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Abstract

treating diseases.

The concept of multiple macrophage activation states is not new. However, extending this idea to resident tissue
macrophages, like microglia, has gained increased interest in recent years. Unfortunately, the research on peripheral
macrophage polarization does not necessarily translate accurately to their central nervous system (CNS)
counterparts. Even though pro- and anti-inflammatory cytokines can polarize microglia to distinct activation states,
the specific functions of these states is still an area of intense debate. This review examines the multiple possible
activation states microglia can be polarized to. This is followed by a detailed description of microglial polarization
and the functional relevance of this process in both acute and chronic CNS disease models described in the
literature. Particular attention is given to utilizing M2 microglial polarization as a potential therapeutic option in
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Background

For the better part of a century, the function of microglia
in the central nervous system (CNS) was a topic wrapped
in controversy. Originally identified by Franz Nissl in 1899
as ‘Stabchenzellen’” or rod-like cells, and further classified
by Pio del Rio Hortega in 1919, these cells were deter-
mined to be a distinct non-neural and non-astrocytic
population [1]. Furthermore, Hortega’s observations sug-
gested a capacity for phagocytosis, indicating that these
cells were more than just space filler or connective cells
between neurons. Not all shared Hortega’s ideas. This in-
cluded his mentor, the father of modern neuroscience,
Ramén y Cajal, who urged Hortega not to publish and
subsequently fired Hortega [2]. This early turmoil set the
tone for decades to follow, during which the topics of
microglial functions and origins were extensively debated
[3]. However, beginning in the early 1980s, newer technol-
ogy and ideas began to reveal the true nature of microglia
as the brain’s resident immune cell. Even though we are
starting to understand what microglia are capable of,
many questions still remain. In particular, there is much to
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be learned about the plastic nature of these cells and the
functions served by different microglial phenotypes.

In agreement with Hortega’s original description, micro-
glia have been classically described to exist in two states,
resting and activated. However, this binary definition has
since been revised to make way for more complex ideas.
Microglia in the healthy CNS are not truly ‘resting’. Two-
photon microscopy has shown microglia to be engaged in
environmental surveillance, constantly sampling areas
around them in efforts to maintain homeostasis [4]. Once
microglia encounter a substance that they sense is foreign
or indicative of harm, they enter an ‘activated” state. As
macrophage-like cells of the brain, one of the main roles
of activated microglia is that of regulating CNS innate
immunity and initiating appropriate responses, such as
inflammation. In the brain, this inflammatory response,
termed neuroinflammation, is a fundamental response gen-
erated to protect the CNS; however, uncontrolled or pro-
longed neuroinflammation is potentially harmful and can
result in cellular damage. This is particularly relevant to
neurodegenerative diseases, which are typified by evidence
of microglial activation and neuroinflammation [5]. This
makes microglial activation an attractive target to study as
part of disease pathogenesis.

The term activation is an oversimplification of a range
of different ‘activated’ states. It is now recognized that
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activated microglia can exist broadly in two different states
[6]. The first is classical activation, which is typified by the
production of inflammatory cytokines and reactive oxygen
species, while the second is a state of alternative activation,
in which microglia take on an anti-inflammatory pheno-
type involved in wound repair and debris clearance [7]. It
stands to reason that during neurodegenerative disease,
where neuroinflammation is a prominent feature and po-
tential contributor to disease, these alternatively activated
microglia would be beneficial in resolving pathology.

The presence of multiple activation phenotypes for
microglia is a relatively new concept that is only starting
to gain momentum. Therefore, the amount of data is still
sparse on the roles they play. However, the activation sta-
tus of peripheral macrophages has been an area of interest
ever since Stein and colleagues observed that interleukin 4
(IL-4) induced macrophages to express the mannose re-
ceptor [8]. Such a phenotype was previously unseen and
was therefore designated ‘alternative’. Since then, multiple
laboratories have characterized and classified ‘unique’ acti-
vation states, leading to a somewhat convoluted set of no-
menclature. However, recent evidence suggests that the
in-vitro data originally used to identify macrophage phe-
notypes does not accurately model the complex tissue en-
vironment and the original descriptions are somewhat
simplistic [9]. Moreover, unlike the periphery, in which
these cells have been studied for more than 20 years, we
are just beginning to closely examine these complicated
activation states in the CNS. Therefore, a deeper under-
standing of the heterogeneity and different phenotypes of
microglia is needed; assumptions that information gleaned
in the periphery will translate to the brain may not be
correct.

