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Abstract

Background: Bile acids are steroid acids found predominantly in the bile of mammals. The bile acid conjugate
tauroursodeoxycholic acid (TUDCA) is a neuroprotective agent in different animal models of stroke and neurological
diseases. However, the anti-inflammatory properties of TUDCA in the central nervous system (CNS) remain
unknown.

Methods: The acute neuroinflammation model of intracerebroventricular (icv) injection with bacterial
lipopolysaccharide (LPS) in C57BL/6 adult mice was used herein. Immunoreactivity against Iba-1, GFAP, and VCAM-1
was measured in coronal sections in the mice hippocampus. Primary cultures of microglial cells and astrocytes were
obtained from neonatal Wistar rats. Glial cells were treated with proinflammatory stimuli to determine the effect of
TUDCA on nitrite production and activation of inducible enzyme nitric oxide synthase (iNOS) and NFkB luciferase
reporters. We studied the effect of TUDCA on transcriptional induction of iNOS and monocyte chemotactic
protein-1 (MCP-1) mRNA as well as induction of protein expression and phosphorylation of different proteins from
the NFkB pathway.

Results: TUDCA specifically reduces microglial reactivity in the hippocampus of mice treated by icv injection of LPS.
TUDCA treatment reduced the production of nitrites by microglial cells and astrocytes induced by proinflammatory
stimuli that led to transcriptional and translational diminution of the iNOS. This effect might be due to inhibition of
the NFkB pathway, activated by proinflammatory stimuli. TUDCA decreased in vitro microglial migration induced by
both IFN-y and astrocytes treated with LPS plus IFN-y. TUDCA inhibition of MCP-1 expression induced by
proinflammatory stimuli could be in part responsible for this effect. VCAM-1 inmunoreactivity in the hippocampus
of animals treated by icv LPS was reduced by TUDCA treatment, compared to animals treated with LPS alone.

Conclusions: We show a triple anti-inflammatory effect of TUDCA on glial cells: i) reduced glial cell activation, ii)
reduced microglial cell migratory capacity, and iii) reduced expression of chemoattractants (e.g., MCP-1) and
vascular adhesion proteins (e.g., VCAM-1) required for microglial migration and blood monocyte invasion to the
CNS inflammation site. Our results present a novel TUDCA anti-inflammatory mechanism, with therapeutic
implications for inflammatory CNS diseases.
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Background

Central nervous system (CNS) homeostasis is main-
tained by the blood brain barrier (BBB) restricting the
passage of substances and cells from the blood to the
CNS parenchyma, as well as the active role of CNS resi-
dent cells (particularly astroglial and microglial cells),
sensing and responding to any imbalance in the CNS en-
vironment. Infections, trauma, stroke, toxins, and other
perturbations are capable of arousing an immediate
short-term innate immune response as a defence mech-
anism to protect the CNS from insults. The response is
resolved once the threat has been eliminated and
homeostasis is restored. This acute neuroinflammatory
response includes the activation of astrocytes [1] and the
resident immune cells (microglia) [2]. When glial cells
are activated, they change their morphology to the “re-
active state”, increasing the expression of specific pro-
teins (e.g., glial fibrillary acidic protein (GFAP) in
astrocytes and ionized calcium-binding adapter molecule
1 (Iba-1) in microglia) and their migratory capacity to
the insult site. Activated microglial cells increase the
phagocytic activity. CNS glial cells can regulate this in-
flammatory response [3-5]. If the glial cells cannot re-
store the homeostasis, the inflammatory response is
maintained long after the initial insult. This chronic neu-
roinflammation causes the loss of white and grey matter
that leads to functional deficits [6,7] that characterize
the pathology of neurodegenerative diseases [8,9], stroke
[10], and traumatic brain injuries [11]. Reactive glial cells
release a wide number of mediators, including proin-
flammatory and anti-inflammatory cytokines, and che-
mokines that increase BBB permeability and induce the
activation and recruitment of blood monocytes, lympho-
cytes, and neutrophils to the inflammation site inside
the CNS parenchyma [12,13].

Bile acids, such as ursodeoxycholic (UDCA) and its con-
jugated derivative tauroursodeoxycholic acid (TUDCA),
have neuroprotective effects in several neurodegenera-
tive diseases in neuronal culture [14] and in ischemia/
reperfusion animal models, reducing infarct area and
inflammation [15-18]. The anti-inflammatory effect of
bile acids has been previously described in BV-2 micro-
glial cells, reducing nitrite production after p-amyloid
peptide treatment [19]. Bile acids are an interesting
therapeutic tool since they can be administered either
orally, intravenously, or intraperitoneally, and they eas-
ily cross the BBB. UDCA is an FDA approved drug for
the treatment of primary biliary cirrhosis and has not
shown any relevant side effects during chronic treat-
ments [20].

In this study, we tested the in vitro anti-inflammatory
effect of the bile salt TUDCA in the glial cells involved
in neuroinflammation and in an animal model of acute
brain inflammation.
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Methods

Reagents

Tauroursodeoxycholic acid, sodium salt (TUDCA) was
purchased from Calbiochem (La Jolla, CA, USA). E. coli
lipopolysaccharides (LPS) isotypes 026:B6 and 055:B5,
Roswell Park Memorial Institute medium 1640 (RPMI),
Dulbecco’s modified Eagle’s medium (DMEM), penicil-
lin/streptomycin mix (P/S), and poly-L-lysine were pur-
chased from Sigma-Aldrich (St Louis, MO, USA). Foetal
bovine serum (FBS) and horse serum were purchased
from Gibco BRL (Gaithersburg, MD, USA).

