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Abstract

Background: Cerebral Malaria (CM) is a diffuse encephalopathy caused by Plasmodium falciparum infection. Despite
availability of antimalarial drugs, CM-associated mortality remains high at approximately 30% and a subset of
survivors develop neurological and cognitive disabilities. While antimalarials are effective at clearing Plasmodium
parasites they do little to protect against CM pathophysiology and parasite-induced brain inflammation that leads
to seizures, coma and long-term neurological sequelae in CM patients. Thus, there is urgent need to explore
therapeutics that can reduce or prevent CM pathogenesis and associated brain inflammation to improve survival.
Neuregulin-1 (NRG-1) is a neurotrophic growth factor shown to protect against brain injury associated with acute
ischemic stroke (AIS) and neurotoxin exposure. However, this drug has not been tested against CM-associated brain
injury. Since CM-associated brain injuries and AIS share similar pathophysiological features, we hypothesized that
NRG-1 will reduce or prevent neuroinflammation and brain damage as well as improve survival in mice with
late-stage experimental cerebral malaria (ECM).

Methods: We tested the effects of NRG-1 on ECM-associated brain inflammation and mortality in P. berghei ANKA
(PbA)-infected mice and compared to artemether (ARM) treatment; an antimalarial currently used in various
combination therapies against malaria.

Results: Treatment with ARM (25 mg/kg/day) effectively cleared parasites and reduced mortality in PbA-infected
mice by 82%. Remarkably, NRG-1 therapy (1.25 ng/kg/day) significantly improved survival against ECM by 73%
despite increase in parasite burden within NRG-1-treated mice. Additionally, NRG-1 therapy reduced systemic and
brain pro-inflammatory factors TNFalpha, IL-6, IL-1alpha and CXCL10 and enhanced anti-inflammatory factors,
IL-5 and IL-13 while decreasing leukocyte accumulation in brain microvessels.

Conclusions: This study suggests that NRG-1 attenuates ECM-associated brain inflammation and injuries and may
represent a novel supportive therapy for the management of CM.

Keywords: Neuregulin-1 (NRG-1), Pro-inflammatory, Anti-inflammatory, Blood–brain barrier (BBB), Inflammation,
Plasmodium berghei ANKA (PbA), Adjunctive therapy, Malaria, Cerebral malaria (CM), Brain injury
Background
Nearly 300 million persons each year are infected with
Plasmodium falciparum (P. falciparum) infection, a sub-
set of whom may develop severe anemia or a diffuse
encephalopathy known as cerebral malaria (CM) [1]. CM
accounts for 110,000 deaths annually in children and one
in four survivors develop neurological complications
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(cortical blindness, epilepsy, and monoparesis) and cog-
nitive disability (speech deficits, working memory, and
executive function disability) [2-8]. Despite appropriate
antimalarial treatment, mortality associated with CM may
be as high as 30% in adults and 20% in children [7,9-11].
Thus, targeting parasite in acute disease is not sufficient
to ameliorate persistent neurological sequelae and mortal-
ity associated with CM. Understanding immunopatho-
genic features such as brain inflammation and injury
leading to fatal CM have led to the identification and
development of small molecules or immunotherapeutics
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that may be used to stabilize the blood–brain barrier
(BBB) and ameliorate CM-associated brain damage and
mortality [12-14]. However, most of these interventions ad-
ministered as prophylactics to prevent development of
neurological signs failed to reverse CM-associated brain in-
juries or resulted in minimal therapeutic benefit, whereas
others were deleterious [13,14]. The use of prophylactic
strategies may not be clinically relevant as most patients
who present to clinics have neurological abnormalities or
clinical signs of CM. It is therefore important for new
therapeutic strategies to ameliorate complications associ-
ated with late stages of CM to improve clinical outcomes
while reducing risk of neurological sequelae in surviving
CM patients. Clinical studies in human CM and murine
experimental CM (ECM) indicate an exaggerated activa-
tion and dysregulation of host inflammatory processes
including brain endothelial activation, and disruption of
the BBB during the pathogenesis of the disease [15-18]. In
fact, extensive research has linked strong host pro-
inflammatory response to malaria disease states [19-21]
and genetic studies have identified several immune regula-
tory and effector loci that possess mutations associ-
ated with susceptibility and resistance to human severe
(cerebral) malaria [22-24]. Efforts underway to identify
candidate therapeutics against CM have produced promis-
ing candidates including artovastatin, a statin with strong
anti-inflammatory effects that effectively attenuates ECM
[25-27]. Thus, interventions aimed at modulating the
deleterious hyper-inflammatory response to malaria infec-
tion while protecting against brain damage will potentially
bolster therapeutics against severe malaria.
Neuregulin-1 (NRG-1) is a member of the neuregulin

