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Abstract

Background: The accumulation of activated microglia is a hallmark of various neurodegenerative diseases. Microglia
may have both protective and toxic effects on neurons through the production of various soluble factors, such as
chemokines. Indeed, various chemokines mediate the rapid and accurate migration of microglia to lesions. In the zebra
fish, another well-known cellular migrating factor is fibroblast growth factor-2 (FGF-2). Although FGF-2 does exist
in the mammalian central nervous system (CNS), it is unclear whether FGF-2 influences microglial function.

Methods: The extent of FGF-2 release was determined by ELISA, and the expression of its receptors was examined
by immunocytochemistry. The effect of several drug treatments on a neuron and microglia co-culture system was
estimated by immunocytochemistry, and the neuronal survival rate was quantified. Microglial phagocytosis was
evaluated by immunocytochemistry and quantification, and microglial migration was estimated by fluorescence-activated
cell sorting (FACS). Molecular biological analyses, such as Western blotting and promoter assay, were performed to
clarify the FGF-2 downstream signaling pathway in microglia.

Results: Fibroblast growth factor-2 is secreted by neurons when damaged by glutamate or oligomeric amyloid
β 1-42. FGF-2 enhances microglial migration and phagocytosis of neuronal debris, and is neuroprotective against
glutamate toxicity through FGFR3-extracellular signal-regulated kinase (ERK) signaling pathway, which is directly
controlled by Wnt signaling in microglia.

Conclusions: FGF-2 secreted from degenerating neurons may act as a ‘help-me’ signal toward microglia by inducing
migration and phagocytosis of unwanted debris.
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Background
Neuron and glial cells are in close association with each
other and maintain physiological function in the central
nervous system (CNS). When their finely controlled inter-
actions are impaired by inflammation and stress condi-
tions, neuronal networks are damaged, which results in
the pathogenesis of several neurodegenerative diseases [1-3].
It has been proposed that apoptotic cells or degenerating
neurons release various signals to surrounding glial cells.
* Correspondence: tmizuno@riem.nagoya-u.ac.jp
1Department of Neuroimmunology, Research Institute of Environmental
Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
Full list of author information is available at the end of the article

© 2014 Noda et al.; licensee BioMed Central L
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
Dedication waiver (http://creativecommons.or
unless otherwise stated.
These signals have been recently classified as ‘find-me’,
‘help-me’, and ‘eat-me’ signals [4-8].
Microglia are resident immune cells in the CNS and

express many versatile receptors [9]. Therefore, they are
considered the main recipient of various signals from
degenerating neurons. Moreover, microglia exhibit early
and rapid responses to various stimuli; for instance, acti-
vated microglia accumulate at pathological lesions [10].
The rapid and accurate migration of microglia to lesions
is predominantly mediated by various chemokines [11].
In addition to chemokines, fibroblast growth factor
(FGF)-2 regulates cellular migration in developing brain
and in zebra fish [12-15]; however, FGF-2 has not been
directly implicated in microglial migration.
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Fibroblast growth factor, purified from pituitary extracts,
has a variety of functions, including inducing the prolifera-
tion and differentiation of various cell types, such as fibro-
blasts. Twenty-two types of FGF have been identified in
human beings, as well as in mice. FGF-2 (basic FGF), one
of the most common FGFs, has attracted attention for its
widespread activity, such as cell proliferation, carcinoma
cell invasion, neoangiogenesis, osteogenesis, and differen-
tiation of developmentally staged constituent cells of the
CNS [16-19]. FGF-2 is expressed in various tissues at low
levels, but its concentration is much higher in the brain.
Five types of FGF receptor (FGFR: FGFR1 to 5) have been
identified to date [20], but their detailed expression levels
in individual cells and mode of action in the CNS have
not been elucidated. However, the expression levels of
FGF-2 and FGFR have been shown to be up-regulated in
CNS injury [21]. Furthermore, several reports show that
astrocytes, but not neuronal cells, are the dominant FGF-
2-producing cells in the CNS [16-19].
FGF-2 plays important roles in various cells in the CNS.