Acute brain inflammation in a mouse model

We used 8-10-week-old C57/BL6 mice purchased from
Harlan® Interfauna Iberica (Sant-Feliu-de-Codines, Spain)
to study acute brain inflammation. The animals were given
food and water ad libitum, and were housed in the Cajal
Institute animal house at a controlled ambient temperature
of 22°C with 50% + 10% relative humidity and with a 12 h
light/dark cycle. Experiments were carried out in accord-
ance with the Guidelines of the European Union Council
(86/609/EU) and following the Spanish regulations (BOE
67/8509-12, 1988) for the use of laboratory animals,
and were approved by the Ethics and Scientific Com-
mittees of Instituto Cajal, CSIC, and Hospital Nacional
de Parapléjicos, SESCAM.

Two experimental procedures were used to determine
the effect of TUDCA on acute brain inflammation: in
the first procedure, 21 mice were anesthetized with
3 mL/kg of equitesin and 2 mg/kg LPS from E. coli iso-
type 055:B5 (Sigma-Aldrich, St Louis, MO, USA), diluted
in 5 pL of phosphate-buffered saline (PBS), was injected
intracerebroventricularly (icv) on the stereotaxic coordi-
nates AP: —-0.46, ML: -1.0, and DV: -1.8 from bregma
[21] with a Hamilton syringe. One group of mice (n =
11) was treated with one intraperitoneal (ip) injection of
TUDCA at 500 mg/kg every 8 h, starting right after the
icv LPS injection. A control group of mice (n=6) re-
ceived an icv injection with 5 pL of PBS at the same co-
ordinates. An additional group of untreated mice (n = 3)
was used as a control to assess the inflammatory effect
of the icv injections with PBS. Three days after the icv
injection the animals were sacrificed with an overdose of
sodium pentobarbital (50 mg/kg, ip), and perfused with
60 mL of saline buffer and 60 mL of 4% paraformalde-
hyde (PFA, MERCK, Darmstatd, Germany). Brains were
extracted, post-fixed for 24 h in 4% PFA at 4°C, left for
48 h in 30% sucrose at 4°C, embedded in OCT™ Com-
pound (Tissue-Tek®, Sakura Finetek Europe, Alphen aan
den Rijn, The Netherlands) and stored at —20°C until
further use.

In the second experimental procedure, we performed
the same acute brain inflammation model on 26 mice,
half of which (n =13) received an icv injection with 5 uL
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of PBS and half of which (n =13) received an icv injec-
tion with 5 pL of LPS. Seven mice from each experimen-
tal group were injected with TUDCA (500 mg/kg, ip)
right after the icv injection at 3, 6, 9, and 23 h. Mice
were sacrificed 24 h after the icv injection by cervical
dislocation and brains were extracted, fixed in 4% PFA
at 4°C for 48 h, then left for 72 h in 30% sucrose at 4°C
and embedded in OCT™ compound, as described above.
An additional group of untreated mice (n = 3) was proc-
essed as a control group.

Immunohistochemistry

Serial sections (15-pm thick) from the hippocampus were
cut on a cryostat LEICA CM1900 (Nussloch, Germany),
mounted on gelatin-coated slides (n=7 sections per slide)
and stored at —20°C until further use. For immunolabeling,
endogenous peroxidase activity was previously quenched
with a solution of peroxide. After blocking with normal
serum, sections were incubated overnight at 4°C with the
primary antibody. A specific antibody against GFAP was
used to detect astrocytes, anti-Iba-1 antibody was used to
detect microglia, and an antibody against vascular cell ad-
hesion molecule 1 (VCAM-1, for more details see Table 1
and Additional file 1) was used to stain endothelial cells.
Slides were incubated for 90 min at room temperature with
the corresponding biotinylated secondary antibody.
The signal was amplified with Vectastain ABC reagent
(Vectastain ABC kit, Vector Laboratories, Burlingame,
CA, USA) and the immunohistochemical stain was devel-
oped with 3,3’-diaminobenzidine. Slides were mounted
with DePeX mounting medium (BDH, Poole, England)
and photographed using an Olympus Provis AX70 micro-
scope, coupled to an Olympus PD50 photography system.
Image | software (Wayne Rasband, NIH, USA) was used
to obtain the photographs and analyse the images.

Cell culture

Primary cultures of microglial cells were obtained from
newborn (P0) to 2-day-old (P2) Wistar rat forebrains
and grown in DMEM medium supplemented with 10%
heat-inactivated FBS, 10% heat-inactivated horse serum,
and P/S (DMEM 10:10:1) in 75-cm? flasks, coated with
poly-L-lysine (10 pg/mL) [22]. Briefly, after reaching
confluence, cells were shaken at 230 rpm for 3 h at
37°C. Detached cells were centrifuged at 168x g for

Table 1 Antibodies for immunohistochemistry
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10 min. Cell pellets were resuspended in warm DMEM
10:10:1 and plated at a density of 200,000 cells/cm?. For
experiments, microglial cells were resuspended in RPMI
1640 medium supplemented with 10% FBS and P/S.

