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Abstract

Background: Neuroinflammation plays a critical role in the pathogenesis of Alzheimer’s disease (AD) and involves
activation of the innate immune response via recognition of diverse stimuli by pattern recognition receptors (PRRs).
The inflammatory inducers and precise innate signaling pathway contributing to AD pathology remain largely
undefined.

Results: In the present study we analyzed expression levels of innate immune proteins in temporal and occipital
cortices from preclinical (no cognitive impairment, NCI, N = 22) to mild cognitive impairment (MCI, N = 20)
associated with AD pathology (N = 20) and AD patients (N = 23). We found that retinoic acid-inducible gene-I
(RIG-1) is significantly elevated in the temporal cortex and plasma in patients with MCI. In addition, primary human
astrocytes stimulated with the RIG-1 ligand 5′ppp RNA showed increased expression of amyloid precursor protein
(APP) and amyloid-β (Aβ), supporting the idea that RIG-1 is involved in the pathology of MCI associated with early
progression to AD.

Conclusion: These findings suggest that RIG-1 may play a critical role in incipient AD.
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Background
Alzheimer’s disease (AD) pathogenesis is associated with
central nervous system (CNS) inflammatory responses
[1-4]. Amyloid-β (Aβ) fibrils trigger inflammatory re-
sponses mediated by Toll-like receptors (TLR)4/TLR6 in
the presence of CD36 [1-4]. Moreover, a polymorphism
in the TLR4 extracellular domain has been reported to
be associated with protection against late-onset AD in
an Italian population [5], suggesting that a sterile inflam-
matory response could influence AD pathology through
TLR4 signaling. In addition, TLR2 has been shown to
act as a receptor for Aβ, and to trigger an inflammatory
response [6]. Activation of innate immunity in the CNS
appears to be a universal component of neuroinflamma-
tion. AD may be distinguished by a disease-specific
mechanism for induction of inflammatory responses. In
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addition, distinct pathways for production of inflammation
inducers in vulnerable brain regions where these processes
occur are potential biomarkers of AD pathophysiology.
Infection of cells by viruses and microorganisms acti-

vates innate immune inflammatory responses. The initial
sensing of infection is mediated by pattern recognition
receptors, which include TLRs, RIG-I-like receptors
(RLR), NOD-like receptors (NLR), and C-type lectin re-
ceptors (CLR). The RLR family is a RNA sensing system
that is comprised of retinoic acid inducible gene-like-I
(RIG-1), melanoma differentiation-associated gene 5
(MDA5), and laboratory of genetics and physiology 2
(LGP2). RIG-1 recognizes relatively short dsRNA (up to
1 kb) whereas MDA5 detects long dsRNA (more than
2 kb) to activate synthesis of type I IFNs, including IFN-
α and IFN-β [7]. RLRs are localized in the cytoplasm
and recognize the genomic RNA of dsRNA viruses and
dsRNA generated as the replication intermediate of
ssRNA viruses and also act as sensors of cellular damage
[8]. RLRs activate downstream signaling proteins evok-
ing type I IFN production. Type I IFNs play central roles
in antiviral responses by inducing apoptotic cell death in
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virally infected cells, rendering cells resistant to virus in-
fection, activating acquired immunity, and stimulating
hematopoietic stem cell turnover and proliferation. In
addition, type I IFNs have been implicated in the inflam-
matory response in AD [9].
We have shown recently that RLR signaling proteins

are present in CNS neurons and glial cells, and RLR signal-
ing stimulation resulted in astrocyte activation [10]. In
addition, activation of the inflammasome, an NLR innate
immune complex, contributes to age-related cognitive de-
cline in elderly animals [11]. However, limited information
is available about the role of RLRs in AD pathology or early
disease progression. Since MCI is considered a transitional
phase between normal aging (or cognition) and AD
[12-14], it is important to identify the molecular events
that characterize MCI associated with AD pathology.
Table 1 Characteristics of subjects used in the study (brain co

Characteristic NCI

Number of subjects 22

Male (%) 15 (67)

Female (%) 7 (33)

Age at death

Median (IQR) 68 (61 to 79)

Range 59 to 95

Race 20C 1H

Brain weight

Median (IQR) 1,352 (1,298 to 1,505)