Indeed, morphological change in glial cells and reactivity
in vivo [22] have been demonstrated with FGF-2 injection
into the cerebrospinal fluid. The best known FGF recep-
tor–related signaling is MAPK, which is the common
downstream signaling pathway of all FGFR subtypes. FGF-
2 is known to induce Wnt/β-catenin signaling in human
endothelial cells and developing the zebra fish brain
[12,23,24], but it is unclear whether FGF-2 also regulates
Wnt/β-catenin signaling in microglia under neurodegen-
erative conditions.
In this study, we found that FGF-2 was secreted by glu-

tamate or oligomeric amyloid β (oAβ) from damaged neu-
rons, but not from astrocytes or microglia. Degenerating
neurons produce signaling molecules that attract sur-
rounding cells including microglia. Among these signaling
molecules, we revealed FGF-2 as a predominant coordin-
ator of microglial migration. FGF-2 induced microglial
neuroprotection, migration and phagocytosis of neuronal
debris via FGFR3. Furthermore, downstream signaling
of FGF-2, especially through the FGFR3-extracellular
signal-regulated kinase (ERK) signaling pathway, led to
microglia-mediated neuronal survival. Wnt signaling
directly induced this ERK phosphorylation and microglial
migration, which were each enhanced by FGF-2 stimula-
tion. Together, our results demonstrate that FGF-2 could
be a key signaling molecule for crosstalk between degener-
ating neurons and microglia, and that the FGFR3/ERK/
Wnt signaling pathway contributes to the induction of
microglial neuroprotection.

Methods
Reagents
L-glutamate and goat immunoglobulin G (IgG), mouse
IgG, and rat IgG were purchased from Sigma (St. Louis,
MO, USA). Mouse recombinant FGF-2, mouse recombin-
ant fractalkine (FKN; the chemokine domain), CCL21,
and the FGFR (FGFR2-5) neutralizing antibodies were ob-
tained from R & D Systems (Minneapolis, MN, USA). The
MAPK inhibitors (U0126 (MEK1/2 inhibitor), SB203580
(p38 inhibitor), and SP600125 (JNK inhibitor)), PI3K in-
hibitor wortmannin, FGFR antagonist (PD173074 (pan-
FGFR blocker), SU11652 (selective FGFR1 blocker)), and
IWR-1-endo (Wnt antagonist) were purchased from Cal-
biochem (Gibbstown, NJ, USA). FGF-2 neutralizing anti-
body (aFGF-2) was purchased from Millipore (Billerica,
MA, USA), and FKN neutralizing antibody (aFKN) was
purchased as previously described [25].

Preparation of Aβ solutions
Aβ1-42 solution was prepared as previously described
[26]. Briefly, synthetic human Aβ1-42 (Peptide Institute,
Osaka, Japan) was dissolved to 1 mM in 100% 1,1,1,3,3,3-
hexafluoro-2-propanol (HFIP). The HFIP was dried and
resuspended to a concentration of 5 mM in DMSO. To
form oligomers, amyloid peptide was diluted to a final
concentration of 100 μM with Ham’s F-12, incubated at 4°C
for 24 h, and then immediately added to cultures at a final
concentration of 5 μM.

Cell culture
The protocols for animal experiments were approved by
the Animal Experiment Committee of Nagoya University.
Primary neuronal cultures were prepared from the corti-
ces of C57BL/6 mice embryos at embryonic day 17 (E17)
as described previously [27]. Briefly, cortical fragments
were dissociated into single cells in dissociation solution
(Sumitomo Bakelite, Akita, Japan), and resuspended in nerve
culture medium (Sumitomo Bakelite). Neurons were
seeded onto 12 mm polyethylenimine-coated glass cov-
erslips (Asahi Techno Glass Corp., Chiba, Japan). The
purity of the cultures was greater than 95%, as deter-
mined by NeuN-specific immunostaining [28].
Microglia were isolated from primary mixed glial cell

cultures prepared from newborn C57BL/6 mice at day
in vitro (DIV) 14 using the ‘shaking off ’ method, which
has been described previously [29]. The purity of the cul-
tures was 97 to 100% as determined by immunostaining
for the Fc receptor. Cultures were maintained in DMEM
supplemented with 10% fetal calf serum, 5 μg/ml bovine
insulin, and 0.2% glucose. Astrocytes were purified from
primary mixed glial cultures by three or four repetitions of
trypsinization and replating. The purity of astrocytes was
greater than 95%, as determined by GFAP-specific immu-
nostaining [30].