Primary cultures of astrocytes were obtained from
newborn (P0) to 2-day-old (P2) Wistar rat cortices [23].
The tissue homogenate was filtered through a 40-
pum mesh (BD Falcon, Franklin Lakes, NJ, USA) and
centrifuged at 950 rpm for 5 to 7 min. The pellet was
plated and grown in DMEM supplemented with 10%
FBS and P/S in 75-cm? flasks coated with poly-L-lysine
(10 pg/mL). Media was changed every 3 to 4 days. After
reaching confluence, cultures were shaken overnight at
280 rpm and 37°C in a shaker (Infors Minitron Botmingen,
Switzerland). Detached cells were washed off with PBS and
the remaining astrocyte monolayer was trypsinized and
replated at a density of 30,000 cells/cm?.

Nitrite production assays

Inducible nitric oxide synthase (iNOS) activity in cell
cultures was assessed by measuring nitrite accumulation
in the cell culture media [24]. The optimal concentra-
tions of LPS and IFN-y used are shown in Additional file
2. We tested different E. coli LPS isotypes (055:B5 and
026:B6) at different concentrations and the effect of the
presence/absence of IFN-y in the treatment, since we
did not find a consensus for microglia cells and astrocyte
in the literature. Our results show that only the 026:B6
LPS isotype stimulated a proinflammatory response in
rat microglial cells in vitro, whereas the 055:B5 isotype
did not. The addition of IFN-y did not increase this re-
sponse. Therefore, we decided to use the 026:B6 isotype
without IFN-y for microglial treatment. However, astro-
cytes were stimulated with both LPS isotypes, but nitrite
production was obtained only when we added LPS to-
gether with IEN-y. To be consistent with both cell types
we decided to perform the in vitro experiments with the
026:B6 isotype, at the optimal concentration for nitric
oxide production for each cell type.

Cells were pretreated with different concentrations of
TUDCA for 90 to 120 min and were then treated with LPS
from E. coli isotype 026:B6 (200 ng/mL for microglial cells)
or LPS plus IEN-y (1 pg/mL LPS plus 20 ng/mL IFN-y,
for astrocytes) for an additional 24 h in low serum media
(2% FBS). Supernatants were mixed with modified Griess

Antibody Host Distributor Working dilution
Iba-1 Rabbit WAKO 1:2000
GFAP (096) Rabbit DAKO 1:2000
VCAM-1 (P3C4) Mouse lowa Hybridoma Bank 1:500
a-rabbit biotinylated Goat Jackson ImmunoResearch 1:200
a-mouse biotinylated Goat Jackson ImmunoResearch 1:200
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reagent (Sigma-Aldrich, Saint Louis, MO, USA) (v/v, 1:1),
shaken, and absorbance was measured at A9, in a Multis-
kan Ascent (Thermo Electron Co., Shanghai, China).

Nitrite production was related to viable cells mea-
sured with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltet-
razolium bromide (MTT) assay. After removing the
conditioned media for nitrite determination, MTT
(Sigma-Aldrich, Saint Louis, MO, USA) dissolved in
DMEM or RPMI medium without phenol-red was
added to the treated cells (0.5 pg/mL). After 3 h in-
cubation at 37°C, cell culture media was removed and
100 pL of dimethyl sulfoxide (Sigma-Aldrich, Saint
Louis, MO, USA) was added to each well, shaken,
and the absorbance was measured at As95 in the same
device. Experiments were performed in triplicate and
the assay repeated at least six times with microglial
cells and at least four times with astrocytes.

RNA purification and qPCR

Cell were pretreated with TUDCA (200 pM) for 2 h
and were then treated with proinflammatory stimuli
(200 ng/mL of LPS for microglial cells; 1 pg/mL LPS
plus 10 ng/mL IEN-y, for astrocytes) for 6 and 24 h. Gene
and protein expression of untreated cells and untreated
cells exposed to TUDCA were also determined. Total
RNA for quantitative real-time PCR (qPCR) was isolated
from cultured primary microglia cells and astrocytes
with TRIzol reagent (Invitrogen, Carlsbad, CA, USA),
extracted, and reverse transcribed with RevertAid™ H
Minus First Strand c¢DNA Synthesis Kit (Fermentas,
Vilnius, Lithuania). Specific primers for different RNA
messengers (mMRNA) were obtained with Primer Express
3.0 software (Applied Biosystems, Warrington, UK) and
the pair of primers with less secondary structures for all
the mRNA were selected (for more information see
Table 2), once analyzed by Gene Runner 3.05 software
(Hastings Software Inc.). Quantitative PCR was developed
in a 7500 Real Time PCR System (Applied Biosystems,
Warrington, UK) with Power SYBR® Green (Applied
Biosystems) reagent. Gene expression was determined
with 7500 Software v2.0.4 and the passive reference gene
was ROX. Results are presented as the ratio between
transcriptional expression of the gene of interest and the
transcriptional expression of a housekeeping gene as a
loading control. We tested the transcriptional expression
of several housekeeping genes (18S ribosomal RNA, 36B4

Table 2 Primers for quantitative PCR
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ribosomal protein, and B-actin). Although we did not see
any major differences among them, we decided to use p-
actin as a normalized control for astrocytes and 36B4 for
microglial cells.