Range 1,054 to 1,570

CDR score

0 (%) 22 (100)

1 (%) 0 (0)

2 (%) 0 (0)

3 (%) 0 (0)

Braak score

0 (%) 22 (100)

I (%) 0 (0)

II (%) 0 (0)

III (%) 0 (0)

IV (%) 0 (0)

V (%) 0 (0)

VI (%) 0 (0)

AD CERAD

Not present (%) 22 (100)

Possible (%) 0 (0)

Probable (%) 0 (0)

Definite (%) 0 (0)

AD: Alzheimer’s disease, CDR: clinical dementia rating, CERAD: Consortium to Establi
cognitive impairment, NCI: no cognitive impairment. Race: C = Caucasian and H = Hi
Methods
Patient consents and subjects demographics
The study was approved by the University of Miami
Miller School of Medicine institutional review board.
Written informed consent for research and brain aut-
opsy was obtained for all subjects in this study.
Neuropathologic specimens (3 millimeters) of fresh-

frozen human temporal (BA38) and occipital cortex
(BA17) were obtained from the University of Miami
Brain Endowment Bank™. The temporopolar cortex
(BA38) was sampled from frozen tissue blocks at the
level of the fundus of the temporopolar sulcus. The oc-
cipital cortex was sampled from the primary visual cor-
tex (BA17). Postmortem specimens were selected from
age-matched subjects with no cognitive impairment
(NCI), MCI, and from AD patients. The diagnosis of AD
rtex)

MCI AD

20 23

4 (19) 9 (36)

16 (81) 14 (64)

86 (70 to 91) 80 (70 to 85)

61 to 105 60 to 88

20C 1H 24C 1H

1,210 (1,043 to 1,398) 1,115 (950 to 1,215)

880 to 1,840 825 to 1,250

12 (60) 0 (0)

8 (40) 0 (0)

0 (0) 2 (9)

0 (0) 21 (91)

0 (0) 0 (0)

6 (30) 0 (0)

5 (25) 0 (0)

9 (45) 0 (0)

0 (0) 1 (4)

0 (0) 13 (56)

0 (0) 9 (40)

1 (5) 0 (0)

4 (20) 0 (0)

5 (25) 0 (0)

10 (50) 23 (100)

sh a Registry for Alzheimer’s Disease, IQR: interquartile range, MCI: mild
spanic.



de Rivero Vaccari et al. Journal of Neuroinflammation 2014, 11:67 Page 3 of 9
http://www.jneuroinflammation.com/content/11/1/67
was made using standard diagnostic criteria [15]. Sub-
jects with NCI, MCI, and AD were selected based on
their antemortem clinical dementia rating (CDR) score
one year prior to death and postmortem pathologic
evaluation for AD pathology and Braak stage. Neuro-
pathologic diagnosis was based on NIA-Regan criteria
recommendations of the Consortium to Establish a
Registry for AD (CERAD) [16] and Braak staging of
neurofibrillary tangles [17]. The diagnosis of MCI in-
cluded assessment of normal activities of daily living,
normal general cognitive function, abnormal memory
for age, and no dementia [17]. MCI patients met neuro-
pathologic criteria for possible to probable AD and
Braak stages I to IV [17]. AD cases selected for this
study included patients with a diagnosis of clinical de-
mentia and definite AD on postmortem examination
(Braak stages V or VI; Table 1).

Plasma and serum samples
All plasma and serum samples were obtained from the
University of Kentucky Alzheimer’s Disease Center Brain
Bank. The samples were obtained from patients diagnosed
Table 2 Characteristics of subjects used in the study (plasma