Measurement of FGF-2 levels
Secreted FGF-2 from mouse primary astrocytes, cortical
neurons, and microglia were measured using an ELISA



Noda et al. Journal of Neuroinflammation 2014, 11:76 Page 3 of 11
http://www.jneuroinflammation.com/content/11/1/76
kit (RayBiotech, Inc., Norcross, GA, USA). Neurons were
treated with L-glutamate (20 μM) or oAβ (5 μM) for 6
to 24 h at 37°C. Supernatants were then collected and
assessed for FGF-2 levels.

Western blotting
Microglial cell lysates were boiled after the addition of
sample buffer (1 M Tris-HCl, 20% sodium dodecyl sulfate
(SDS), and 2.5% glycerol). Fifty micrograms of total pro-
tein were separated on a 5 to 20% Tris-glycine SDS-
polyacrylamide gel and blotted onto Hybond-P polyvinyli-
dene difluoride (PVDF) membranes (GE Healthcare UK,
Buckinghamshire, UK). Membranes were blocked with 1%
skim milk in Tris-buffered saline containing 0.05% Tween
20 for 1 h at room temperature. Primary antibodies to
detect phosphorylated and total MAPK (Cell Signaling,
Danvers, MA, USA) were applied at the concentrations
recommended by the manufacturers. The secondary anti-
body was horseradish peroxidase-conjugated anti-rabbit
IgG (GE Healthcare), which was used at a dilution of
1:1000. SuperSignal West Pico Chemiluminescent Sub-
strate (Thermo Fisher Scientific, Rockford, IL, USA)
was used according to the manufacturer’s instructions.
The intensities of the bands were calculated using the
CS Analyzer 1.0 (Atto Corporation, Tokyo, Japan).

Wnt promoter assay
HEK293T cells were seeded one day before transfection
by FuGENE HD (Promega, Madison, WI, USA) with a
luciferase reporter vector from the Cignal TCF/LEF Re-
porter (luc) kit (Wnt promoter assay system), which was
purchased from SABiosciences (Qiagen KK, Tokyo, Japan).
After drug treatment, cells were lysed and luciferase re-
porter activity was measured using the Dual luciferase re-
porter assay kit (Promega) and a Wallac 1420 ARVOMX
(PerkinElmer Japan, Yokohama, Japan).

Evaluation of microglial phagocytosis
A microglial phagocytosis assay was performed as previ-
ously described [25]. Briefly, primary mouse cortical
neurons in 24-well plates were labeled on DIV 14 with
1 μM CM-DiI (Molecular Probes), and treated with
20 μM glutamate overnight at 37°C. After changing the
culture medium, microglia were added to these neuronal
cultures (1:2 ratio for neurons to microglia) with or
without FGF-2 for 24 h. Cells were subsequently fixed in
4% paraformaldehyde. Microglia were stained with Cy5-
conjugated rat anti-mouse CD11b monoclonal antibodies
prior to fixation. Phagocytic uptake of neuronal debris by
microglia was estimated based on the detection of DiI-
stained neuronal debris [31] in CD11b-positive microglia
(green); the phagocytosis index was calculated as the per-
centage of red staining that overlapped with green staining
(shown in yellow) among all of the microglia.
Immunocytochemistry
Cells were fixed with 4% paraformaldehyde, blocked, and
permeabilized. Neurons were stained with mouse poly-
clonal anti–MAP-2 antibody (1:1000; Chemicon, Temecula,
CA, USA) and secondary antibody conjugated to Alexa 488
(1:1000; Invitrogen). Astrocytes were stained with mouse
monoclonal anti-GFAP antibody (Sigma) and secondary
antibody conjugated to Alexa 647 (1:1000; Invitrogen).
Microglia were stained with Cy5-conjugated rat anti-mouse
CD11b monoclonal antibody (1:300, BD Pharmingen) prior
to fixation. Images were analyzed using a deconvolution
fluorescence microscope system (BZ-8000; Keyence
Corporation, Osaka, Japan). The other primary anti-
bodies included FGFRs, which were purchased from R
& D systems and used according to the manufacturer’s
instructions.
Surviving neurons were identified based on their cyto-

skeletons as previously described [28]. Viable neurons
were strongly stained with anti-MAP-2 antibodies, whereas
damaged neurons showed weaker staining. MAP-2-positive
neurons were counted in representative areas in each well.
Using five independent trials, more than 200 neurons
were evaluated in each well by a scorer who was blind to
the experimental conditions. The number of viable neu-
rons in untreated cultures was set as 100%.