family of growth factors that promotes survival and
function of neuronal cells [28-31]. Studies have shown
that NRG-1 attenuates tissue damage and immunopa-
thology in animal models of acute brain injury (ABI)
such as acute ischemic stroke (AIS), traumatic brain
injury (TBI), and nerve agent poisoning [32-37]. There
are clear pathophysiological similarities between CM
and AIS, including an exaggerated host expression of
pro-inflammatory factors that lead to increased vascular
endothelial activation with upregulation of adhesion
molecules, glial activation, focal inflammation, activation
of apoptotic pathways and eventually brain damage and
death [38-40]. Exogenous treatment with NRG-1 has
been shown to significantly alter or inactivate inflamma-
tory pathways associated with tissue damage during ische-
mic episodes [36]. Furthermore, NRG-1 reduces brain
inflammation via inhibition of immune and oxidative
stress mediators involved in the pathogenesis of focal
ischemic brain damage [32]. Although NRG-1 has been
studied extensively in AIS it has yet to be studied as a
potential intervention against cerebral malaria. Using the
Plasmodium berghei (P. berghei) ANKA (PbA) model of
ECM, we tested the hypothesis that NRG-1 will reduce or
prevent ECM-associated inflammation and improve sur-
vival in mice with late stage ECM. We show here that
NRG-1 (1.25 ng/kg/day) significantly reduces ECM-asso-
ciated brain and systemic inflammation and improves
survival in mice with late-stage ECM.

Methods
Infection of mice with P. berghei ANKA
Six- to eight-week-old C57BL/6 J mice (Charles Rivers
Laboratories, Wilmington, MA, USA) were housed in
groups of four per cage on a 12 hr light/12 hr dark cycle
with access to food ad libitum and water. Mice were
allowed to acclimatize to their new environment for 3
days before experimentation. All experimental proce-
dures were reviewed and approved by the Morehouse
School of Medicine Institutional Animal Care and Use
Committee (Permit Number 09–06). Procedures were
performed with strict adherence to national regulations
on animal care and experimentation with the use of Care
of Laboratory Animal Resources (CLAR) guidelines to
minimize pain. PbA was obtained from MR4, Manassas,
VA, USA (BEI Resources Repository, NIAID, NIH; MR4
number MRA-311, deposited by TF McCutchan). Para-
sites were propagated in C57BL/6 J mice and a fresh
blood sample from a passage mouse was used for each
experiment. Experimental groups of mice were infected
via intraperitoneal (i.p.) injection of 106 PbA-infected
red blood cells (pRBCs). Mice were sham-injected with
106 non-infected red blood cells (RBCs).

Clinical assessment of ECM
All animals were checked several times daily for mortal-
ity and ECM symptoms. For better estimation of the
overall clinical status of mice during infection, simple
behavioral tests (transfer arousal, locomotor activity, tail
elevation, wire maneuver, contact righting reflex, and
righting in arena) adapted from the SmithKline Beecham,
Harwell, Imperial College, Royal London Hospital, pheno-
type assessment (SHIRPA) protocol [41-43] were used.
Infected mice display signs of ECM by day 5 or 6 post
infection [41]. ECM is defined as the presentation of one
or more signs of neurological deficit including ataxia,
convulsions, limb paralysis, poor righting reflex, roll-over
and coma [41]. Presentation of these signs were evaluated
and scored to better assess severity of ECM in mice [44].