Group Braak stage AD (CERAD) A

NCI 0 B = CERAD Probable 92

NCI 0 No 85

NCI 1 No 90

NCI 1 No 10

NCI 1 No 84

NCI 1 No 79

MCI 2 B = CERAD Probable 91

MCI 2 B = CERAD Probable 93

MCI 2 B = CERAD Probable 80

MCI 2 A = CERAD Probable 81

MCI 2 C = Definite AD 79

MCI 4 B = CERAD Probable 77

MCI 3 B = CERAD Probable 92

AD 6 C = Definite AD 78

AD 6 C = Definite AD 84

AD 6 C = Definite AD 83

AD 6 B = CERAD Probable 85

AD 6 B = CERAD Probable 80

AD 6 C = Definite AD 87

AD 6 C = Definite AD 73

AD 6 C = Definite AD 80

AD 6 C = Definite AD 83

AD 5 C = Definite AD 91

AD: Alzheimer’s disease, Apoe, apolipoprotein e; CERAD: Consortium to Establish a R
PMI: postmortem interval.
postmortem as either age-matched controls with no cog-
nitive impairment (NCI; Braak stage (0 to I), MCI (Braak
stages II to IV), or AD (Braak stages V to VI). The section
of the study included six age-matched controls (NCI;
Braak stages 0 to I), seven MCI patients with possible AD,
determined by pathological evidence of neurofibrillary
tangles and senile plaques (Braak stages II to IV), and ten
patients who met clinical diagnostic criteria for definite
AD (Braak stages V to VI; Table 2).

Plasma and serum immunoglobulin isolation
To prevent interference of immunoglobulin G (IgG) dur-
ing immunoblot analysis of plasma and serum, IgG
was isolated using a Pierce Albumin/IgG Removal kit
(Thermo Scientific Waltham, MA, USA) according to
manufacturer’s instructions.

Immunoblotting
Occipital and temporal cortices were homogenized in
lysis buffer (20 mM Tris, pH 7.5, 150 mM NaCl, 1 mM
EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM pyro-
phosphate, 1 mM β-glycerophosphate) with protease
and serum)

ge at death Gender Apoe PMI (hours)

M 3/5 3.33

F 3/3 2.50

F 2/3 4.00

0 F 2/3 2.25

F 3/4 3.00

F 3/4 1.75

F 3/4 1.75

F 3/4 2.75

F 3/4 2.00

M 3/5 2.83

M 3/3 1.75

M 3/4 2.75

F 2/3 3.25

M 3/4 3.50

M 3/4 2.75

F 3/3 3.50

M 3/3 2.75

M 3/3 2.75

M 3/4 3.25

M 3/3 2.00

F 3/3 4.00

F 3/4 2.25

F 3/3 3.00

egistry for AD: MCI: mild cognitive impairment, NCI: no cognitive impairment,
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inhibitor cocktail (Sigma). Twenty five micrograms of
protein per sample were resolved in 10 to 20% Tris-HCl
Criterion precasted gels (Bio-Rad, Hercules, CA, USA),
transferred to polyvinylidene difluoride membranes (Ap-
plied Biosystems Waltham, MA, USA) and placed in
blocking buffer (PBS, 0.1% Tween-20, 0.4% I-Block (Ap-
plied Biosystems Waltham, MA, USA) and then incu-
bated for one hour with an antibody against RIG-1
(Anaspec Fremont, CA, USA) at a dilution of 1:1,000.
To authenticate the presumptive bands shown in
Figures 1 and 2, a RIG-1 positive control sample (Novus
Biologicals Littleton, CO, USA) was used. Immunoab-
sorption is more appropriate to demonstrate the authen-
ticity of the bands. Membranes were incubated for one
hour with primary antibodies followed by appropriate
secondary horseradish peroxidase (HRP)-linked anti-
bodies (Cell Signaling Danvers, MA, USA). Visualization
of signal was enhanced by chemiluminescence using a
Phototope-HRP detection kit (Cell Signaling Danvers,
MA, USA). To control for protein loading, immuno-
blots were stripped with Restore, Western blot stripping
buffer (Pierce Rockford, IL, USA) and blotted for β-
actin using monoclonal anti-β-actin antibody (1:8,000,
Sigma St. Louis, MO, USA). Quantification of band
density was performed using the UN-SCAN-IT gel
software, and data were normalized to β-actin. For
immunoblotting of serum and plasma 5 μg of protein
were loaded equally across all samples used to keep data
normalized.
Figure 1 RIG-1 is elevated in the temporal cortex of mild cognitive im
temporal cortex (B) and occipital cortex (C) from age-matched controls (N
expression. β-actin was used as a protein loading control and internal stan
MCI: 20 and AD: 23.
Astrocyte culture preparation and RIG-1 stimulation
Human astrocytes were grown in culture as described in
de Rivero Vaccari et al. in 2012 [10]. Primary human
astrocytes (Lonza Basel, Switzerland) were grown in
culture in complete Astrocyte Growth Medium (Lonza
Basel, Switzerland) for seven days. RIG-1 signaling was
stimulated with 5′ triphosphate double-stranded RNA
(5′ppp dsRNA, Invivogen San Diego, CA, USA) as a
specific ligand to stimulate RIG-1 signaling at different
concentrations (2 and 4 μg/ml) for 18 hours. After
stimulation, cells were harvested and immunoblotted for
RIG-1 (Anaspec Fremont, CA, USA), phosphorylated
IRF3 (Novus Biologicals Littleton, CO, USA), amyloid
precursor protein (Abcam Cambridge, MA, USA) and
amyloid-β (Epitomics Burlingame, CA, USA) expression
as described.