Measurement of CCL3 (MIP-1a), NO, and glutamate levels
Supernatants from microglia were assessed using the
chemokine (C-C motif ) ligand 3 (CCL3) ELISA kit (R &
D Systems), and a Griess reaction for nitric oxide (NO)
detection. To measure glutamate levels, a colorimetric assay
kit (Yamasa Corporation, Tokyo, Japan) was used, as pre-
viously described [25].

MTS assay
To evaluate the viability of the cells, we used the CellTiter
96 Aqueous One Solution Cell Proliferation Assay kit
(Promega) and followed the manufacturer’s instructions.

Microglial migration assay
Microglial migration was performed using Transwell
plates with 3 μm pore polyethylene terephthalate (PET)
membrane filters (BD Biosciences). We placed 800 μl
of neuronal-conditioned medium or microglial culture
medium treated with drugs into the lower chamber of
the Transwell plate. Membrane filters were then put in
vacant wells, and 200 μl of microglia-containing medium
(1.0 × 105 cells/well) was carefully added on top of the fil-
ter membrane to avoid bubbles. These plates were incu-
bated for 24 h. Cells that migrated into the lower wells
were counted by fluorescence-activated cell sorting
(FACS). Chemokine-treated T cells (combination of FKN
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and CCL21 (100 nM each)) were used as positive controls
for this method, as previously described [32].

RT-PCR
Total RNA was extracted from astrocytes, microglia, and
neurons using an RNeasy Mini Kit (Qiagen, Tokyo,
Japan). A first-strand cDNA library was obtained using
SuperScript II (Invitrogen, Carlsbad, CA) and oligo (dT)
12-18 (Invitrogen) as the first-strand primer. Negative
control reactions were performed using the same system
after heat denaturation of reverse transcriptase. RT-PCR
was used to amplify transcripts encoding mouse FGF-2,
each receptor subtypes and glyceraldehydes-3-phosphate
dehydrogenase (GAPDH), using 0.1 μg of first-strand
cDNA, Blend Taq polymerase (Toyobo Co., Osaka, Japan),
and oligonucleotide primers (Table 1; except for previ-
ously described primers for GAPDH [25]).

Statistical analysis
Statistically significant differences between experimental
groups were determined by one-way analysis of variance
(ANOVA) followed by Dunnett’s or Tukey’s tests for mul-
tiple comparisons. Statistical analysis was performed using
the software program Prism 4 for Windows (GraphPad
Software, San Diego, CA, USA). P values less than 0.05
were considered significant.

Results
Expression of FGFRs in primary neurons and glial cells
We first examined the expression of FGFRs in the CNS.
According to our immunocytochemical (Figure 1A) and
RT-PCR (Figure 1B) data, all FGF receptors (FGFR1 to 5)
were expressed in astrocytes. FGFR1 to 4 were expressed
in neurons and microglia. The expression of FGF-2 mRNA
was detected in neurons and astrocytes.
Table 1 Oligonucleotide primers used in RT-PCR

Gene Sequence (5′ to 3′) Expected
size (bp)