Classical versus alternative activation

Neuroinflammation, and, to the same degree, all inflam-
mation, is a fundamental immune response designed to
protect the body from harm, arising from both en-
dogenous and exogenous sources. Being the sentinel
immune cell of the brain, microglia are tasked as the
first responders to infection or tissue injury and initiating
an inflammatory response. Using a full array of immune
receptors, such as toll-like receptors (TLRs), nucleotide-
binding oligomerization domains (NODs), NOD-like re-
ceptors, and many scavenger receptors [10,11], microglia
(as well as other CNS cells, such as astrocytes) are able
to recognize harmful stimuli and respond by producing
inflammatory cytokines such as TNFa, IL-6, IL-1(,
interferon-y (IFNy), and several chemokines [12]. This
cytokine production is essential for the polarization of
microglia into what has been termed a classically acti-
vated, ‘M1, state [13]. This term parallels the Thl ter-
minology used for T cells, and underscores the close
relationship between T cells and macrophages in the
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periphery. Interferon-y produced from Thl cells was
found to be instrumental in polarizing macrophages to
M1 [14]. However, the ability to produce these cytokines
does not rest solely with T cells. Microglia and astrocytes
have also been observed to fill this role [15,16], demon-
strating, at least in part, that microglia can control their
own polarization through autocrine and paracrine means.
In many cases, this response is protective and is downreg-
ulated once the damage or pathogen has been dealt with;
however, unregulated, long-term, or chronic inflammation
can lead to tissue destruction [17].

In contrast with proinflammatory M1 cells, alternatively
activated macrophages express cytokines and receptors
that are implicated in inhibiting inflammation and restor-
ing homeostasis. This includes production of IL-10 to
downregulate inflammatory cells, extracellular matrix pro-
tecting proteins like YM1, ornithine, and polyamines for
wound repair, and higher levels of receptors associated
with phagocytosis, such as scavenger receptors [18]. Just
as the Th1 cytokine IFNy has been associated with induc-
tion of proinflammatory M1 macrophages, the Th2 cyto-
kine IL-4 has been associated with M2, or alternative,
activation. In the periphery, M2 cells are not always asso-
ciated with protective functions. In addition to parasite
protection, wound repair, and debris clearance, these cells
are also potential key players in asthma and allergy re-
sponses [7]. However, these types of harmful reaction may
not be relevant in the CNS, demonstrating a divergence be-
tween peripheral and central cells. Interestingly, it appears
that when there is a lack of M2 cell differentiation in the
CNS, problems can arise (this is discussed in detail later).

Phenotype of M1 cells

To properly understand the role microglia play in neurode-
generation, understanding their phenotypes is important.
The functional effects of classical activation are geared to-
wards antigen presentation and the killing of intracellular
pathogens. Therefore, upregulation of many associated re-
ceptors and enzymes reflects that purpose. For example,
MHC II, CD86, and Fcy receptors are upregulated to allow
for antigen-presenting activity of microglia and increased
crosstalk with other immune cells [19]. In addition, the ra-
tio of particular cytokines has been used to identify inflam-
matory macrophages and this observation could extend to
microglia. For example, since M1 macrophages were found
to be a key source of IL-12 [20], it was suggested that IL-
12"€" 11.-10" production is a simple way to distinguish
inflammatory cells [21]. Another potential distinction and
an important component of M1 microglia is their ability to
produce reactive oxygen species and reactive nitrogen spe-
cies [22]. A key microglial enzyme associated with this
process is inducible nitric oxide synthase (iNOS), which uti-
lizes arginine to produce nitric oxide [23]. However, even
though it seems straightforward to identify M1 cells based
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on these characteristics, classifying these cells in vivo has
proven to be more challenging, reflecting the plastic nature
of microglia.

Phenotype of M2 cells

There is not one set description or classification of M2
cells. In fact, there are many efforts to identify unique sub-
groups with different functions. Division of M2 cells is
based on observations that stimulation with various cyto-
kines yields different sets of receptor profiles, cytokine pro-
duction, chemokine secretion, and function [21]. Even
though the profiles of these cells are diverse, the one feature
that places them all in the M2 classification is that they ex-
press mediators or receptors with the capacity to downreg-
ulate, repair, or protect the body from inflammation [24].