Stimulation of human astrocytes with 3-42 amyloid-β
Human astrocytes were grown in culture for seven days
and stimulated with 3-42 amyloid-β (Anaspec Fremont,
CA USA) at a concentration of 0.5, 1 and 3 μM for
18 hours. Then cells were harvested and immunoblotted
for expression of caspase-1 (Imgenex San Diego, CA,
USA) and RIG-1 (Anaspec Fremont, CA USA) as
described.

Statistical analysis
The primary outcome measures were levels of immune
proteins in two brain regions. The demographic, clinical
pairment (MCI) patients. Representative immunoblots (A) of the
CI), MCI and Alzheimer Disease (AD) patients analyzed for RIG-1
dard. Data are presented as mean ± SEM. *P < 0.05. N = NCI: 22,



Figure 2 RIG-1 is elevated in the plasma of mild cognitive impairment (MCI) patients. Representative immunoblots (A) of plasma (B) and
serum (C) from age-matched controls (NCI), MCI and Alzheimer Disease (AD) patients analyzed for RIG-1 expression. 5 μg of protein were loaded
for the plasma and serum samples after removal of IgG. Data presented as mean ± SEM. *P < 0.05. N = NCI: 6, MCI: 7 and AD: 10 patients.

de Rivero Vaccari et al. Journal of Neuroinflammation 2014, 11:67 Page 5 of 9
http://www.jneuroinflammation.com/content/11/1/67
and neuropathological characteristics were used to group
assignment. Association between individual protein mea-
sures and age, gender or postmortem interval were
explored in multivariate analyses to ensure that the
results were unchanged. Statistical comparisons between
groups were made using one-way ANOVA and one-tailed
Student’s t-test. The level of statistical significance was set
at * P < 0.05.

Results
RIG-1 is elevated in the temporal cortex of MCI patients
The demographic and neuropathology characteristics of
the cohort used in this section of the study are summa-
rized in Table 1. The study included 22 age-matched
controls (NCI), 20 MCI patients with pathologic evi-
dence of senile plaques and neurofibrillary tangles con-
sistent with possible or probable AD (Braak stages I to
IV), and 23 patients who met clinical diagnostic criteria
for AD and definite pathologic evidence (Braak V to VI).
Immunoblot analysis of temporal cortical samples re-
vealed an increase in RIG-1 expression in the MCI
group when compared to the NCI and AD groups
(Figure 1B). In contrast, the levels of RIG-1 in the oc-
cipital cortex were higher in the AD group than in the
NCI and MCI groups (Figure 1C). Thus, these results
show for the first time that RIG-1 is increased in the
temporopolar cortex of MCI patients.

RIG-1 is elevated in the plasma of MCI patients
To determine the levels of RIG-1 in the plasma and
serum of patients with MCI associated with AD, im-
munoglobulin G was isolated from serum and plasma
obtained from patients corresponding to the NCI, MCI
and AD groups, as described above. Figure 2 shows
that RIG-1 was significantly increased in the plasma
(Figure 2B) from MCI patients compared to the NCI
and AD groups, whereas the levels of RIG-1 in serum
(Figure 2C) did not differ among the three groups. Thus,
these results show for the first time that RIG-1 is in-
creased in the plasma of MCI patients.