Assessment of NRG-1 and artemether treatment in mice
infected with or without PbA
Mice were selected and randomized into treatment groups
after diagnosis with ECM on day 5 to 6 post infection. For
survival experiments, 11 mice per group were used to
obtain significant statistical data. To determine the thera-
peutic benefit of NRG-1 on ECM-associated brain damage
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and mortality and to compare NRG-1 with artemether
(ARM) treatment, PbA-infected mice were treated daily via
i.p. injection with 50-μl doses of NRG-1 (1.25 ng/kg/day,
EGF-like domain, R & D Systems, Minneapolis, MN, USA)
[NP_039250] or artemether prepared in coconut oil
(25 mg/kg/day, Sigma-Aldrich, St Louis, MO, USA), from
day 6 to day 9 post infection. PbA-infected mice treated
daily with 50 μl saline solution (i.p.) from day 6 to day 9
post infection were used as the control. Mice were
checked several times daily for mortality and signs of
ECM neurological symptoms such as ataxia, loss of reflex
and hemiplegia. All murine ECM experiments were termi-
nated 19 days after PbA infection with animals euthanized
accordingly. Parasite load was monitored periodically
(beginning on day 5 post infection) by Giemsa staining
of thin blood smears and assessed by counting the number
of pRBCs per 1,000 erythrocytes.

Assessment of leukocyte accumulation in brain
parenchymal vessels during murine ECM in PbA-infected
mice by H&E staining
To determine the effect of NRG-1 and ARM treatment
on leukocyte accumulation in brain parenchymal vessels
during murine ECM pathogenesis, PbA-infected C57BL/
6 J mice were anesthetized with isoflurane inhalation
and euthanized on day 5 and day 11 post infection. Mice
were perfused with 10 ml of cold sterile phosphate-
buffered saline to clear vessels of blood prior to collection
of brain tissue (three mice per time point per treatment
group). Whole brains were stored in formalin for fixation,
embedded in paraffin, and sectioned at 10 μm. Sagittal
sections of the brain (day 5 and day 11 post infection)
were fixed in 4% paraformaldehyde and blocked with
horse serum for 30 minutes at room temperature. Sections
were stained with H&E and leukocytes in the blood vessels
were quantified using an ocular grid calibrated with a ×
400 magnification in an Axioskop 2 Plus microscope (Carl
Zeiss Microscopy, Thornwood, NY, USA). The whole area
of each section was similarly quantified with the ocular
grid calibrated at × 40 magnification. Digital photos were
captured by a high-resolution AxioCam HRc camera (Carl
Zeiss Microscopy).

Determination of the effect of NRG-1 on mRNA
expression of factors involved in vascular endothelial
activation and BBB integrity
To determine the effect of NRG-1 on mRNA expression
of factors involved in vascular endothelial activation and
BBB integrity, whole brain tissue from PbA-infected
mice treated with either saline, ARM or NRG-1 (three
mice per group per time point) was collected and
homogenized in Trizol reagent (Life Technologies,
Gaithersburg, MD, USA) and total RNA was extracted
using RNeasy Mini Kit (Qiagen, Valencia, CA, USA).
Briefly, chloroform (0.2 ml) was added to the homogen-
ate, and the lysate mixed thoroughly. After centrifuging
at 12,000 × g for 20 minutes at 4°C, the aqueous layer
was transferred to a new tube. RNA was precipitated
with 500 μl of isopropanol and pelleted by centrifuging
at 12,000 × g for 20 minutes at 4°C. RNase-Free DNase
Set (Qiagen) was used according to the manufacturer’s
instructions to remove contaminating genomic DNA.
DNase-treated RNA samples were subsequently stored
at −80°C until ready to use. Reverse transcription of
RNA samples was performed prior to quantitative PCR.
cDNA was synthesized from up to 2 μg of total RNA
iScript™ cDNA Synthesis Kit (Bio-Rad Laboratories,
Hercules, CA, USA) using Multigene Gradient Thermal
cycler (Labnet International, Inc. Edison, NJ, USA). The
resulting cDNA was diluted 1:10 by addition of 180 μl of
distilled water for quantitative PCR analysis. The primer
sequences used for quantitative PCR are described in
Table 1.
The quantitative real-time PCR assay was performed

using Bio-Rad C1000 thermal cycler (Bio-Rad Laboratories).
Approximately 20 ng of cDNA was used in each 25 μl
PCR reaction using the Bio-Rad iQ™ SYBR® Green
Supermix (Bio-Rad Laboratories, Hercules, CA) and
50 μM of each primer. After a 15-minute incubation at
95°C, amplification was achieved by 39 cycles of a 15-s
denaturation incubation at 95°C, followed by a 30-s an-
nealing incubation at 55°C and 30-s extension incubation
at 72°C. The identity and purity of the PCR product was
confirmed by using dissociation curves and by checking
the melting temperature of the PCR product, independ-
ently of the PCR reaction. To determine the relative
amount of target cDNA present, the cycles to threshold
(Ct) values of the target genes were compared with the
basal expression of the housekeeping gene, hypoxanthine
guanine phosphoribosyltransferase (HPRT). The average
amount of HPRT present in each mouse group was used
to normalized the quantity of target mRNA sequence
against total RNA in each reaction. The differences in Ct
values between HPRT and target gene of day 11 after in-
fection of each group were compared with day 5 after
infection-untreated control samples to determine the rela-
tive change in mRNA expression.