The original alternatively activated macrophage was
classified based on expression of the mannose receptor
[8]; since then an assortment of different markers has been
identified as ‘M2’ specific. One of the best characterized
markers is the enzyme arginase 1 (Argl) [25], which con-
verts arginine to polyamines, proline, and ornithines that
can contribute to wound healing and matrix deposition
[26]. Interestingly, by using arginine, which is the same
substrate used by iNOS, Argl can effectively outcompete
iNOS to downregulate production of nitric oxide [27,28].
Thus, iNOS and Argl represent a relatively straightfor-
ward set of markers to follow M1 versus M2 phenotypes.
Other markers used for identifying M2 cells include Yml,
a heparin-binding lectin [29,30], FIZZ1, which promotes
deposition of extracellular matrix [31], and CD206, a man-
nose receptor [8]. A list of additional markers can been
found in Table 1. Despite the benefit of having specific
markers, using just one or two is limiting and ignores the
overall diversity of M2 phenotypes.

Another way to classify the function and phenotype of
M2 cells is based on the cytokines that induce them. The
prototypical cytokine used to first induce alternative activa-
tion was IL-4 [8]. Both IL-4 and the closely related cytokine
IL-13 signal through IL-4Ra to induce a host of down-
stream processes that lead to potent anti-inflammatory
functions, such as Argl upregulation, inhibition of NF-kB
isoforms, and production of scavenger receptors for phago-
cytosis [19,47,48]. This type of activation has been classified
as ‘M2a’. The main function of this response appears to be
suppression of inflammation. A second state of alternative
activation is based on macrophages exposed to IL-10, glu-
cocorticoids, or TGF-B. This phenotype is classified as
‘M2c’ [21,49]. Originally, this state was described as being
‘deactivated’ but that is not a particularly useful description.
Instead of having no function, ‘deactivated’” M2c macro-
phages appear to be involved in tissue remodeling and
matrix deposition after inflammation has been downregu-
lated [21]. A third sub-class of M2 activation has been ob-
served following exposure to immune complexes and
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stimulation of TLR. This class is termed ‘M2b’ or Type II
[21,50]. Of these three classes, M2b macrophages are the
least understood. Interestingly, they more closely resemble
M1 macrophages, owing to the lack of any M2 specific
markers, such as Argl, YMI, or FIZZ1. However, they do
express the typical IL-10"" [L-12"°" M2 cytokine profile
[9]. Moreover, they have higher levels of MHCII and CD86,
suggesting that they retain their ability to stimulate T cells
[50]. Interestingly, it appears that when M2b macrophages
stimulate T cells they are biased towards a Th2 response
[51]. Being able to induce Th2 T cells suggests that M2b
might be a potential regulator or initiator of the M2 re-
sponse in general. One additional type of M2 activated cell,
the so-called tumor-associated macrophage, has recently
been recognized [52]. Although tumor-associated macro-
phages are an area of intense research [53], they are beyond
the scope of this review. An important consideration re-
garding M2 phenotypes is that these states were typically
elucidated in vitro following exposure to one or two stimuli.
This does not represent the complex environmental milieu
seen in tissue. Therefore, some investigators have cautioned
against this classification into distinct subtypes and instead
propose that M2 cells should be viewed as a spectrum of
phenotypes [9].

This detailed classification of M2 cells has been pri-
marily carried out in the periphery. Whether or not this
will extend to brain resident microglia is yet to be seen.
However, some investigators have taken to using the
M2a-c nomenclature to discuss populations of alterna-
tively activated microglia [54]. This poses potential
problems, as certain M2 markers do not appear to be
expressed in the CNS (Table 1). The best example of
this is the first observed alternative macrophage marker,
CD206, which is only seen in perivascular or choroid-
plexus-associated macrophages and not expressed by
parenchymal microglia [55]. Furthermore, microglia are
not macrophages that migrate into the brain, but instead
are known to represent a distinct population of resident
tissue mesenchymal cells that populate the CNS during
early development [56,57]. Importantly, because the ori-
gins and responses of microglia and macrophages are dif-
ferent, the roles they play in mitigating or propagating
pathology could be different as well.

