dynorphin A modulates the
capacity of immunocytes to enhance or suppress chemo-
taxis through direct or indirect stimulation of KOR. Ruff
et al. [11] have shown that Dynorphin 1-13 is a potent
stimulator of human mononuclear cell chemotaxis. In
recent studies of bi-directional heterologous desensitization
between the chemokine receptor CXCR4 and KOR, Finley
et al. [12] showed that treatment of the Jurkat T cell
expressing KOR and CXCR4 with the KOR agonist
U50,488H diminished the chemotaxis response to chemo-
kine CXCL12. In the context of HIV, chronic opiate expos-
ure has been associated with decreased expression of
macrophage activation markers in brain [13]. In contrast to
mu opioid receptor ligands, dynorphin peptides (pri-
marily endogenous KOR agonists) decrease basal and drug-
induced dopamine levels in several areas of the dopamin-
ergic nigrostriatal and mesolimbic-mesocortical systems as
well as in tuberoinfundibular dopaminergic (TIDA) neurons
in the hypothalamus [14]. In animal models, dynorphin/
KOR system activation is also implicated in depression
and anxiety, which may be secondary to the dopaminergic
modulation [15]. In humans and nonhuman primates,
exogenous high-efficacy κ-opioid-receptor agonists have
dose-dependent central nervous system (CNS)-mediated
effects that include sedation (for example, unresponsive-
ness to environmental stimuli), dysphoria, anhedonia, de-
pressive symptoms and psychotomimesis [16-18].
In different experimental models of neurodegeneration

and traumatic brain injury (TBI), dynorphin was shown to
be either neuroprotective [19-21] or neurotoxic [22]. In the
context of HIV infection, kappa opioid receptor ligands
have demonstrated potential anti-inflammatory and neuro-
protective properties in several in vitro models of HIV neu-
ropathogenesis. The synthetic KOR agonist (for example,
U50,488) suppresses HIV-1 production in human micro-
glial cells [23] and CD4 T lymphocytes [24], and dampens
chemokine production in astrocytes [25]. However, it has
been shown that dynorphin stimulates TNF-a and IL-6 ex-
pression in human brain cell cultures, and the stimulatory
effect of dynorphin resulted in upregulation of HIV-1 ex-
pression when human brain cells were co-cultured with hu-
man promonocytic cells U1 [26].
In the present study we have examined expression of

opioid genes OPRM1, OPRK1 and PDYN in two brain re-
gions, the caudate (a terminal field of the dopaminergic
nigrostriatal system) and anterior cingulate (a terminal
field in the mesocortical dopaminergic system) of post-
mortem brain of HIV-infected and control subjects; these
areas are known to contain opioid receptors in humans
[27]. Several studies suggest that HIV-mediated neuro-
pathogenesis includes the loss of dopaminergic terminals
in the basal ganglia, including the caudate and putamen,
either through degeneration of dopaminergic neurons in
the substantia nigra or via local HIV-induced striatal path-
ology. This is postulated to lead to deficits in central dopa-
minergic activity, resulting in progressive impairment of
diverse neurocognitive and motor functions [28,29]. The
anterior cingulate cortex (ACC) is a heterogeneous sub-
region of the prefrontal cortex. Functions of the ACC in-
clude cognitive and attentional processing, autonomic
regulation, motor control, and emotional control. [30].
Studies on the distribution of cortical dopamine neurons
in primates showed that the dopamine innervation is most
dense in the motor and anterior cingulate cortex [31]. Re-
cently, decreased levels of the preproenkephalin mRNA
(PENK) and dopamine receptor D2 (DRD2) in the dorso-
lateral prefrontal cortex (DLFPC) in postmortem brain of
subjects with HIV/AIDS has been reported [32].
In order to investigate whether there is an impact of

the KOR/PDYN system and OPRM1 on HIV-related
neuropsychological impairment, we examined the post-
mortem brains of HIV-infected and control subjects to
identify any changes in quantitatively measured levels of
PDYN, OPRK1 and OPRM1 as well levels of macrophage
markers CD68 and CD163 in the caudate and anterior
cingulate. We have found lower PDYN and greater
OPRK1 mRNA levels in the anterior cingulate in HIV+
subjects. There was a positive correlation PDYN and
OPRK1 levels with expression of macrophage/microglia
marker CD163 in the anterior cingulate of HIV+ subjects.
Furthermore, there was a positive correlation between bet-
ter T-scores in motor domain scale and PDYN mRNA
levels in this region.