FGF-2 sense
antisense

5′-AGCGGCTCTACTGCAAGAAC 371

5′-AGCAGACATTGGAAGAAACAGT

FGFR1 sense
antisense

5′-GTTGGGCTCTGTCATCATCTAT 522

5′-GCGTACTCCACAATGACATAAA

FGFR2 (IIIb, IIIc)
sense antisense

5′-CTCATCCTGCTGGGTCTGAG 748

5′-AGGAGTAGCAGCTGATGTGAC

FGFR3 sense
antisense

5′-CCTGTGTAGTTGAGAACAAGTTT 625

5′-GTGTTGGAGTTCATAGAGGAGT

FGFR4 sense
antisense

5′-GAGGTCTTGTATCTGAGGAACG 651

5′-GTTCTTGTGTCTTCCGATTAGC

FGFR5 sense
antisense

5′-ATGATATTAGTCCAGGGAAGG 366

5′-GGATTACATCCACTTTGTAGGT
Glutamate or oAβ enhances FGF-2 release from neurons,
and FGF-2 induces microglial neuroprotection via FGFR3
FGF-2 is widely expressed in the CNS, especially in as-
trocytes, while FGF-5, FGF-8, and FGF-9 are synthesized
by neurons [33]. FGF-2 is reported to be produced by
cerebellar granule neurons in co-cultures with microglia,
and to abrogate quinolinic acid–mediated neurotoxicity
[31]. In this study, we investigated whether cortical neu-
rons could produce FGF-2 in response to neurotoxic
stimuli. We found that treatment for 6 h and 24 h with
20 μM glutamate or 5 μM oAβ significantly induced
FGF-2 release from cortical neurons (Figure 2A). Astro-
cytes typically secrete FGF-2; however, various stimuli
including glutamate, oAβ, lipopolysaccharide (LPS), and
other proinflammatory cytokines did not enhance FGF-2
secretion by astrocytes (Figure 2B). Furthermore, FGF-2
secretion by microglia was barely detectable (Figure 2B).
Next, we determined whether FGF-2 might exert micro-

glial neuroprotection. As shown in Figure 3A,B, treatment
with 20 μM glutamate induced apparent neuronal cell
death in neuron-microglia co-cultures. The addition of
100 ng/ml FGF-2 significantly ameliorated neurotoxicity,
while an anti-FGF-2 antibody canceled the effect. The
addition of rat IgG (isotype-matched control for anti-
FGF-2 antibody) had no effect on cell survival rate. In
neuronal cultures, neuronal cell death was not ameliorated
by FGF-2 treatment. There seems to be little difference
in neuronal survival against Glu-induced excitotoxicity
with or without microglia. We considered that the se-
creted level of FGF-2 from Glu-treated neurons might
not reach the effective dose to enhance the neuronal
survival. In addition, FGF-2 treatment suppressed the pro-
inflammatory response of activated microglia through the
inhibition of neurotoxic molecules, such as glutamate and
NO (Additional file 1: Figure S1A,B). FGF-2 had no effect
on microglial proliferation (Additional file 1: Figure S1C).
FGF-2 dose-dependently enhanced the neuronal survival
in the presence of microglia (Additional file 1: Figure S2).
To investigate the underlying mechanism of neuropro-

tection by FGF-2 in microglia, we used FGFR inhibitors
and neutralizing antibodies. The neuroprotective effect of
100 ng/ml FGF-2 was completely canceled by treatment
with pan-FGFR inhibitor PD173074, or anti-FGFR3 neu-
tralizing antibody. Conversely, neutralizing antibodies for
FGFR1, 2, 4, and 5, selective FGFR1 blocker SU11652, and
isotype control of neutralizing antibodies had no effect on
neuronal survival (Figure 3C,D).
CCL3 (MIP-1α) is reported to be a downstream target

of FGF-2-induced FGFR3 signaling [34]. FGF-1-induced
FGFR3 targets include the Na+ channel, type III inter-
mediate filament peripherin, and cell surface glycoprotein
Thy1 [34,35]. We confirmed that FGF-2 leads to the in-
duction of CCL3 expression in microglia. Using ELISA,
CCL3 expression was increased by FGF-2 in a dose-
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Figure 1 Expression of FGF-2 and FGFRs in primary neurons and glial cells. (A) Expression of FGFRs as assessed by immunocytochemistry:
FGFRs (green), MAP-2 (mature cortical neurons; red), CD11b (microglia; red), and GFAP (astrocytes; red). Scale bars, 10 μm in neurons and microglia,
and 50 μm in astrocytes. (B) Expression of FGF-2 and FGFR1 to FGFR5 mRNA in mature cortical neurons (Neu), microglia (Mi) and astrocytes (Ast), as
assessed by RT-PCR. GAPDH expression is used as a control.
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dependent manner (Additional file 1: Figure S3). While
CCL3 is known as a proinflammatory chemokine, FGF-2
did not activate microglia in this study.