Assessment of NRG-1 effects on expression of immune
determinants of CM severity
To determine the effect of NRG-1 and ARM treatment
on cytokine/chemokine levels, serum collected from
blood harvested via cardiac puncture at pre-treatment
(day 0 and day 5) and post treatment (day 11) from
anesthetized mice (three to four mice per treatment
group per day; pooled) was measured for levels of TNFα,
IL-1α, IL-6, chemokine (C-X-C motif) ligand 10 (CXCL10),
granulocyte colony stimulating factor (G-CSF), IL-5, and



Table 1 Primer sequences used

Target gene or mRNA Primer 5′ - 3′

Forward Reverse

HPRT GCTTTCCCTGGTTAAGCAGTACA CAAACTTGTCTGGAATTTCAAATC

ICAM-1 GCCTCCGGACTTTCGATCTT GTCAGGGGTGTCGAGCTTTG

ANG-1 ATGCTGTTCAAAACCACACG TTTCAAGTCGGGATGTTTGAT

ANG-2 ATGTGGTGCAGAACCAGACA GCAGCTCGAGTCTTGTCGTC

C/EBPβ TCTACTACGAGCCCGACTGC AGGTAGGGGCTGAAGTCGAT
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IL-13. Pooled serum samples were evaluated using
Milliplex MAP mouse Cytokine/Chemokine bead-based
immunoassay (Millipore, Billerica, MA, USA) coupled with
the Luminex 200™ system (Austin, TX, USA) according to
the manufacturer’s protocol. Samples were tested at a 1:2
dilution using optimal concentrations of standards and
antibodies according to the manufacturer’s protocol.

Statistical analysis
Results were expressed as means ± SD from at least
three separate experiments performed in triplicate unless
otherwise stated. Differences between means among the
treatment groups were analyzed by using the Student t-
test or one-way analysis of variance (ANOVA) with
Holm-Sidak post-test methods where appropriate. Dif-
ferences in survival among treatment groups were ana-
lyzed with Mantel-Cox log rank test. A P-value less than
0.05 was considered significant. Statistical analysis was
performed with SigmaPlot (Version 10.0) with SigmaStat
(Version 3.5) software for windows.

Ethics statement
This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health.
The Institutional Animal Care and Usage Committee
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Figure 1 Neuregulin-1 (NRG-1) therapy protects 73% of mice from fat
berghei ANKA (PbA)-infected mice were treated intraperitoneally from day
artemether (ARM) at 25 mg/kg/day (n = 11). (A) Survival improved after NR
rank test). (B) Parasite load was measured as the number of parasitized red bl
three independent infections. Results shown are mean ± SD.
(IACUC) of Morehouse School of Medicine (Permit
Number 09–06) approved all protocols.

Results
NRG-1 therapy attenuates ECM-associated mortality
To test whether NRG-1 improves survival from ECM,
PbA-infected C57BL/6 J mice were treated with re-
combinant human NRG-1 (1.25 ng/kg/day) or ARM
(25 mg/kg/day). ECM-associated mortality was observed
between days 5 and 12 post infection in PbA-infected
mice sham-treated with saline, with mortality between
30% and 100% (Figure 1A). ARM treatment reduced mor-
tality by 82% (P <0.001, Mantel-Cox, log rank) compared
to saline treatment (Figure 1A). Mice treated with NRG-1
showed significantly reduced mortality at 73% (P <0.01,
Mantel-Cox, log rank) compared to saline treatment
(Figure 1A).
NRG-1 effect on parasite load was assessed before

and after treatment. Parasite load in saline-treated
mice increased markedly from day 5 to day 11 post
infection by which time all the mice had been eutha-
nized (Figure 1A and B). ARM treatment significantly
reduced parasite load in PbA-infected mice as expec-
ted from 21% on day 5 post infection to <5% by day 11 post
infection when compared with saline-treated mice on day
11 post infection, P <0.001 (Figure 1B). NRG-1-treated
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mice demonstrated improved survival despite no significant
difference in parasite load compared to saline-treated mice
(Figure 1A and B) suggesting that NRG-1 mediated attenu-
ation of ECM was not via the reduction of parasite burden.