Methods
Study participants
A description of the 24 HIV+ and 15 HIV-seronegative
unrelated subjects from whom postmortem brain samples
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were obtained has been reported recently [33], and infor-
mation for HIV+ subjects is presented in Additional file 1:
Table S1. In brief, brain tissues were obtained from the
Manhattan HIV Brain Bank, a member of the National
NeuroAIDS Tissue Consortium (MHBB, The Mount Sinai
Medical Center, New York, NY, U24MH100931). The
MHBB operates under local IRB-approved ethical guide-
lines, and written informed consent was obtained from all
subjects, or their primary next-of-kin, for collection and
use of autopsy tissues for medical research and furthering
medical knowledge. Specimens from subjects with pro-
tracted agonal state, as manifested by extensive anoxic-
ischemic damage on histological evaluation, were excluded
from this study. Mean ages (years ± SD) were 52 ± 10 in
HIV-seronegative and 45 ± 10 in HIV-seropositive subjects,
and corresponding postmortem intervals (hours, PMI)
were 18.4 ± 6.2 and 9.3 ± 5.0, respectively.

Neurocognitive test assessment
A neuropsychological battery of tests was used to assess
the following seven cognitive domains, as previously de-
scribed: verbal fluency, attention and working memory,
executive functioning, learning/memory encoding, mem-
ory retrieval, information processing speed, and motor
ability [34]. Raw scores from all tests were converted to
demographically adjusted T-scores that adjusted per-
formance for effects of age, education, sex and ethnicity.
T-scores for each test were averaged to yield domain T-
scores for each cognitive domain [see Additional file 1:
Table S1]. T-scores are normally distributed and have a
mean of 50 and a standard deviation of 10; T-scores
more than one standard deviation below normative
(<40) were considered impaired. HIV-negative subjects
were chosen on the basis of normal premortem neuro-
logical function and normal postmortem brain histology.

RNA preparation and cDNA synthesis
RNA extraction from the caudate and anterior cingulate
was performed as described previously [31]. In brief, brain
tissues were homogenized in RLT buffer (RNeasy Mini
Kit, Qiagen, Valencia, CA, USA) for isolation of total RNA
according to the manufacturer’s protocol. RNA samples
were treated with RNase-Free DNase (TURBO DNA-free,
Ambion, Austin, Texas, USA). RNA preparations were
analyzed using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, CA, USA). Mean RNA
Integrity Number (RIN) values (± SD) were 7.4 ± 0.96
(range from 5.3 to 9.2) in HIV-seronegative and 7.3 ± 1.5
(range from 5.0 to 9.5) in HIV-seropositive subjects.
Single-stranded cDNA was synthesized using approxi-
mately 1 μg of RNA and the High Capacity cDNA Reverse
Transcription Kit (Applied Biosystems (ABI), Carlsbad,
CA, USA) in the presence of random primers and gene-
specific antisense primer.
Quantitative real-time PCR
Quantification of the mRNA levels of opioid genes
OPRK1, OPRM1, PDYN, and macrophage/microglial
markers CD68 and CD163 in the caudate and anterior
cingulate cortex, was performed by real-time polymerase
chain reaction (qRT-PCR). cDNA (2 μl) was amplified in a
20-μl solution that contained the Brilliant III Ultra-Fast
SYBR™ Green QPCR Master Mix (Agilent Technologies)
and 10 nM of primers with a PCR condition of 40 cycles
of denaturation at 94°C for 5 sec, and annealing/extension
at 60°C for 15 sec. Forward and reverse primers for
amplification of cDNA of genes studied were ether cus-
tom designed or commercially available (SABiosciences,
Valencia, CA, USA) [see Additional file 2: Table S2]. Levels
of the human glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) cDNA/mRNA were used for normalization of
levels of mRNA of the target genes. Experimental samples
were amplified simultaneously with samples that contained
serial dilutions of a target gene and GAPDH cDNAs from
101 to 106 copies/2 μl in sterile water, used to prepare
standard curves. Copy number determination was calcu-
lated as described previously [33,35]. The qRT-PCR ana-
lysis was performed using SDS 2.2 software (ABI) on an
ABI Prism® 7900 sequence detection system. The specifi-
city of amplification was confirmed by agarose gel electro-
phoresis of PCR products, a melting curve profile, and, in
some cases, by Sanger sequencing. Copy number of cDNA
of opioid receptors, PDYN, glial/macrophage markers and
GAPDH was quantified by comparing threshold cycles (Ct)
of an experimental sample to those in standard curves for
specific genes and GAPDH cDNA. The cDNA copy num-
ber is expressed as normalized to copies of GAPDH cDNA
copy number.