FGF-2-induced microglial neuroprotection via ERK MAPK
and ERK activation is directly regulated by Wnt signaling
To elucidate the signaling pathway of microglia-mediated
neuroprotection, we examined the effect of several kinase
inhibitors on neuronal survival. MAPKs (ERK, p38, and
JNK) and phosphoinositide-3 kinase (PI3K) are known as
common downstream signaling pathways of FGFRs. We
found that inhibition of ERK by U0126 significantly sup-
pressed FGF-2-induced microglial neuroprotection. Other
kinase inhibitors (p38, JNK, MAPK, and PI3K inhibitors)
did not affect neuroprotection (Figure 4A,B). U0126 might
affect both microglia and neurons in the co-culture model.
The effects of this signaling on neurons cannot be denied.
As shown in Figure 4C, FGF-2 increased ERK phosphoryl-
ation in microglia, which peaked within 15 min.
In developmental morphogenic stages and angiogenesis,

the coordinated action of Wnt/β-catenin and FGF signal-
ing has been reported [23,24,36]. It has also been reported
that mouse primary microglia express the Wnt receptors
Frizzled and LDL-related protein 5/6 [37]. Therefore, to
clarify the interaction of Wnt signaling with FGF in
microglia, we examined the effect of Wnt inhibitor on
ERK phosphorylation by FGF-2. Pre-treatment of Wnt an-
tagonist IWR-1-endo showed remarkable inhibition of
ERK activation (Figure 4D). FGF-2 also directly increased
TCF/LEF promoter activity, which is the downstream tar-
get of the Wnt signaling pathway. The FGF-2-induced
TCF/LEF promoter activity was completely abrogated by
treatment of U0126 or IWR-1-endo (Figure 4E).
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Figure 2 The detection of FGF-2 in primary neurons and glial cells.
(A) Neurons were treated with glutamate (Glu) or oligomeric amyloid
β1-42 (oAβ) at the indicated concentrations. FGF-2 concentrations in
the neuronal culture supernatants were measured using ELISAs at each
time point. Results show the means with SEM (n = 3). Significant
differences compared with untreated samples. *: P < 0.05, **: P < 0.01
(one-way ANOVA with Dunnett’s post-hoc test). (B) Astrocytes, microglia
and neurons were treated with Glu (20 μM) or oAβ (5 μM) for 6 h. Other
treatments of astrocytes (6 h) were LPS (1 μg/ml), TNF-α (20 ng/ml),
IFN-γ (10 ng/ml), and a combination of all three. ELISA was then
performed to detect FGF-2 concentration in the culture supernatants.
The results show the means with SEM (n = 3). Significant
differences compared with untreated samples in each cell type.
*: P < 0.05, ***: P < 0.001, n.s.: not significant (one-way ANOVA
with Dunnett’s post-hoc test).
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FGF-2 increased microglial migration and clearance of
neuronal debris via FGFR3 and Wnt pathway signaling
We next examined the effect of FGF-2 on microglial mi-
gration and phagocytosis activity. We established a micro-
glial migration assay, and assessed migration via the
Transwell cell culture system. Microglial migration was
significantly increased by CCL21, CCL21 plus FKN, and
FGF-2 (Additional file 1: Figure S4). We also confirmed
the availability of this system in our previous report [32].
T cells from mouse lymph node showed drastic migration
by CCL21 plus FKN (Additional file 1: Figure S4B).
Neuronal-conditioned media treated with 20 μM glutamate
for 24 h can significantly attract microglia (Additional file 1:
Figure S4C). As shown in Figure 5A, while fresh neur-
onal media did not induce microglial migration, un-
treated neuronal-conditioned media significantly enhanced
migration. Furthermore, it has been determined that
neuronal-conditional media treated with 20 μM glutamate
for 24 h is a more potent attractant to microglia. This ef-
fect was canceled by aFGF-2, but not aFKN (Figure 5A).
We also revealed that addition of 100 ng/ml FGF-2 to the
lower part of the Transwell system significantly enhanced
microglial migration (Figure 5B). The effect was canceled
by pan-FGFR inhibitor PD173074 and aFGFR3 neutraliz-
ing antibody.
Wnt signaling maintains cell migration in the develop-

mental stages. Therefore we next examined whether Wnt
signaling could also mediate microglial migration. Wnt
antagonist IWR-1-endo dose-dependently attenuated the
induction of microglial migration by FGF-2 (Figure 5C).
By contrast, ERK MAPK pathway was not directly con-
cerned with microglial migration (Additional file 1:
Figure S4D). Furthermore, FGF-2 enhanced microglial
phagocytosis of neuronal debris induced by glutamate
toxicity (Figure 5D,E). We examined which type of FGFR
is involved in the FGF-2-induced phagocytosis, and found
that pan-FGFR inhibitor PD173074 and anti-FGFR3 neu-
tralizing antibody suppressed microglial phagocytosis of
neuronal debris (Figure 5D,E).