NRG-1 treatment reduces leukocyte accumulation in brain
microvasculature of PbA-infected mice
Marked leukocyte adherence and accumulation in brain
vessels is linked to brain inflammation and is critical for
murine ECM pathogenesis [41,45]. To determine the
effect of NRG-1 therapy on brain inflammation in PbA-
infected mice, the number of adherent leukocytes was
quantified after treatment with NRG-1 on day 11 post
infection. The numbers of leukocytes per vessel and per
mm2 decreased after NRG-1 treatment when compared
with saline treatment (Figure 2). Brain microvessels in
mice treated with ARM showed significant reduction in
leukocyte accumulation by day 11 post infection com-
pared to saline-treated mice (Figure 2). Although NRG-1-
treated mice had high peripheral parasitemia compared to
ARM-treated mice, there were no significant differences
in the accumulation of leukocytes in the brains of NRG-1-
treated mice and ARM-treated mice (Figure 2).

NRG-1 treatment decreases activation of brain vascular
endothelium and promotes BBB stability in PbA-infected
mice
Overproduction of pro-inflammatory factors promotes
vascular endothelial activation and is deleterious to BBB
Figure 2 Inhibition of leukocyte accumulation in the brain of Plasmod
cerebral malaria (ECM) after treatment. The number of intravascular leu
neuregulin-1 (NRG-1) treatment (A). Parenchymal vessels of untreated PbA
saline-treated ECM mice on day 11 plugged with leukocytes (black arrows)
NRG-1-treated mice showing remnants of adherent leukocytes after treatmen
PbA-infected mice but was not seen in ARM or NRG-1 treated mice. Leukocyt
considered significant. *Statistical significance compared with control (Ctrl) da
integrity [46]. To investigate the effect of NRG-1 on acti-
vation of brain vascular endothelium and BBB integrity
during ECM, mRNA levels of specific protein markers
(angiopoietin-1 and −2, CCAAT enhancer-binding pro-
tein (C/EBP)β, and intercellular adhesion molecule-1
(ICAM-1)) that mediate endothelial activation [47-49]
and BBB breakdown [50,51] were assessed.
Angiopoietin-1 and angiopoietin-2 are antagonistic reg-

ulators of endothelial cell activation and BBB function and
integrity and are functional biomarkers that are used to
predict fatal CM [52-54]. Expression of angiopoietin-1, a
marker of vascular endothelial quiescence and BBB stabil-
ity, increased in brain tissue of mice treated with NRG-1
compared with saline-treated mice, P <0.001 (Figure 3A).
However, there was no significant difference in angiopoie-
tin-1 levels between saline-treated and ARM-treated mice
on day 11 when compared to day-5 untreated mice
(Figure 3A). Expression of angiopoietin-2, a marker for
BBB dysfunction, was significantly reduced in brain tissue
of infected mice treated with NRG-1 compared to saline-
treated mice, P <0.001 (Figure 3B). Conversely, expression
of angiopoietin-2 increased significantly on day 11 in
saline-treated and ARM-treated mice compared to day-5
untreated mice, P <0.001 (Figure 3B).
C/EBPβ is a critical regulator of acute-phase pro-

inflammatory genes involved in host response to infections
[55,56] and is implicated in the release of inflam-
matory and adhesion factors such as IL-6, TNFα,
CD40, ICAM-1 and bioactive tachykinins responsible
ium berghei ANKA (PbA)-infected mice with experimental
kocytes per mm2 of brain area was significantly decreased after
-infected mice on day 5 (B). Lumen of parenchymal vessels of
(C). Parenchymal vessels of (D) artemether (ARM)-treated mice and (E)
t (black arrows). Vascular congestion was observed in all saline-treated
e counts are mean ± standard error. P-values less than 0.05 were
y (D)5; §statistical significance compared with Ctrl D11.
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for neuroinflammation and tissue repair in the central
nervous system [57-62]. C/EBPβ expression was signifi-
cantly reduced in ARM-treated and NRG-1-treated mice
compared to saline-treated mice, P <0.001 (Figure 3C).
Expression of C/EBPβ increased significantly in the brains
of saline-treated mice when compared to day 5 untreated
mice, P <0.001 (Figure 3C). Expression of ICAM-1 which
directly correlates with endothelial activation [47,63,64]
was significantly reduced in brain of NRG-1 treated mice
compared to saline-treated mice, P <0.001 (Figure 3D).
ICAM-1 expression in NRG-1-treated mice was reduced
to levels lower than that observed in day-5 untreated mice
(Figure 3D). However, ICAM-1 expression increased sig-
nificantly in saline-treated and ARM-treated mice com-
pared to day-5 untreated controls, P <0.001 (Figure 3D).