Statistical analysis
Normalized values of copy numbers of mRNA of each
gene studied were quantified as the natural log of ratio
of copy number of gene of interest to copy number of
GAPDH cDNA in the caudate and in the anterior cingu-
late. For expression of each gene in each region, a t-test
was used to determine the statistical significance of dif-
ferences between HIV- and HIV+ subjects, and cogni-
tively impaired and non-impaired HIV+ subjects. The
relationship of expression of selected genes with opioid
genes and macrophage mRNA levels was examined
using Pearson correlation analysis. Correlation analysis
was also used to examine whether there was a relation-
ship between expression levels of opioid genes and cog-
nitive status (domain T-scores).

Results
Expression of opioid receptor genes
We have found significantly higher levels of OPRK1
mRNA in the anterior cingulate (P <0.005) but not in the
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Figure 1 There are significant differences in mRNA levels of
OPRK1 (A) and PDYN (B) between HIV-negative and HIV-infected
individuals in the anterior cingulate. PDYN mRNA levels were
lower while OPRK1 were higher in HIV positive subjects.
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caudate of HIV+ subjects compared to HIV- subjects
(Table 1 and Figure 1A). In contrast, there were signifi-
cantly lower levels of PDYN mRNA in the anterior cingu-
late of HIV+ subjects (P <0.005, Figure 1B), and no
difference in PDYN mRNA levels between HIV+ and
HIV- subjects in the caudate. We did not find a difference
in the levels of OPRM1 mRNA between HIV+ and HIV-
subjects in either brain region (Table 1). There was a sig-
nificant positive correlation of OPRK1 with PDYN in the
anterior cingulate (P <0.005) of HIV-infected subjects only
(Figure 2).

Relationship of expression of opioid genes with
macrophage markers
An inflammatory response to HIV infection within the
CNS is considered to be the major mediator of neuronal
alterations in brain. Consistent with many other studies,
we have found elevated mRNA levels of both proinflam-
matory CD68 and anti-inflammatory CD163 macrophage/
microglial markers in both the caudate and anterior cin-
gulate in HIV+ subjects (Table 1). In order to elucidate
whether observed alterations in levels of opioid genes are
associated with protective or detrimental processes in
the HIV-infected brain, we performed linear regres-
sion analysis. There were significant positive correla-
tions of PDYN and OPRK1 mRNA levels (correlated with
one another, see above) with the macrophage scavenger
receptor CD163 in the anterior cingulate of HIV+ subjects
(Figure 3). In contrast, within HIV+ subjects OPRK1 and
PDYN did not correlate with levels of the microglial
marker CD68.