M2 microglial activation during acute
neuroinflammation

In mechanical injuries like spinal cord and traumatic brain
injury or other relatively acute conditions like ischemic re-
perfusion injury, released damage-associated molecular pat-
terns (DAMPs) induce the innate immune system to
activate and produce inflammatory cytokines and reactive
oxygen species [58-60]. As previously stated, this response
is not purposefully harmful. In fact, it is a necessary step in
wound repair [61]. The initial proinflammatory response is



Table 1 M2 markers

M2 marker Function Expressed in murine microglia? Expressed in human microglia? Reference
Arginase 1 (Arg1) Converts L-arginine into prolines and polyamines implicated Yes Debated: evidence suggests it is not upregulated [6,27,2832,33]
in tissue remodeling and wounding healing. It competes in human beings but others have shown
with iNOS for substrates. elevations in the CNS.
Ym1 (Chi3lI3) A secretory lectin that binds heparin/heparan sulfate. Yes Similar to arginase 1 as it has been seen in [6,30-33]
It is proposed to prevent degradation of extra human beings. However, it might not be
cellular matrix components. expressed in M2 microglia.
FIZZ1 (RetnIB) Mediates interactions between sensory nerves and Yes Unknown [31,34,35]
inflammatory cells in the lungs. It blocks nerve
growth factor induced survival of dorsal
root ganglion neurons.
MRC (CD206) Binds and internalizes/phagocytoses mannosylated ligands. No, limited to perivascular Observed in vitro. [36-38]
macrophages and meninges
CcD163 Binds and internalizes hemoglobin-haptoglobin complex. Yes Yes [39-41]
TREM2 The endogenous ligand is unknown, but thought Yes Yes [42,43]
be involved in debris clearance.
Dectin-1 (Clec7A) Recognizes B-glucans and can lead to phagocytosis. Yes Observed in human macrophages but unknown [19/44,45]
whether it is expressed in human microglia.
CD301 (MGLT) Recognizes terminal galactose and N-acetylgalactosamine. Yes (our observations) Unknown [46]

Involved in pathogen defense and related to CD206.
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to promote killing of any invading organism and remove
dead cells to ‘clean’ the damaged area [62]. This re-
sponse is then shifted to an anti-inflammatory state
where debris clearance, extracellular matrix deposition,
and angiogenesis are promoted [24]. Thus, when there
is proper transition from the M1 to M2 phenotype, the
damage can be efficiently repaired. However, when the
proinflammatory response does not yield, the constant
presence and continued production of inflammatory cy-
tokines and reactive oxygen species can lead to cell
death and further tissue damage [63].

Spinal cord injury

One of the better-studied areas of M1 and M2 activation
in the CNS is after spinal cord injury. Following the ini-
tial trauma of spinal cord injury, secondary inflammation
has been identified as an important factor that leads to
enhanced damage and impaired regeneration. Consistent
with this, several M1 microglial secreted factors have
been shown to be neurotoxic and inhibit axon extension
[63-65]. Kigerl et al. [63] characterized the response of
M1 and M2 cells both acutely and several weeks after
spinal cord injury. Initially, they observed early upregula-
tion of both M1- and M2-related proteins and mRNA spe-
cies. However, three days post-injury, the M1 markers
continued to rise and M2 markers were downregulated,
leading to a skewed M1 profile [63]. Kigerl et al. suggested
that the domination of M1 cells might be one of the rea-
sons for continued damage and lack of repair. For example,
in the same report, using cultured neurons, IFNy-polarized
M1-conditioned media was neurotoxic and prevented axon
elongation after injury, while IL-4 treated, M2-conditioned
media encouraged axon growth [63]. The beneficial func-
tions of IL-4 appear to extend to endogenous IL-4, since
IL-4”"mice showed increased damage following spinal
cord injury [66]. Other groups have observed similar
polarization dynamics after spinal cord injury [67,68]. The
positive effects of M2 cells on spinal cord injury can also be
extended to the enzymatic products of Argl activity. For
example, Cai et al. demonstrated that polyamines were suf-
ficient to block the suppressive effects of myelin and
myelin-associated glycoprotein on dorsal root ganglion
neuron regeneration [69].