Transient transfection experiments in glial cells with
luciferase reporters

Microglial cells (300,000 cells/well) were seeded on 24-
well plates coated with poly-L-lysine (50 pg/mL). After
24 h, cells were transfected using a transfection mixture,
according to the manufacturer’s protocol, with a firefly
luciferase reporter plasmid (1 pg/well), pSV40-Renilla
luciferase plasmid (100 ng/well, Promega, Madison, W1,
USA) as a control for transfection efficiency, and Xtre-
meGENE HP DNA Transfection Reagent (1 pL/well,
Roche, Indianapolis, IN, USA) in OPTIMEM. A rat
iNOS-pGL3 firefly luciferase reporter plasmid contain-
ing a 720 bp fragment from the 5" flanking region of the
rat iNOS promoter [25] and a NFkB-pGL3 firefly re-
porter plasmid [26] containing a —241 to —54 base pair
fragments of 5° flanking region with the NFxB binding
site from the human E-selectin promoter (Addgene plas-
mid #13029) were used. After 24 h of incubation, the
transfection mixture was removed from the wells and
cells were cultured overnight in culture media with low
serum and treated with LPS (200 ng/mL) or TUDCA
plus LPS for 6 h (for NFkB-pGL3 reporter) and 24 h (for
iNOS-pGL3 reporter). After treatment, the media was
removed from the wells and 100 pL/well of 1x Passive
Lysis Buffer (Promega, Madison, WI, USA) was added.
Culture plates were sealed with parafilm and stored at —
80°C until luciferase activity determination.

Astrocytes (20,000 cells/well) were seeded on 96-well
plates coated with poly-L-lysine (10 pg/mL). Cells were
transfected by adding a firefly luciferase reporter plasmid
(0.2 pg/well), a pSV40-Renilla luciferase plasmid (50 ng/
well) as control for transfection efficiency, and Xtreme-
GENE 9 DNA Transfection Reagent (0.4 uL/well, Roche) in
OPTIMEM according to the manufacturer’s protocol. After
24 h of incubation, the transfection mixture was removed
from the wells and the cells were cultured overnight in cul-
ture media with low serum and treated with LPS (1 pg/mL)
and IFN-y (10 ng/mL) or different concentrations of
TUDCA with LPS plus and IFN-y for 6 h (for ELAM-
pGL3 reporter) and 24 h (for iNOS-pGL3 reporter). After
treatment, the media was removed from the wells and

Gene Accession # Forward primer 5'-3' Reverse primer 5'-3' Product length
iNOS NM_012611.3 acattgatctccgtgacagec cccttcaatggttggtacatg 158

MCP-1 NM_031530.1 tgctgtctcagccagatgcagtta tacagcttctttgggacacctgct 131

B-actin NM_031144.3 tccgtaaagacctctatge atcttcatggtgctaggagce 114

36B4 NM_022402.2 ttcccactggctgaaaaggt cgcagccgcaaatge 59
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50 pL/well of 1x Passive Lysis Buffer was added. Culture
plates were sealed with parafilm and stored at —80°C until
luciferase determination. Laboratory-made dual-luciferase
buffers were used. Firefly luciferase buffer (50 uL/sample of
30 mM Tricine, 0.1 mM EDTA pH 8, 15 mM magnesium
sulfate, 10 mM DTT, 533.3 uM ATP, 0.4 mM D-Luciferin,
and 0.27 mM Coenzyme A adjusted to pH 7.8) was mixed
in a tube with the sample and luciferase activity was mea-
sured in a luminometer Sirius (Berthold). Renilla luciferase
buffer (100 pL/sample of 0.22 M potassium phosphate
pH 5.1, 1.1 M sodium chloride, 2.2 mM EDTA, 0.44 mg/
mL BSA, 1.3 mM sodium azide, and 1.43 uM coelentera-
zine, adjusted to pH 5.0) was added to the same tube with
the mix and the Renilla luciferase activity was measured
again in the luminometer. Results are presented as the
mean * standard deviation (SD) of the fold induction re-
lated to the control of the ratio firefly luciferase activity/
Renilla luciferase activity of at least three individual experi-
ments in triplicate.

Western blotting

Cells were washed with ice cold PBS and lysed in a buffer
containing 50 mM Tris-HCl (pH 7.6), 137 mM NaCl,
05 mM DTT, 1% Nonidet-P40, 0.2% sodium dodecyl
sulphate (SDS), 0.5 uM Okadaic acid, and Phosphatase and
Protease Inhibitor Cocktail Tablets (PhosSTOP and
cOmplete Mini, Roche). Protein samples (100 pg for micro-
glial lysates and 50 pg for astroglial lysates) were dissolved
into 10% SDS-polyacrylamide gel electrophoresis (SDS-
PAGE) and wet-transferred overnight at 4°C to a nitrocellu-
lose membrane (Whatman, GmbH, Dassel, Germany).
Membranes were blocked with 5% (w/v) dry skimmed milk
or BSA in TBS with 0.1% Tween 20 (TTBS) for 1 h at room
temperature and incubated overnight at 4°C with the corre-
sponding primary antibody (for more information, see
Table 3). After washing with TTBS and TBS, membranes
were incubated with HRP-conjugated secondary antibodies
for 1 h at room temperature and the protein bands were
detected using Supersignal west pico or west femto chemi-
luminescent substrate (Pierce, Rockford, IL, USA).

Table 3 Antibodies for Western blot
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Image densitometry was performed with a Bio-Rad GS-
810 scanner (BIO-RAD Labs, Richmond, CA, USA) and
analyzed with Quantity One 4.2 software (BIO-RAD).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and
a-actinin expression were used as loading control for
microglia and astrocyte samples, respectively.

Migration assays of microglial cells

Microglial cells were added on the upper part of a
Transwell well (pore size 8-um, Corning, San Dimas,
CA, USA) in RPMI medium without FBS only or with
TUDCA (200 uM or 100 pM) and IFN-y (20 ng/mL)
was used as chemoattractant and added to the lower
well [27,28].