Relationship to neuropsychological impairment
To determine whether levels of PDYN and OPRK1
mRNA were correlated with specific domain T-scores
[see Additional file 1: Table S1], we performed linear re-
gression analysis. Among the seven neurocognitive do-
mains (see Methods), there was a positive correlation of
motor T-scores with PDYN mRNA levels in the anterior
Table 1 The mRNA levels of opioid genes and macrophage/m
subjects

Caudate

Gene HIV- HIV+

Mean ± SEM Mean ± SEM t df P valu

OPRK1 8.59 ± 025 8.45 ± 0.14 <1.0 33 N.S.

PDYN 2.51b ± 0.27 2.07b ± 0.15 1.45 39 NS

OPRM1 7.16 ± 0.16 7.07 ± 0.16 <1.0 35 N.S.

CD68 6.34 ± 0.14 6.99 ± 0.12 3.31 34 <0.00

CD163 6.85 ± 0.23 8.05 ± 0.21 3.71 34 <0.00
aGenes with significant expression differences between HIV- and HIV+ individuals a
RNase protection assay as pg PDYN mRNA/ microgram total RNA.
NS, no significant difference between HIV- and HIV+. Levels of mRNA were determi
normalized to copies of GAPDH cDNA copy number.
cingulate in HIV-positive subjects (P <0.005, Figure 4).
We did not find a correlation of any other neurocogni-
tive domain T-scores with levels of OPRK1 or OPRM1
mRNA levels in this region.
Separate analyses showed no significant differences in

scores of each neurocognitive domain in our samples
icroglia markers in two brain regions in HIV- and HIV+

Anterior cingulate

HIV- HIV+

e Mean ± SEM Mean ± SEM t df P value

7.17 ± 0.24 8.32 ± 0.25 3.28 23 <0.005a

8.05 ± 0.29 7.19 ± 0.13 3.06 37 <0.005

8.33 ± 0.18 8.44 ± 0.18 <1.0 23 N.S.

5 6.65 ± 0.24 7.56 ± 0.12 3.65 23 <0.002

1 6.14 ± 0.34 7.37 ± 0.28 2.79 22 <0.02

re shown in bold. bPDYN mRNA levels in the caudate were measured using

ned using RT-PCR, and expressed as natural logarithm of cDNA copy number
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Figure 2 OPRK1 mRNA levels were significantly correlated with
PDYN in the anterior cingulate of HIV infected subjects.

Yuferov et al. Journal of Neuroinflammation 2014, 11:5 Page 5 of 8
http://www.jneuroinflammation.com/content/11/1/5
between genders, or between HIV-positive subjects on
an antiretroviral therapy (ART) and those not on ART;
there was also no significant correlation of age with
motor function domain scores in the HIV+ subjects.

Discussion
The major findings of the present study are that:

1. There were opposite directions of change in the
levels of PDYN and OPRK1 mRNA in the anterior
cingulate in postmortem brain of HIV+ subjects:
lower levels of PDYN with greater levels of OPRK1.

2. There were positive correlations of PDYN and
OPRK1 levels with expression of the anti-
inflammatory microglial/macrophage marker
CD163. In contrast, within HIV+ subjects, OPRK1
and PDYN were not correlated with levels of proin-
flammatory CD68.
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Figure 3 There were positive correlations of PDYN and OPRK1
mRNA levels with the expression of the anti-inflammatory
macrophage marker CD163 in the anterior cingulate of HIV
infected subjects.
3. There was a positive correlation between better T-
scores in the motor domain scale and PDYN mRNA
levels in the anterior cingulate.

To our knowledge this is the first report of region-
specific alterations in expression of these two opioid sys-
tem genes in postmortem brain of HIV-infected individ-
uals. One interesting result of the present study is the
finding of lower levels of PDYN mRNA in the anterior
cingulate in HIV-infected subjects. Other studies have
reported an increase or no change in PDYN expression
in postmortem brain in subjects with schizophrenia and
other psychiatric disorders [36].
The prodynorphin gene contains several calcium-