Traumatic brain injury

As with spinal cord injury, the damaged tissue environment
after traumatic brain injury heavily favors activation of pro-
inflammatory M1 microglia [70]. Several studies demon-
strating a protective effect of anti-inflammatory treatment
indicate that the inflammatory response after trauma con-
tributes to the ensuing damage [71-73]. The aftermath of
traumatic brain injury results in a mixed profile of activated
microglia and macrophages exhibiting a range of pheno-
types [74]. However after one week, just like with spinal
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cord injury, the concentration of Argl® cells decreased to
non-detectable levels [74], and other studies showed the
presence of M1 microglia and proinflammatory cytokines
weeks to months after traumatic brain injury [74-76]. This
suggests that M1 microglia are the dominant phenotype
and M2 cells are not present to repair damage. To highlight
the importance M2 microglia might play after traumatic
brain injury, it was observed in aged mice where the M2 re-
sponse is impaired (discussed in a later section) that lesion
size was increased relative to young animals with a more
functional M2 response [70]. The M2 microglia observed
during traumatic brain injury do seem to possess benefi-
cial phenotypes that can mitigate damage associated with
traumatic brain injury. For example, M2 cells recruited
around sites of intracranial hemorrhage after traumatic
brain injury expressed the receptor CD163, which func-
tions in hemoglobin scavenging [39,40,77].

Stroke

Inflammation generated by stroke and ischemic reperfu-
sion injury is regarded as a major factor contributing to
tissue damage [60] and, like spinal cord injury, the dam-
aged tissue environment favors an M1 phenotype [78]. In
addition to neutrophils, it is these M1 microglia, and, to a
lesser degree, macrophages, that contribute to the inflam-
matory cascade and further propagate cell death beyond
the initial ischemic region [79,80]. Even though the proin-
flammatory response is dominant, there does appear to be
an anti-inflammatory signal that attempts to regulate the
inflammation [78]. Consistent with the idea that an M2 re-
sponse is needed to properly downregulate inflammation
and initiate repair, mice that lack appropriate signals for
M2 induction have worse outcomes after experimental
cerebral ischemia. For example, mice lacking either IL-4 or
IL-10 show increased infarct volume and worse cognitive
performance following cerebral ischemia [81,82]. Addition-
ally, deletion of galectin-3, a protein required for microglial
activation, leads to a reduction in M2-associated cytokines,
such as IGF-1, which results in worse pathology after stroke
[83]. This highlights the importance of M2 cells in mitigat-
ing and repairing damage.

Controlling polarization

The experiments described above demonstrate the crucial
dynamics between M1 and M2 polarization during injury
state. One piece of information that comes out of this re-
search is the critical role the environment plays in control-
ling the shift from classical to alternative activation. With
spinal cord injury and traumatic brain injury, the domin-
ation of M1 microglia is mainly due to the high levels of
proinflammatory cytokines present [60,68]. Importantly,
polarized microglia are not locked in a particular state;
both microglia and macrophages are plastic cell types that
can be altered if the cytokine environment changes [84].
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However, in many acute injuries, the continued produc-
tion of cytokines like IFNy and TNFa maintains an M1
activation state. One would therefore hypothesize that al-
tering the environment could be used to treat injuries. To
that end, in models of the injuries described previously, in-
vestigators have begun to utilize techniques to inject M2
cells directly or cause polarization indirectly. In spinal
cord injury, the transplantation of mesenchymal stem cells
has been shown to increase IL-4/13 and decrease TNFa
levels [85]. These cytokine changes were associated with
increased Argl” staining, consistent with an M2 response,
and associated with downregulation of inflammation,
locomotor recovery and reduced scar formation [85]. This
has been shown in several other cases, where M2 cell in-
duction appeared to alleviate spinal cord injury pathology
[86-89]. This beneficial result is not limited to spinal cord
injury. By targeting the PPARY pathway with PPARY ago-
nists that potentially lead to induction of M2 microglia,
several groups have shown efficacy in treating traumatic
brain injury [71,72] and ischemia [90]. As summarized in
Table 2, there are several other examples of investigators
using various molecules that are now known to induce
M2 polarization in order to treat CNS injuries.