To study the influence of activated astrocytes on
microglial cell migration, astrocytes were seeded on
the wells. The next day, cells were preincubated with
TUDCA (200 pM for 90 min) and then exposed to
LPS (1 pg/mL) and IFN-y (10 ng/mL) for 24 h. Su-
pernatants were removed from the wells and astro-
cytes were washed twice with warm PBS. DMEM
with 10% FBS was added to the astrocytes and incu-
bated for an additional 24 h to obtain the conditioned
media. After this period, Transwells were placed on
the wells, microglial cells were seeded in the upper
part of the Transwell and left for 24 h. Non-
migrating cells were removed from the inserts with a
cotton swab. Migrating microglial cells in the Trans-
wells were fixed with 4% PFA for 15 min on ice,
washed with PBS, and stained with Hoechst 33258
(1 pg/mL) for 5 min at room temperature. After
washing with PBS, the number of attached cells in
the lower part of the Transwells was determined by
counting the Hoechst stained cells in photographs
using an Olympus Provis AX70 microscope, coupled
to an Olympus PD50 photography system. Each ex-
periment was done in triplicate and photographs were
obtained from five fields of each Transwell with a
20x microscope objective. Image | software was used
to obtain the photographs and to analyse the images.

Antibody Host Vendor Dilution Molecular weight (kDa)

iINOS/NOS2 Rabbit BD Biosciences 1:4000 130

a-Actinin Mouse BD Biosciences 1:5000 105

p- NFKB p65 (Ser536) Rabbit Cell Signaling 1:1000 65

NFkB p65 Rabbit Cell Signaling 1:1000 65

p-PKR (Thr451) Rabbit Sigma-Aldrich 1:500 65

GAPDH Mouse Millipore 1:2000 36

p-elF2a (Ser51) Rabbit Abcam 1:500 36
a-rabbit-HRP conjugated Goat Jackson ImmunoResearch 1:5000
a-mouse-HRP conjugated Goat Jackson ImmunoResearch 1:2000
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Microglia proliferation assays

Microglial cells (20,000 cells/well) were seeded on 96-well
plates and left overnight in an incubator at 37°C. The next
day, the cells were pretreated for 2 h with concentrations of
TUDCA ranging from 4 to 500 uM, and LPS (10 ng/mL)
in RPMI medium supplemented with 5% FBS was added to
the wells. After 48 h of treatment, proliferation was deter-
mined with the MTT assay (Sigma-Aldrich), according to
the manufacturer’s protocol.

Cytokine secretion assays

Astrocytes (500,000 cells/well) or microglial cells (2,000,000
cells/well) were seeded in 6-well plates and treated as previ-
ously described. After 6 or 24 h of treatment, supernatants
were collected and processed according to the manufac-
turer’s instructions. Cytokines were measured using the
commercial Quantibody® kit of Rat Cytokine Array 3 Glass
Chip (Raybiotech Inc., Norcross, GA, USA).

Statistical analysis

GraphPad Prism software version 5.0 for Windows was
used for statistical analysis. The variances of the treatments
were compared with a one-way ANOVA and the statistical
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significance between two experimental groups was deter-
mined by Mann-Whitney U/ test. Data in graphs are pre-
sented as the mean + SD.

Results

TUDCA reduces microglial activation in the hippocampus
of LPS-treated mice

To study the effect of TUDCA on neuroinflammation, we
used the inflammation model of unilateral icv injection of
LPS in mice. GFAP (for astrocytes) and Iba-1 (for microglial
cells) immunoreactivity were used to determine the glial
reactivity in coronal sections from mice hippocampus.
Iba-1 staining increased at 1 day (Figure la—c) and 3 days
(Figure 1d—f) after LPS injection, compared to control ani-
mals. GFAP staining increased only at day 3 (Figure 1j-1).
Mice with icv injection of LPS and treated with an ip injec-
tion of TUDCA slightly reduced Iba-1 immunoreactivity at
day 1 (Figure 1b—c), compared to mice treated with LPS
alone. Iba-1 immunoreactivity in mice with icv injection of
LPS and treated with TUDCA reduced the immunoreactiv-
ity with respect to control animals at day 3 (Figure 1d—f).
However, TUDCA did not have any effect on GFAP
immunoreactivity (Figure 1g-l). In conclusion, TUDCA
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Figure 1 TUDCA reduces microglial activation in the hippocampus of LPS treated mice. The effect of TUDCA on glial activation was
determined by the immunoreactive area for Iba-1 (for microglial cells) (a-f) and GFAP (for astrocytes) (g-l) related to total area in mice
hippocampus icv injected with LPS. Section treatments are as follows: 1 day control (a, g), 1 day icv LPS (b, h), 1 day icv LPS +ip TUDCA (c, i),
3 day control (d, j), 3 day icv LPS (e, k), and 3 day icv LPS +ip TUDCA (f, I).*P <0.05, ***P <0.001. Scale bar represents 100 um. The results
represent the mean + SD of at least 5 sections of 6 animals per group.
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specifically reduced microglial reactivity in the hippocam-  has any effect on the inflammatory pathway. LPS-induced
pus of LPS-treated mice. nitrite production in microglial cells was reduced to control