responsive enhancer elements in its promoter region,
including calcium/cAMP responsive element, phorbol
ester-responsive element, and downstream regulatory
element (DREAM) and is highly responsive to calcium
levels ([37] for review). Although dynorphins preferentially
bind KOR and are potent and efficacious KOR agonists,
several studies in cell culture and in the rodent CNS sug-
gest that dynorphin peptides may potentiate glutamatergic
receptor function and neurotoxicity, possibly through
non-KOR sites of action [38-40]. However, in human
neurodegenerative diseases there is currently no direct
evidence in support of this proposed alternative dynorphin-
mediated mechanism of neurotoxicity.
Studies of a rodent model of viral encephalitis based

on Borna disease virus (BDV) showed dynorphin deple-
tion in the hippocampus due to depopulation of the
granule layer and loss of competence of surviving gran-
ule cells to express dynorphin [41]. Lower PDYN mRNA
levels and dynorphin peptides were observed in several ex-
perimental animal models of neuropathological conditions
[42-44]. Cell culture studies showed that activation of the
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Figure 4 There was a positive correlation of motor T-scores with
PDYN mRNA levels in the anterior cingulate in HIV positive
subjects, showing that higher levels of PDYN mRNA were
associated with better neuropsychological test performance.
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human macrophage cells U-937 with lipopolysaccharide
(LPS) led to a decrease in PDYN mRNA levels through
transcriptional inhibition of gene expression [45].
Recently, significantly lower levels of another opioid

neuropeptide mRNA, preproenkephalin (PENK) were
found in the dorsolateral prefrontal cortex in subjects
with HIV encephalitis (HIVE) compared to seronegative
controls [32]. The authors did not find differences in
PENK mRNA levels in HIV-infected subjects with and
without neurocognitive impairment, and concluded that
the lower PENK levels were related neuropathologically
to HIVE.
Mechanistic in vitro studies support the hypothesis

that the release of numerous factors by activated macro-
phages, glial cells and astrocytes could be a cause of ele-
vated levels of OPRK1 mRNA in the anterior cingulate
of HIV+ subjects observed in our study. For example, in-
cubation of the murine macrophage cell line J774 with
the proinflammatory cytokine IFN gamma for 24 h led
to upregulation of Oprk1 expression at both transcrip-
tional and protein levels [46]. Functionality of KOR in
macrophages was demonstrated by Dynorphin-A (1-17)-
induced phosphorylation of ERK1/2. Also, in adjuvant-
induced inflammation in rats, the proinflammatory cytokine
interleukin-1 beta (IL-1 beta) induced upregulation of Oprk1
in dorsal root ganglia [47].
Clinical and experimental central nervous system in-

juries elicit an inflammatory response that comprises
mostly activated macrophages [48]. These cells exist in a
state of dynamic equilibrium within the lesion micro-
environment. Thus, depending on the inflammatory
conditions in the lesion microenvironment, they may
differentiate into proinflammatory cells that aggravate
tissue injury, or anti-inflammatory cells that promote
CNS repair [49]. In our study, there was elevation of
proinflammatory CD68 and anti-inflammatory CD163
mRNA in both the caudate and anterior cingulate of
HIV+ subjects. Also, levels of PDYN and OPRK1 mRNA
were positively correlated with CD163 mRNA in the an-
terior cingulate, but not in the caudate. In contrast, within
HIV+ subjects mRNA levels of OPRK1 and PDYN were
not correlated with levels of CD68. In a rodent model
of Parkinson’s disease, treatment with 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) or methamphetamine
led to higher levels of proinflammatory macrophages
(CD16, CD32 and CD86) in dynorphin knockout mice
(Dyn−/−) than the wild-type, suggesting anti-inflammatory
and neuroprotective properties of PDYN gene products
(dynorphin peptides) [50]. MPTP-induced more severe
motor deficits in Dyn−/− than in wild-types, and Dyn−/−
mice also exhibited greater dopaminergic depletion. This
suggests that endogenous dynorphins play an important
role in protection of nigrostriatal DAergic neurons from
chemical insults.
One of our findings is a positive correlation between
levels of anterior cingulate PDYN mRNA levels and bet-
ter T-scores in motor domain scale in HIV+ subjects.
Animal models of experimental traumatic brain injury
(TBI) provide some clues to a role of dynorphin and kappa
opioid receptors in spatial memory and motor tasks. For
example, TBI in rat resulted in increased Pdyn mRNA and
dynorphin peptide levels in hippocampus, and intra-
cerebroventricular administration of the KOR antagonist
nor-BNI exacerbated motor and vestibulomotor deficits
[19]. Of the cognitive domains we assessed, the association
with motor performance likely reflects both a neurochem-
ical association as well as a neuroanatomic specificity. The
lack of association with other cognitive domains may be, in
part, a function of the brain regions we examined and those
we did not. For example, we did not assess the hippocam-
pus, which is critical to learning and memory, nor did we
examine orbitofrontal and dorsolateral prefrontal regions,
implicated in executive functioning. On the other hand, the
association of anterior cingulate with initiation of motor ac-
tivity has been documented in humans, and is in keeping
with the anatomic localization of our findings [51]. Thus,
further study of other brain regions may be necessary to
fully understand the extent of association between DYN/
KOR and cognitive processes in humans.
The present study has several limitations that could be