M2 microglia in chronic neuroinflammation

As mentioned in the previous section, the inflammatory re-
sponse needs to be downregulated for proper healing to
take place. In contrast with acute inflammation, chronic
neuroinflammation is a long-lived, persistent response that
starts with an initial inflammatory stimulus, but becomes
self-propagating. Inflammatory factors produced by micro-
glia and astrocytes can damage local tissue and, together
with released DAMPs, can further increase inflammation
and glial activation, leading to a vicious inflammatory cycle.
This long-term inflammation can have disastrous conse-
quences in the CNS, ranging from loss of synapses to im-
paired cognition and overt neurodegeneration [104-107].
This shift away from reparative responses may be due to a
failed M2 response. Not only could the lack of M2 micro-
glia fail to control inflammation; fewer M2 cells also mean
lower levels of neuroprotective factors like IGF1 or brain-
derived neurotrophic factor, which microglia produce. Thus
the lack of an appropriate M2 response might be an im-
portant mechanism underlying neurodegeneration. Indeed,
many investigators are starting to recognize the importance
of M1/M2 dynamics in diseases characterized by chronic
neuroinflammation.

Experimental autoimmune encephalitis (EAE) and
multiple sclerosis

Multiple sclerosis is a disease characterized by demyelin-
ation of axons as well as chronic inflammation. Multiple
sclerosis exists in several forms; the majority of patients
show a relapsing and remitting type of disease. These
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patients experience demyelination and inflammation but
this resolves after some time. This process occurs multiple
times during the course of disease, with each subsequent
relapse being slightly worse, until they finally progress to
secondary progressive multiple sclerosis [108]. The obser-
vation that there is resolution suggests that M1/M2 dy-
namics might be relevant for this disease. Although the
initial cause of inflammation is not clear, it has been ob-
served that T cells, specifically Th1l and Th17 cells, are im-
portant contributors to multiple sclerosis pathology [109].
As previously stated, Th1 cell-secreted IFNy is a potent in-
ducer of M1 cells, suggesting during the active phase that
microglia are skewed towards M1 activation. Although T
cells regulate the response, microglia and macrophages
are the effector cells. Several groups have begun to exam-
ine these dynamics in vivo using the multiple sclerosis ani-
mal model experimental autoimmune encephalitis (EAE).

An environment dominated by inflammatory cytokines
favors polarization to M1 cells and inhibits an M2 switch.
The consequences of this inhibition are not fully under-
stood, but during EAE induction and progression, inflam-
matory factors have the potential to prevent recovery
[110]. Elevated levels of inflammatory cytokines are also
observed in human multiple sclerosis [105]. It is believed
that inflammation contributes to axonal demyelination
owing to neurotoxic cytokine effects on oligodendrocytes
or inhibition of oligodendrocyte precursor cell prolifera-
tion and maturation [110]. This places M1 cells as key
contributors to multiple sclerosis pathogenesis. Indeed,
mice lacking IL-4 or IL-4Ra showed significantly worse
EAE pathology [111]. The importance of IL-4 in EAE is
also supported by observations that transduction with an
IL-4 expressing viral vector reduced the symptoms of EAE
[93,94]. Even though IL-4 has actions on other CNS cell
types, its most potent effect is the induction of M2 micro-
glia. Additionally, other M2 promoting cytokines, such as
IL-33 [98] and IL-10 [96], have been shown to reduce the
amount of demyelination [96] and improve clinical scores
[98]. It is important to note that these EAE models were
of the chronic variety, as opposed to other EAE models
that only display a transient pathology. This demonstrates
that altering the pro-M1 environment to one more condu-
cive to M2 generation has beneficial effects in chronic dis-
eases (Table 2). The mechanism behind the beneficial
effects of M2 cells can be attributed to their production of
neurotropic mediators that support remyelination and re-
generation. Factors such as IGF1, PDGF«, TGEp, and
SPP1 are all upregulated in microglia during the recovery
phase of disease [112].

The beneficial effect of environmental modulation favor-
ing M2 polarization can also be seen in human beings.
The FDA-approved drug glatiramer acetate (GA), which
has been shown to be useful in treating relapsing and re-
mitting multiple sclerosis, works by inducing a Thl to
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Table 2 M2 inducing agents used in disease models
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Disease or injury

Treatment

Outcome

Reference

Traumatic brain injury

Ischemia

Spinal cord injury

Multiple sclerosis or EAE

Alzheimer's disease

Rosiglitazone

Rosiglitazone

Rosiglitazone

Mesenchymal stem

cell transplantation

Granulocyte colony-
stimulating factor

Substance P

IL-4

Glatiramer acetate

IL-33

Glatiramer acetate

IL-4

IL-4

DSP-8658

Bexarotene

24 hours after controlled cortical impact, rosiglitazone was given intraperitoneally.
Seven days later there were decreased cortical lesions and reduced glial activation.
A reduction in apoptotic cells was also seen.