levels by TUDCA (Figure 2A). In astrocytes, nitrite produc-
TUDCA reduces nitrite production in glial cell cultures by tion induced by LPS plus IFN-y was significantly reduced
transcriptional inhibition of iNOS by TUDCA pretreatment (Figure 2B). Rat iNOS promoter-
We studied nitrite production in glial cell cultures induced induced activity by LPS or LPS plus IEN-y in glial cells,
by proinflammatory stimuli to determine whether TUDCA  was reduced by TUDCA (Figure 2C and D). Moreover,
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Figure 2 TUDCA reduces proinflammatory stimuli-induced nitrite production in glial cell cultures through transcriptional inhibition of
iNOS. Nitrite production was determined in (A) microglial cells and (B) astrocytes. Cells were pretreated with TUDCA for 2 h and the proinflammatory
stimuli was added and incubated for an additional 24 h. The results represent the mean of the percentage related to control + SD of at least six
experiments (microglial cells) and at least four experiments (in astrocytes) in triplicate. The effect of TUDCA on proinflammatory stimuli-induced luciferase
activation of the rat iNOS-pGL3 firefly reporter was studied in (C) microglial cells and (D) astrocytes. SV40-pRL Renilla reporter was used as a control
for transfection efficiency. The results represent the mean of the fold induction related to the control + SD of at least four experiments in triplicate. The
expression of the mRNA for iNOS was determined by gPCR in (E) microglial cells and (F) astrocytes. The expression of mRNA for 3-actin and the
expression of MRNA for 36B4 were used as loading control for astrocytes and microglial cells, respectively. The results represent the mean of the ratio
between the expression of mMRNA for iINOS/expression of mRNA for 3-actin or 36B4 + SD of at least three experiments in triplicate*P <0.05, **P <0.01.
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iNOS mRNA transcription induced by LPS or LPS plus
IFN-y, was reduced in TUDCA treated cells, compared to
control cells (Figure 2E and F). These results demonstrate
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that the inhibitory effect of TUDCA on nitrite production
induced by LPS or LPS plus IFN-y was mostly dependent
on transcriptional regulation of iNOS.
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Figure 3 TUDCA inhibits proinflammatory stimuli-induced NFkB activation in glial cells. The effect of TUDCA on proinflammatory
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reporter was used as a control for transfection efficiency. The results represent the mean of the fold induction related to the control + SD of at
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TUDCA inhibits proinflammatory stimuli-induced NFkB ac-
tivation in glial cells

Activation of the NF«B proinflammatory pathway was
studied in glial cells with transient transfection with an
NFkB reporter plasmid [26]. Pretreatment with TUDCA
reduced LPS (in microglial cells) and LPS plus IFN-y (in
astrocytes) induced NF«B reporter activation (Figure 3A
and B). TUDCA had an effect on different proteins down-
stream of proinflammatory stimuli that activated pathways
in glial cells (Figure 3C and D. For band densitometries
check Additional file 3). Thus, iNOS protein expression
and eukaryotic initiation factor 2 subunit alpha (elF2a)
phosphorylation at Serine 51, induced by proinflammatory
stimuli, were reduced in TUDCA-pretreated microglial
cells (Figure 3C) and astrocytes (Figure 3D). However,
phosphorylation of protein kinase RNA-activated (PKR) at
serine 451 induced by proinflammatory stimuli was not af-
fected by TUDCA in both glial cell types (Figure 3C and
D). LPS-induced NF«B p65 phosphorylation at serine 536
was reduced in microglial cells pretreated with TUDCA
(Figure 3E and F). We studied the secretion of the proin-
flammatory cytokine IFN-y, an NFkB regulated gene. LPS-
induced IFN-y secretion was completely inhibited by
TUDCA pretreatment of microglial cells (Figure 3F).
These results suggest that TUDCA affects proinflamma-
tory pathways between PKR phosphorylation and NFkB
phosphorylation.

TUDCA reduces the activated microglia in the
hippocampus of LPS treated mice

To determine whether the reduction of Iba-1 immuno-
reactivity in the hippocampus of TUDCA-treated mice
compared to mice treated only with LPS (Figure la—f)
could be due to reduction in Iba-1 positive microglial
cells, we counted the number of positive cells per mm?>
in all the experimental groups. As shown in Figure 4,
mice pretreated with TUDCA and treated with icv injec-
tion of LPS considerably reduced the number of Iba-1
positive cells in the hippocampus, compared to the ani-
mal group treated with LPS alone. These data suggest
that TUDCA reduced microglial activation in the hippo-
campus by reducing Iba-1 expression and/or reduces
LPS-induced migration of hippocampal microglial cells
or blood monocytes to neural parenchyma.

TUDCA reduces microglia cell migration in vitro

To test whether TUDCA had a direct effect on micro-
glial migration, we used an in vitro Transwell assay and
IEN-y (20 ng/mL) as cell chemoattractant. We plated
microglial cells on the upper chamber of the Transwell
and IFN-y was added to the lower chamber to build an
appropriate gradient. There was a 4- to 6-fold increase
in cell migration when treating cells with IFN-y
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Figure 4 TUDCA reduces activated microglia in the
hippocampus of LPS treated mice. Iba-1 positive cells were
counted in hippocampal sections of treated mice after 3 days of icv
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mm? of the mice hippocampus of five sections of at least six animals
per experimental group. **P <0.01; ***P <0.001.
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(Figure 5A). The effect of IFN-y on microglial migration
was completely abolished by TUDCA (Figure 5A).