3-42 Aβ increases expression of RIG-1
3-42 Aβ species have been shown to be the most preva-
lent form of Aβ peptides present in early and later stages
of human AD amyloid pathology [18]. Since we found
that levels of RIG-1 expression are elevated in the tem-
poral cortex from MCI patients when compared to end-
stage AD pathology (AD, Figures 1 and 2), we stimulated
human cortical astrocytes with 3-42 Aβ for 18 hours at
different concentrations (C, 0.5, 1 and 3 μM) to deter-
mine if Aβ peptide levels regulate the protein expression
levels of RIG-1. Interestingly, there was a concentration
dependent effect of 3-42 Aβ on the expression of RIG-1.
At 0.5 μM treatment, the RIG-1 levels did not change
when compared to the control/untreated group, whereas
at 1 μM, the levels of RIG-1 increased, and at 3 μM, the
protein levels of RIG-1 returned to basal/control levels
(Figure 3). Importantly, no morphological or toxic
changes were noticed in the cultured astrocytes at the
concentrations of 3-42 Aβ used for 18 hours (data not
shown). Thus, it appears that Aβ may be involved in
regulating the levels of the RIG-1 protein.

5′ppp dsRNA activates RIG-1 signaling in primary human
cortical astrocytes
5′ppp dsRNA has been shown to be a specific ligand of
RIG-1 signaling activation [19]. To determine whether
5′ppp dsRNA is responsible for the activation of RIG-1
in primary human cortical astrocytes, 5′ppp dsRNA
was administered to primary astrocytes in culture for



Figure 3 3-42 Aβ increases expression of RIG-1. Representative
immunoblot analysis of human cortical astrocyte lysates of cells
stimulated with 0.5, 1 and 3 μM of 3-42 Aβ for 18 hours. Non-stimulated
cells were used as a control (Contr). Cell lysates were immunoblotted
with antibodies against RIG-1. β-Actin was used as internal standard
and control for protein loading. Data presented as mean ± SEM.
*P < 0.05. N = 6.
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18 hours at two different concentrations (2 and 4 μg/ml).
As shown in Figure 4B and 4C, RIG-1 and phospho-
interferon regulatory factor 3 (P-IRF3), respectively, were
significantly elevated after the administration of 4 μg/ml of
5′ppp dsRNA, thus indicating RIG-1 signaling activation.

5′ppp dsRNA increases expression of APP and Aβ in
primary human cortical astrocytes
To identify if RIG-1 signaling stimulation is involved in
the pathogenesis of AD, astrocytes were stimulated with
the RIG-1 signaling agonist 5′ppp dsRNA (4 μg/ml) for
18 hours. Samples were then resolved by immunoblotting
using antibodies against two hallmark proteins of AD,
APP (Figure 4E) and Aβ (Figure 4F). Stimulation of RIG-1
with 4 μg/ml 5′ppp dsRNA, which activates RIG-1 signal-
ing in astrocytes, resulted in a significant elevation in the
expression of APP and Aβ when compared to the control
group, suggesting an involvement of RIG-1 signaling in
the expression of two hallmark proteins in AD pathology.

Discussion
The results of the present study demonstrate that RIG-1
is significantly elevated in the plasma and temporal
cortex of MCI patients with AD pathology whereas RIG-
1 is elevated in the occipital cortex of AD patients.
Stimulation of RIG-1 with 5′ppp dsRNA in human cor-
tical astrocytes resulted in increased expression of APP
and Aβ. Thus, these findings suggest a potential role of
the RIG-1 signaling system in incipient AD.
AD is a progressive neurodegenerative disorder char-

acterized by impaired judgment, confusion, changes in
behavior, disorientation [20], impairment of daily living,
and loss of the ability to function independently [21].
AD is expected to become more prevalent as life expect-
ancy continues to rise. It has been estimated that by
2050, the number of AD cases could double or triple to
between 11 to 16 million [22]. A major limitation in
finding therapeutic solutions for AD has been the lack of
reliable methods for early diagnosis of this devastating
disease. AD is a neurodegenerative disorder character-
ized by a progressive cognitive impairment as a conse-
quence of neuronal dysfunction and ultimately the death
of neurons. MCI is considered a transitional phase be-
tween normal aging and AD [12-14]. The amyloid
hypothesis of AD proposes that neuronal damage results
from the accumulation of insoluble, hydrophobic, fibril-
lar peptides such as amyloid-β1-42 [23-26]. These
peptides activate enzymes resulting in a cascade of sec-
ond messengers including prostaglandins and platelet-
activating factor. Apoptosis of neurons is thought to
follow as a consequence of the uncontrolled release of
second messengers. It is possible that RIG-1 signaling in
the temporal cortex is involved in the early events lead-
ing to AD pathology such as the accumulation of APP.
On the other hand, the presence of RIG-1 in the occipi-
tal cortex of AD patients may be associated with exacer-
bated production of cytokines in AD patients [27] as a
result of disease progression in later stages of AD when
the pathology spreads throughout the cortex from the
limbic to koniocortical areas.
Neuroinflammation has been considered to play a crit-