Rosiglitazone was given orally before ischemia was induced. Treatment reduced
damage in the hippocampal CA1 region and delayed neural death. Elevated
levels of IL-4 and IL-13 were seen after treatment.

Rosiglitazone was injected intraperitoneally every 12 hours after spinal cord injury
for 12 days. Treatment decreased tissue damage and significantly reduced
apoptosis in damaged tissue. TNFa and IL13 reduction was also observed.

Transplantation in an injured spinal cord resulted in elevated levels of IL-4
and IL-13 and reduced TNFa and IL-6. There was functional locomotion
improvement as well as reduced scarring and more preserved axons.

Granulocyte colony-stimulating factor was injected for three consecutive days
after spinal cord injury. Enhanced Arg1 and CD206 mRNA and reduced iNOS,
TNFa, and IL-13 were seen. There was also reduced NF-kB activity. No locomotor
tests were performed, but the authors concluded that this is a viable method

to reduce acute phase inflammation after spinal cord injury.

Substance P was injected intravenously immediately, 24, and 48 hours after spinal
cord injury. Injected rats had reduced iNOS, IL-6, and TNFa mRNA levels and elevated
amounts of Arg1 and IL-10. M2 cells were observed at the lesion site. Spinal cord

lesions were significantly smaller and injected mice had improved locomotion scores.

Herpes simplex virus carrying an IL-4 sequence was injected into the CNS of
mice with EAE. Treatment delayed progression of disease and improved clinical
score. Significant reduction in inflammation and axon degeneration was also seen.

Used transduced T cells carrying a retroviral gene to express IL-4 during EAE.
Mice showed delayed onset and reduced severity of disease.

Adenoviral-vector-carrying IL-4 was injected into cerebrospinal fluid of mice
induced to have EAE. Reduced clinical score and improvement in several
neurophysiological parameters were seen in injected mice.

Used adult neural stem cells engineered to express IL-10. Intraperitoneal injection
during EAE reduced CNS inflammation and lessened demyelination.
Additionally there was enhanced remyelination.

Glatiramer acetate is a synthetic peptide shown to be beneficial in treating relapsing
and remitting multiple sclerosis. It shifts the CNS environment from Th1 to
Th2 and induces secretion of anti-inflammatory cytokines.

Intraperitoneal injection of IL-33, 12-20 days after induction of EAE, reduced
inflammatory cytokines and improved clinical scores. Elevated M2 cells
were also seen around lesions.

Vaccination with glatiramer acetate caused a reduction in amyloid B plaques in
APP/PS1 mice. The effect is thought to be mediated in part by glatiramer acetate
inducing IL-4, which can counteract the effect of amyloid 3 on microglia.
Glatiramer acetate vaccination also reversed cognitive decline.

Intracerebral injection of IL-4 and IL-13 reduced amyloid {3 plaque load in
APP23 mice with Alzheimer's disease. The decrease was accompanied
with improved cognition and upregulation of Arg1 and YM1 positive M2 cells.

AAV carrying an IL-4 sequence was injected intrahippocampally in 3-month-old
APP/PS1 mice. Five months later there was a reduction in amyloid 3 plaques,
improvement in the Morris water maze memory task, and elevated neurogenesis.

AAV expressing IL-10 was injected intrahippocampally in 3-month-old APP/PST mice.
Unlike previous experiments with IL-4, AAV-IL10 did not clear amyloid 3 plaque
at 5 months. However, neurogenesis was improved.

DSP-8658 (a PPAR y/a agonist) treatment was able to increase microglial uptake
of amyloid 3 in APP/PST mice. The mechanism of action was thought to
be via CD36 upregulation on microglia.

Bexarotene (retinoid X receptor agonist) in APP/PS1 and APP/PS1-21 mice with
Alzheimer's disease led to reduced amyloid load 14 days after oral treatment.
The plaque reduction was associated with improved order habituation behavior.