NRG-1 treatment modulates immune determinants of CM
severity
Dysregulation of host pro-inflammatory factors plays a
critical role in the pathogenesis of human CM and
murine ECM. Previous studies showed overexpression of
pro-inflammatory cytokines TNFα, IL-1α and IL-6 in CM
patients promotes pathogenesis of CM (acute immune
activation, promotion of adhesion molecules, leukocyte
recruitment, fever and BBB disruption) and were associ-
ated with severe and lethal malaria [20,65-71]. We re-
cently established that elevated levels of anti-angiogenic
and apoptotic factor CXCL10 are associated with fatal
CM in humans [72-74]. Moreover, CXCL10 plays a critical
role in the development of murine ECM [75]. TNFα levels
in saline-treated mice at day 11 increased significantly
compared to untreated mice at day 5, P <0.05 (Figure 4A).
However, TNFα serum levels were reduced in mice treated
with NRG-1 and ARM compared to saline-treated mice,
P <0.001 (Figure 4A). NRG-1 therapy significantly re-
duced serum IL-1α and IL-6 levels compared to saline-
treated mice, P <0.001 (Figure 4B, C). Similarly, ARM
treatment reduced serum levels of IL-1α and IL-6
compared to saline-treated mice, P <0.001 (Figure 4B, C).
CXCL10 levels in saline-treated mice at day 11 increased
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post-treatment levels (day 11). Note the different scales used in each graph.
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significantly compared to untreated mice at day 5,
P <0.001 (Figure 4D). Conversely, CXCL10 levels in mice
treated with NRG-1 and ARM were significantly reduced
at day 11 compared to saline-treated mice, P <0.001
(Figure 4D). In contrast, Th2 cytokines IL-5 and IL-13 as-
sociated with reduced severity of disease and increased
protection against CM [76-79] were significantly ele-
vated in serum after treatment with NRG-1compared
to saline-treated mice, P <0.001 (Figure 4E, F). ARM ther-
apy increased expression of IL-13 in PbA-infected mice
although serum levels of IL-5 were markedly reduced after
ARM treatment, P <0.001 (Figure 4E, F). Furthermore,
increased levels of G-CSF, a neuronal growth factor, dis-
criminate CM patients with poor disease outcome [20,80].
G-CSF levels increased significantly in saline-treated mice
at day 11 compared to untreated mice at day 5, P <0.001
(Figure 4G). G-CSF levels were significantly reduced in
infected mice treated with ARM and NRG-1 compared to
saline-treated mice, P <0.001 (Figure 4G).

Discussion
Despite prompt administration of optimal antimalarial
treatment, mortality associated with CM remains un-
acceptably high, thus, prompting the development of
adjunct therapeutics that can reduce or prevent CM
pathology and associated mortalities [12,13] Recent
studies have shown that NRG-1 was effective in treating
ABI such as AIS and acute neurotoxin exposure by pre-
venting neuroinflammation and neuronal tissue death
[35,36], which are similar to those observed in CM. Fur-
thermore, NRG-1 stabilizes the BBB and mediates inflam-
matory pathways to prevent tissue damage associated with
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brain injury [32,33,37]. Using a PbA ECM model that
mimics significant features of human CM, we have
demonstrated the effectiveness of NRG-1 therapy against
ECM pathophysiology, and associated mortality.
Advances in drug therapies that eradicate malaria