the focus of larger follow-up studies. The alterations in
levels of PDYN/OPRK1 system and macrophage markers
in brain of HIV-infected subjects were measured only at
the mRNA level, and not the peptide/protein gene products.
Cell heterogeneity in the samples may also be a consider-
ation, since OPRK1 is expressed in diverse cell types and
phenotypes (for example, neurons, microglia, macrophages).
This may potentially ‘mask’ a more specific relationship of
OPRK1 or PDYN with HIV-associated neurocognitive im-
pairment. Of interest, the anterior cingulate cortex (ACC)
can be divided anatomically and functionally into distinct
subregions, dorsal and ventral ACC. The dorsal ACC is
connected with the prefrontal cortex, parietal cortex
and the motor system. The ventral part of the ACC
is connected with the amygdala, nucleus accumbens,
hypothalamus, and anterior insula. Moreover, a study of
the distribution of binding sites of 15 neurotransmitter re-
ceptors showed a differential pattern of expression of glu-
tamate, GABA, acetylcholine, serotonin, and dopamine
receptors among ACC subregions and neurons in humans
[52]. It would be of great interest to study an interaction
of the DYN/KOR system with other receptors in specific
ACC regions. In addition to cell heterogeneity, postmor-
tem tissues cannot be rigorously controlled for terminal
events and certain medical factors; this variability may
mask associations in relatively small ‘n’ study. Thus, our
findings need replication in larger groups of individuals,
both with and without HIV infection.
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Conclusions
In summary, this is the first report indicating alterations
of dynorphin and kappa opioid receptor mRNA levels in
the brain of HIV+ subjects. The decrease of PDYN mRNA
levels in the anterior cingulate of HIV+ subjects compared
to controls is related to inflammatory-mediated neuronal
and dendritic loss. A positive correlation of better T-
scores in motor domain scale with PDYN mRNA levels
within HIV+ subjects may indicate that higher dynorphin
expression is involved with protection from neurode-
generation and loss of function at sites of brain lesions.
We also hypothesize that higher levels of OPRK1 mRNA
found in the anterior cingulate in HIV-infected subjects
may represent a compensatory neuroprotective function of
the PDYN/OPRK1 system in response to inflammation-
induced excitotoxic neuronal damage. Based upon work in
other models of neurodegeneration and neuroinflam-
mation, the PDYN/OPRK1 system has emerged as having
neuroprotective properties and the ability to dampen pro-
inflammatory responses of macrophages, lymphocytes, as-
trocytes and glial cells, properties that may have a positive
influence in HIV-1 neuropathogenesis. Further studies are
required for a better understanding of the role of KOR and
their endogenous ligand dynorphin in HIV neuropathogen-
esis. These studies could lead to the development of novel
pharmacotherapeutic approaches for neuroinflammatory/
neurodegenerative disorders, including HAND, based on
actions at kappa opioid receptors.
Additional files
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RT-PCR SYBR Green assay.
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