ical role in the pathogenesis of AD [28-33], but the role
of the innate immune response has not been thoroughly
examined [34,35]. Human neurons, in the absence of glia,
have the intrinsic machinery to trigger robust inflamma-
tory, chemoattractive, and antiviral responses [36]. The in-
nate immune system senses microbial and viral pathogen
and danger signals released from damaged or stressed cells
to trigger conserved intracellular signaling pathways that
drive proinflammatory responses that are critical for pro-
ductive innate and adaptive immunity. Excessive inflam-
matory responses become deleterious adding to tissue
destruction. Here we have provided evidence demonstrat-
ing that the RIG-1 is elevated in the innate immune re-
sponse in disease-affected brain areas of MCI patients.
RIG-1 signaling may be activated by small self-RNA

cleavage products generated by RNase L that stimulate



Figure 4 5′ppp dsRNA activates RIG-1 signaling and increases expression of APP and Aβ. Representative immunoblot analysis of human
cortical astrocyte lysates (A) of cells stimulated with 2 or 4 μg/ml of 5′ppp dsRNA for 18 hours. Non-stimulated cells were used as a control
(Contr). Cell lysates were immunoblotted with antibodies against (B) RIG-1 and (C) P-IRF3. β-Actin was used as internal standard and control for
protein loading. Data presented as mean ± SEM. *P < 0.05. N = 6. Representative immunoblot analysis of human cortical astrocyte lysates (D) of
cells stimulated with 4 μg/ml of 5′ppp dsRNA for 18 hours. Non-stimulated cells were used as a control (Contr). Cell lysates were immunoblotted
with antibodies against (E) APP and (F) Aβ. β-Actin was used as internal standard and control for protein loading. Data presented as mean ± SEM.
*P < 0.05. N = 6.
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signaling of RIG-1 [37] or by reactive oxygen species
(ROS) [38]. Since damaged CNS cells release small self-
nucleic acids and ROS, these molecules may play an im-
portant role in the initiation of the innate immune response
in MCI [39]. Alternatively, foreign nucleic acids, the signa-
ture of invading viruses and certain bacteria, are sensed
intracellularly and then stimulate RIG-1 signaling [7].
Other, yet to be identified ligands may be involved in the
activation of RIG-1 signaling in MCI. Moreover, our data
suggest that RIG-1 signaling activation results in increased
expression of APP and Aβ, and that in addition Aβ contrib-
utes to the expression of RIG-1. It is important to consider
that this study used samples from individuals in the MCI
group that had a slightly greater number of females and a
wider age range; thus, when interpreting these results one
must take into account the effects of gender and age [40].
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Conclusions
In this study, we used immunoblot analysis to determine
whether RIG-1 signaling stimulation results in increased
expression of Aβ and APP. In order to determine
whether human cortical astrocytes respond to RIG-1
stimulation, we treated primary cortical astrocytes in
culture with the specific RIG-1 ligand 5′ppp dsRNA and
assayed for the expression of the RIG-1 signaling pro-
teins RIG-1 and P-IRF3.
as well as APP and Aβ. The levels of these proteins

were increased upon stimulation with the RIG-1 ligand,
consistent with the hypothesis that RIG-1 signaling is in-
volved in the pathogenesis of AD. Astrocytes have been
previously implicated in the pathogenesis of AD [41-44].
In addition, we have previously shown that RIG-1 signal-
ing is involved in the activation of astrocytes [10]. Thus,
our findings further support an involvement of astro-
cytes in AD pathology.
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