parasites are still unable to prevent mortality in up to
30% of CM patients. In humans, quinine and artemisinin
derivatives (artesunate and artemether) are the main-
stream drugs used to treat CM [81,82]. ARM was
selected for use in this study as previous research has
demonstrated that ARM was more effective against
murine ECM than quinine, artemisinin and artesunate
[41]. Despite anti-parasitic properties of ARM, mortality
rates were as high as 18% in mice treated with ARM in
the current study. However, no evidence of neurological
dysfunction associated with ECM was observed in
ARM-treated mice. This unacceptably high mortality in
ARM-treated mice may be due to low efficacy of ARM
against PbA that can lead to recrudescence and malarial
anemia post treatment [41]. Furthermore, therapies tar-
geting parasite eradication without addressing secondary
effects of parasite infection, such as tissue damage and
neurological complications, are inadequate for prevent-
ing mortalities. Thus, there is great need for adjunct
therapeutics that target CM pathology that in conjunc-
tion with parasite-eradicating antimalarial agents can
prevent mortality associated with CM.
Permanent or reversible neurological sequelae such as

coma, residual epilepsy and cognitive deficits, are com-
mon clinical outcomes in CM patients. These neurological
outcomes are associated with inflammatory cascades initi-
ated by pathogen toxins that lead to widespread endo-
thelial activation and brain damage (petechial hemorrhage
and neuronal cell death) and involves inflammation-
induced sequestration of infected RBCs [83-85]. Similarly,
accumulation of leukocytes occurs in brain microvessels
of PbA-infected mice that leads to vascular congestion
and contributes to brain damage. [86,87]. Although para-
sitemia levels were high in PbA-infected mice treated with
NRG-1, there was significant reduction in leukocyte accu-
mulation in brain microvessels after NRG-1 treatment.
This indicates that NRG-1 therapy effectively reduces
brain inflammation associated with ECM pathogenesis
even in the presence of high parasitemia.
Human CM and murine ECM are characterized by a

dysregulated immune response leading to overexpression
of pro-inflammatory cytokines including TNFα, IL-1α,
IL-6, and CXCL10 [67-69,74,75]. These cytokines are
secreted by T-cells, macrophages and endothelial cells in
response to infection and play several roles that include
promotion of acute immune response, leukocyte re-
cruitment, BBB disruption and negative hypothalamic
mediation during febrile illness [66,70,88-93]. Plasma
and cerebrospinal fluid levels of TNFα, IL-1α and IL-6
are increased in children with CM [20,68] suggesting
their role in human CM. We previously reported that in-
creased plasma and cerebrospinal fluid levels of CXCL10
predict fatal CM [72-74] and mice deficient in the
CXCL10 gene are partially protected against murine
ECM [75]. NRG-1 therapy significantly reduced serum
TNFα, IL-1α, IL-6, and CXCL10 levels while improving
survival against ECM. High serum levels of the growth
factor G-CSF have been shown to correlate with fatal
CM in humans [80]. However, NRG-1 reduced G-CSF,
suggesting amelioration of pathogenic pathways that
leads to induction of G-CSF observed in fatal CM
[20,80]. Thus, further study is warranted to determine
the role of G-CSF in severe disease and the NRG-1
protective effect in reducing G-CSF production. Further-
more, there is growing evidence of the role for anti-
inflammatory factors, IL-5 and IL-13 in protection
against malarial disease. In a population of south Asian
malaria patients, increased levels of IL-5 was associated
with reduced severity of disease [79]. Genetic studies in
African and south-east Asian populations have linked
IL-13 to protection against cerebral malaria and show
that polymorphisms that alter IL-13 production may
increase risk of severe malaria [76-78]. In the present
study, NRG-1 enhanced production of IL-5 and IL-13,
and suggests NRG-1 promotes anti-inflammatory factors
while dampening pro-inflammatory factors to ameliorate
CM pathogenesis.
Angiopoietin-1 (a biomarker of endothelium quiescience