Next, we examined the effect of activated astrocytes
on microglial migration. Astrocytes were either just
grown on DMEM and treated with LPS (1 pg/mL) plus
IFN-y (10 ng/mL) or pretreated with TUDCA and
treated with LPS plus IFN-y. Cells were washed twice
with warm PBS to eliminate traces of the compounds
and media were conditioned for 24 h. After this incuba-
tion period, microglia were seeded on the Transwells
and left for 24 h. Astrocytes, per se, induced a 3-fold in-
crease in microglial migration compared to controls
without cells (Figure 5B). Astrocytes treated with LPS
plus IEN-y induced release of chemoattractant mole-
cules to the media that led to an extra 2-fold increase of
microglial migration rate compared to non-treated
astrocyte conditioned media. Pre-treatment of astrocytes
with TUDCA reverted microglial migration rates to the
scores with non-activated astrocytes. These results sug-
gest that TUDCA pretreatment reduced the expression
of chemoattractants induced by the proinflammatory
pathway. To test this possibility, we studied the tran-
scriptional regulation of monocyte chemotactic protein-
1 (MCP-1), one of the most relevant chemoattractant
chemokines for microglial cells, by quantitative PCR in
microglial cells (Figure 5C) and astrocytes (Figure 5D).
In both cell types, proinflammatory pathway-induced
transcriptional upregulation of MCP-1 was reduced by
pretreating cells with TUDCA.

TUDCA reduces VCAM-1 expression in the hippocampus
of LPS treated mice

As Iba-1 positive microglial cells were reduced in ani-
mals treated with TUDCA and icv injected with LPS,
compared to the animal group treated with LPS alone
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Figure 5 TUDCA reduces microglia cell migration in vitro. Microglial migration was studied using (A) IFN-y and (B) conditioned media from
proinflammatory stimuli-activated astrocytes after 24 h exposure. (A) IFN-y was added in the lower part of the Transwell and microglial cells were
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(Figure 4), we tested whether the immunoreactivity —and probably reduced blood monocyte transmigration to

of the Vascular Cell Adhesion 1 (VCAM-1), one of the
most important adhesion proteins required for blood
monocyte transmigration across the BBB, was affected in
these mice (Figure 6). VCAM-1 was induced signifi-
cantly after icv LPS injection, as early as 24 h, and there
was a 5-fold VCAM-1 increase compared to control
animals after 3 days. This increase was reverted in both
time points when TUDCA was administered to the
treated mice (Figure 6a—f). In conclusion, TUDCA re-
duced the activation of the proinflammatory pathway

neural parenchyma.

Our results support TUDCA might be a beneficial
therapy to control neuroinflammatory process in neuro-
logical disorders.

Discussion

Although the neuroprotective effects of bile acids
have already been previously described, little is known
about the effect of TUDCA on the neuroinflammatory
pathway in glial cells. We have demonstrated that
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Figure 6 TUDCA reduces VCAM-1 expression in the hippocampus of LPS treated mice. The effect of TUDCA on vascular endothelium
activation was determined by the immunoreactive area for VCAM-1 at 1 day (a—c) and 3 days (d-f) after icv injection with LPS related to total
area in mice hippocampus. Section treatments are as follows: (a) untreated animals control for 1 day treatment, (b) animals sacrificed 1 day after
icv injection of LPS, (c) animals sacrificed 1 day after icv injection of LPS and treated with ip injections of TUDCA, (d) untreated animals sacrificed
after 3 days, (e) animals sacrificed 3 days after icv injection of LPS, and (f) animals sacrificed 3 days after icv injection of LPS and treated with ip
injections of TUDCA.*P <0.05, ***P <0.001. Scale bar represents 100 um. The results represent the mean + SD of at least five sections of six animals
per group.

microglial activation is reduced by TUDCA in an animal
model of acute neuroinflammation by LPS icv injection
(Figure 1a—f). However, we do not see this effect in as-
trocytes at day 1 and day 3 after icv of LPS (using GFAP
as a marker for activated astrocytes, Figure 1g-1). We
cannot be sure that there is no effect of TUDCA on
astrocyte activation because we have not tested other
time points after 3 days of LPS injection.

We tested whether there was a direct effect on glial
cell activation of proinflammatory stimuli, on astrocytes
and microglial cell cultures. Our in vitro results showed
that TUDCA pretreated cells decreased proinflammatory
stimuli-induced nitrite production in astrocytes and
microglial cells (Figure 2A and B). The production of ni-
tric oxide in glial cells is mediated by the iNOS enzyme.
We have demonstrated that the expression of iNOS en-
zyme is reduced at transcriptional (Figure 2C-F) and
translational level (Figure 3C and D) by this bile conju-
gate after inflammatory stimulation in glial cells. The in-
duction of iNOS expression is regulated by NFxB
proinflammatory pathway [25]. We have shown that the
expression (e.g, MCP-1 and VCAM-1) and secretion
(e.g., IFN-y) of other NF«B target genes are reduced by
TUDCA. The activation of NFkB pathway by proinflam-
matory stimuli is affected on TUDCA pretreated cells,
reducing NFkB phosphorylation (Figure 3E and F) and
the activation of the NFkB reporter (Figure 3A and B).