Discussion
Our results indicate that FGF-2 is released from degenerat-
ing neurons and induces microglial migration and neuropro-
tection, which are mediated through the FGFR3-Wnt-ERK
signaling pathway. Neurons were fine responders of glutam-
ate and oAβ, and then allowed the release of FGF-2 in rela-
tively short times. FGF receptors are expressed in neurons
and glial cells. FGFR3, in particular, is activated by FGF-2
via the ERK MAPK-dependent signaling pathway in
microglia. The other FGF, FGF-19, is reported to nega-
tively regulate NFκB via FGFR4 [38]. In the developmental
morphogenic stages and angiogenesis, coordinated action
of Wnt/β-catenin and FGF signaling has been reported
[12,23,24,39]. Recently, expression of Wnt receptors
Frizzled and LDL receptor-related protein 5/6 has been
reported in mouse primary microglia [37]. In this study,
we revealed that FGF-2 directly controlled the Wnt sig-
naling pathway in mouse primary microglia, and that
Wnt signaling could also directly regulate microglial mi-
gration induced by FGF-2. FGF-2 and the extracellular
matrix protein Anosmin-1 have dynamic roles in cellular
proliferation and migration from the subventricular zone
in CNS development [40]. FGF-2 enhances the prolifera-
tion and differentiation of neuronal stem cells. Anosmin-1
and FGF-2 could possibly be diagnostic markers in mul-
tiple sclerosis (MS), because their expression level varies
between different types of MS [16]. In experimental auto-
immune encephalomyelitis, the animal model of MS,
FGF-2 may act as a remyelinating and nerve fiber pre-
serving agent [41]. Therefore, FGF-2/Wnt signaling has
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Neurons were stained with anti-MAP-2 antibody (green), and microglia were stained with a Cy5-conjugated anti-CD11b antibody (red). Scale bars,
50 μm. (B) The neuronal survival rate was calculated as the percentage of intact neurons in the treated sample relative to the untreated sample.
The columns indicate mean with SEM from three independent experiments. * indicates significant differences compared with untreated neuronal
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ANOVA with Tukey’s post-hoc test).
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a potential to regulate cellular proliferation and migration
to maintain adult CNS function.
Localized delivery of FGF-2 and brain-derived neuro-

trophic factor (BDNF) to the lesioned hippocampus in-
creases neurogenesis and reduces epileptogenesis in a rat
model of epilepsy [42]. The overexpression of FGF-2/
BDNF also attenuates neuroinflammation through sup-
pression of IL-1β [43]. Moreover, FGF-2 gene delivery
restores hippocampal functions in an Alzheimer’s dis-
ease mouse model [44]. FGF-2 has a deep connection
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with tumorigenicity. CD44-mediated migration of hu-
man inflammatory macrophages into the extravascular
compartment depends on binding of FGF-2 to the
CD44 receptor [45]. Therefore, it is possible that FGF-2
has functional association with a new counterpart other
than FGFRs.
The brain concentration of FGF2 is reported to be

around 30 to 120 ng/mg [46]; however, some reports
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show that the concentration is around 50 pg/ml [47,48].
In a future study, we will attempt to clarify the effect of
100 ng/ml FGF2 in vivo. Taken together, the present
study shows that FGF-2 from damaged neurons functions
as help-me and eat-me signals. Targeting the FGF-2/
FGFR3 pathway may give us clues for future therapeutic
strategy against neurodegenerative diseases.

Conclusions
The present study shows that FGF-2 could be a key signal-
ing molecule for crosstalk between degenerating neurons
and microglia, and the FGFR3/ERK/Wnt signaling path-
way in microglia contributes to the induction of neuropro-
tective function including migration and phagocytosis of
neuronal debris. Therefore, FGF-2 from damaged neurons
functions as help-me and eat-me signals to microglia.

Additional file

Additional file 1: Figure S1. FGF-2 inhibited the release of neurotoxic
molecules from activated microglia. Figure S2. FGF-2 dose-dependently
enhanced neuronal survival in the presence of microglia. Figure S3.
FGF-2 increased CCL3 (MIP-1α) production in microglia. Figure S4. Effects
of FGF-2 on microglial migration.
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