and stability) and vascular permeability factor angiopoie-
tin-2 (marker of vascular barrier breakdown) are potent
modulators of vascular inflammation, endothelial activa-
tion and BBB function [49,94-96]. Angiopoietin-1 stabi-
lizes the vascular endothelium barrier [97] and regulates
the activity of BBB permeability factors such as platelet-
activating factor (PAF), vascular epithelial growth factor
(VEGF), ELAM-1, bradykinin, thrombin and histamine
[98-101]. Increased activity of angiopoietin-1 promotes
endothelial survival [102,103], modulates plasma leakage
[100,104,105] and reduces vascular inflammation by
inhibiting ICAM-1, vascular cell adhesion molecule-1
(VCAM-1) and E-selectin expression [106]. Conversely,
pro-inflammatory cytokines TNF-α, IL-1β and vascular
permeability factor, VEGF, mediate the release of angio-
poietin-2, an antagonist to angiopoietin-1 [48,107], that
promotes increased vascular inflammation [108], disrup-
tion of angiogenesis [109], endothelial cell death [110] and
vascular regression [110,111]. Moreover, angiopoietin-2
expression is elevated in response to endothelial activation,
hypoxia and ischemia [107,112-114]. In human CM, high
levels of angiopoietin-2 and low levels of angiopoietin-1
are linked to CM severity and studies suggest these angio-
genic factors function as prognostic biomarkers that can
discriminate severe CM from mild malaria and predict
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fatal CM outcome [53,54]. Nakaoka et al. show that
NRG-1 stimulates expression of angiopoietin-1 [115]
and increased expression of angiopoietin-1 inhibits release
or activity of angiopoietin-2 [107,116]. In the present study,
NRG-1 treatment increased expression of angiopoietin-1,
thus promoting endothelial barrier function and integrity
during ECM, while modulating angiopoietin-2 expression
in the brains of PbA-infected mice.
Parasite sequestration and activation of endothelial

cells by infected erythrocytes and pro-inflammatory
cytokines are hallmark events in the brain pathology of
pediatric CM patients [64,117,118]. Parasite sequestra-
tion and endothelial activation correlate with an increase
in adhesion molecules such as ICAM-1 and VCAM-1
that bind infected erythrocytes, influence leukocyte mi-
gration and promote further release of pro-inflammatory
cytokines [119-121]. ICAM-1 is a marker of endothelial
activation whose expression is upregulated on the vascular
endothelium in the brain in murine and human CM
[64,122-124]. ICAM expression is induced by pro-inflam-
matory cytokines such as TNF-α, IFN-γ and VEGF
[47,125,126]. In human CM, increased ICAM-1 levels
are associated with disease severity [63,119,127]. Fur-
thermore, murine ECM studies show increased ex-
pression of ICAM-1 contributes to the development
of ECM [47,128,129]. Previous studies indicate NRG-1
reduces the expression of ICAM-1 following ischemic
stroke [32]. NRG-1 increases activity of PI3-kinase
[130,131] which suppresses VEGF-mediated expression
of ICAM-1 on endothelial cells [106,126]. Additionally,
C/EBPβ is a critical regulator of acute host-response
to infections and neuroinflammation [55-58,60] that
stimulates release of inflammatory and adhesion fac-
tors such as IL-6, TNFα, CD40 and ICAM-1, thus contrib-
uting to ECM development [56-59,61]. In this study,
NRG-1 treatment of murine ECM demonstrated inhib-
ition of ICAM-1 and C/EBPβ in the ECM brain while
reducing leukocyte adhesiveness and accumulation in
brain microvessels.
NRG-1 was recently used as a treatment for heart

failure and showed significant efficacy for improving
cardiac function in a phase-II patient study [132-134]. In
this study, patients received placebo or NRG-1 at a dose
of 0.3 to 1.2 μg/kg/day intravenously for 10 days, in
addition to standard drug therapies. During a follow-up
period 11 to 90 days after study initiation, NRG-1
significantly improved heart function in patients and the
effective doses were shown to be safe and tolerable. Two
additional clinical trials to determine the ability of NRG-
1 to improve cardiac function after heart failure have
been initiated in the US (ClinicalTrails.gov identifiers
NCT01258387 and NCT01541202). During the period
of study, no severe events were observed in either
healthy or impaired patients.
Conclusions
The use of recombinant human NRG-1 against acute
brain injury is being tested in experimental models
[32,34-36,135,136]. Recent and ongoing clinical trials
provide evidence indicating efficacy and safety of recom-
binant human NRG-1 against chronic heart failure and
vascular remodeling [132-134]. The efficacy of NRG-1
treatment against murine ECM provides compelling evi-
dence for developing NRG-1 and NRG-like drugs for the
treatment and management of CM patients. By inhibit-
ing systemic and brain inflammation resulting from
ECM pathogenesis, NRG-1 therapy improved survival in
mice with late-stage ECM. The ability of NRG-1 to affect
a range of functionally related CM inflammatory media-
tors increases the likelihood that such an effect will
translate to human CM to protect against human CM
pathologies. We propose further investigation of NRG-1
as a supportive therapy alongside current antimalarial
agents in the management of CM.
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