How is TUDCA affecting the NFxB pathway? Our results
indicate that it is not affecting PKR phosphorylation in
threonine 451 induced by proinflammatory stimuli. How-
ever, TUDCA reduces the phosphorylation in Serine 51 in
the translation initiator factor elF2a (Figure 3C and D), as
well as in NFkB p65 phosphorylation. The processes

affected by TUDCA in the proinflammatory pathway are
downstream PKR phosphorylation and upstream of NFkB
p65 and elF2a phosphorylation. In previous work, Joo et al.
[19] showed that the microglial cell line BV-2, pretreated
with a structurally similar bile salt to TUDCA, called
UDCA, reduced nitrite production induced by B-amyloid.
This effect was mediated through inhibition of IkB degrad-
ation that blocked NFkB activation. LPS-induced activation
of NF«B is PKR dependent in alveolar macrophages [29].
PKR can stimulate NF«B activity by interacting with the
IkappaB kinase complex, independently of PKR kinase ac-
tivity and PKR-induced phosphorylation of elF2a through
IKKp interaction [30]. TUDCA might inhibit PKR-IKKp
interaction or a process downstream that reduces NFkB
phosphorylation. As TUDCA reduces elF2a phosphoryl-
ation too, it might be a common process related to the
phosphorylation of both proteins. As the translational re-
pression induced by elF2a phosphorylation is required for
NFkB activation [31], TUDCA might be targeting the phos-
phorylated status of elF2a, activating serine phosphatases,
and reducing phosphorylated elF2a and NFkB.

The reduction of Iba-1 positive cells in the hippocampus
of mice treated with TUDCA plus LPS (Figure 4) suggested
that this effect could be due to a reduction in the microglial
migratory capacity. To test this possibility, we studied the
effect of TUDCA on IFN-y-induced migration in microglial
cell cultures (Figure 5A). TUDCA inhibited IFN-y-induced
migration of microglial cells to control levels. Moreover,
TUDCA inhibited the migration of microglial cells
induced by astrocytes activated by proinflammatory
stimuli (Figure 5B). As the chemokine MCP-1 is an
important regulator of microglial migration, we tested
MCP-1 expression in glial cells. TUDCA reduced MCP-1
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transcription induced by proinflammatory stimuli in
microglial cells (Figure 5C) and astrocytes (Figure 5D).

As the expression of the VCAM-1 protein in the CNS
endothelium is critically involved in blood monocyte trans-
migration into the neural parenchyma [32], we studied the
immunoreactivity for this protein in our animal model of
acute neuroinflammation. TUDCA reduced LPS-induced
VCAM-1 expression at day 1 and day 3 after LPS injection,
compared to animals treated with LPS alone (Figure 6).
This result suggests that TUDCA reduced endothelium ac-
tivation by LPS and, as a consequence, might reduce blood
monocyte migration into the CNS parenchyma.

Our results demonstrate that TUDCA reduced glial
cell activation induced by proinflammatory stimuli at
least by inhibiting NF«B activation. As TUDCA reduced
NFkB activation induced by proinflammatory stimuli, it
inhibited different key proteins involved in other NFxB
regulated processes, such as microglial migration (e.g.,
MCP-1) and endothelium activation (e.g., VCAM-1), by
proinflammatory stimuli required for blood leukocyte
transmigration to the CNS parenchyma.

Conclusions

TUDCA is a neuroprotective agent in different animal
models of stroke and neurological diseases. Nevertheless,
little is known about the anti-inflammatory properties of
TUDCA in the CNS. Our results suggest that TUDCA
reduced glial cell activation induced by proinflammatory
stimuli through inhibition of NF«kB activity. TUDCA has
a triple inhibitory effect on glial cells in the CNS paren-
chyma, inhibiting NFkB by i) reducing glial cell activa-
tion, ii) reducing microglial cell migratory capacity, and
ili) reducing the expression of chemoattractants (e.g.,
MCP-1) and vascular adhesion proteins (e.g., VCAM-1)
required for microglial migration and blood monocyte
invasion of the CNS inflammation site. Our results sug-
gest a novel TUDCA anti-inflammatory mechanism with
therapeutic implications for inflammatory diseases of the
CNS.

Additional files

Additional file 1: Non-specific binding of the anti-mouse secondary
antibody in mice hippocampus. The secondary anti-mouse biotinylated
antibody does not have any non-specific staining in mice hippocampus
in acute inflammatory injury. Section treatments are as follows: Control
(@), icv LPS (b), and icv LPS +ip TUDCA (c). Scale bar 100 pm.

Additional file 2: Development of an in vitro proinflammatory
response in microglia and astrocytes. Cell treatment with increasing
concentrations of LPS or LPS plus IFN-y for 24 h showed that LPS alone
induced nitrite secretion in microglial cells; however, astrocytes also
required the addition of IFN-y (20 ng/mL) to develop this response

in vitro. Based on these results, we decided that the optimal LPS
concentration to treat microglial cells was 200 ng/mL, because it induced
an almost two-fold increase in the secretion of nitric oxide. We also
decided to treat astrocytes with 1 pg/mL LPS + 20 ng/mL IFN-y for the

Page 12 of 13

same reason. The bar graphs represent the mean of the percentage
related to control + SD of four experiments (for both cell types) in
triplicate.

Additional file 3: TUDCA regulates the activation of NFkB
proinflammatory pathway. We studied the expression of iNOS and the
phosphorylation level of elF2a and PKR. In microglial cells, TUDCA
downregulates the phosphorylation of elF2a after 2 h of induction with
LPS (A), it does not affect the phosphorylation of PKR (C), and reduces
the iNOS expression at 24 h (E). In astrocytes, TUDCA reduces the
phosphorylation of elF2a at 24 h after LPS treatment (B), PKR
phosphorylation is not affected by TUDCA (D), and iNOS expression is
also reduced at the same time point as microglia. The bar graphs
represent the mean of the densitometry of the bands + SEM of the
phosphorylated form (for elF2a and PKR) or iNOS protein expression
normalized to the loading control (GAPDH for microglia and a-actinin for
astrocytes) for three independent experiments.
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