[72]

[92]

[100]

[101]

[102]

[103]

AAV, adeno-associated virus; APP, amyloid precursor protein; CNS, central nervous system; EAE, experimental autoimmune encephalitis.
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Th2 shift, resulting in the production of anti-inflammatory
cytokines [97]. Even though changing the environment
seems to be beneficial in alleviating symptoms for the re-
lapsing and remitting type of multiple sclerosis, the major-
ity of patients ultimately experience progressive disease,
suggesting that the environment is not the only factor in
controlling inflammation. Since multiple sclerosis is a
chronic disease that takes many years to progress, the
continuous long-term activation of microglia has the po-
tential to alter microglial function, either by making them
less responsive to anti-inflammatory signals or less adept
at phagocytosis. This potential failure of microglia to
perform their proper function is also shared by other neu-
rodegenerative diseases characterized by persistent, long-
term inflammation. One of the best examples of this is
Alzheimer’s disease.

Alzheimer’s disease

The idea that microglial activation states could impact
Alzheimer’s disease has recently gained momentum.
Alzheimer’s disease is the most common form of dementia
and is characterized by the presence of neurofibrillar tan-
gles of hyperphosphorylated Tau and extracellular deposits
of the peptide amyloid B (AP), forming neuritic plaques.
Another key feature of Alzheimer’s disease is the presence
of prominent neuroinflammation [113]. Interestingly, A
itself has been shown to have proinflammatory properties
when injected into the CNS [114,115]. Amyloid  can bind
to several innate immune receptors present on microglia,
such as TRL2 [114], TRL4 [116], TLR6 [116], and CD14
[117], all of which can lead to activation when triggered.
To that end, microglia surrounding A plaques show ele-
vated production of inflammatory factors [118]. The in-
flammatory nature of amyloid has been recognized as a
potential mechanism of disease progression. Amyloid {3 is
generated from a parent protein called the amyloid pre-
cursor protein (APP), which is cleaved in two steps by the
enzymes [} then y secretase, leading to release of the A
fragment [119]. This is a normal physiological process that
is modified in the disease state. Interestingly, inflammation
can promote accumulation of A by elevating APP levels
and the activity of cleavage enzymes [120]. These observa-
tions have led to the inflammatory cascade hypothesis of
Alzheimer’s disease, which states that AP deposition in-
duces neuroinflammation, which in turn generates more
AP, resulting in a vicious cycle [120].

There are several ways for AP to be removed from the
brain. Amyloid B can be directly shuttled out of the brain
via protein complexes such as LRP1 and apolipoprotein E,
which can bind extracellular AP and transport them to the
blood brain barrier, where they are then shuttled to the
other side [121]. Additionally, new observations suggest
the existence of an alternate removal pathway, where
extracellular AB in CNS interstitial fluid is moved into the

Page 8 of 15

cerebral spinal fluid in what is named the ‘glymphatic sys-
tem’ [122]. Another way to clear AP is via phagocytosis
and degradation by resident CNS immune cells, such as
microglia [123], astrocytes [124], and possibly neurons
[125]. This particular clearance pathway showcases the
Janus face nature of microglia in that even though micro-
glia are a primary source of inflammatory factors, they also
represent a crucial element for removal of harmful mater-
ial in the CNS [123]. Thus, the failure of microglia to carry
out homeostatic functions possibly underscores one
mechanism of increased AP accumulation during disease.

When AP is injected into the rat CNS, microglia are ob-
served to contain the injected peptide, demonstrating their
ability to take up AP [126]. However, in-vitro evidence sug-
gests that this phagocytic ability is inhibited during disease
[127]. The ability of microglia to phagocytize A may de-
pend on their phenotype. For example, in-vitro treatment
of microglia with the pro M1 activator lipopolysaccharide
inhibited microglial phagocytosis of Ap [127]. Other proin-
flammatory cytokines, such as IFNy and TNFa not only
inhibited uptake of AP, but also prevented internalized AP
degradation [128,129]. This demonstrates that M1 micro-
glia might be less able to properly take up and degrade Ap.
While M1 microglia appear to be impaired in their ability
to remove AP, M2 microglia have been demonstrated to be
efficient phagocytes. Treatment with the pro M2 activating
cytokine IL-4 can effectively block lipopolysaccharide-
induced inhibition of AP phagocytosis [127] and similar
data have been obtained for IL-10 [129]. This effect also ex-
tends to degradation of the internalized AP. Treatment with
IL-4 or macrophage colony-stimulating factor can lower
the pH of the phagosome and lysosome and allow for more
efficient degradation of AP [130,131]. These in-vitro M1
versus M2 observations are further supported by an ever-
increasing set of in-vivo data, as detailed next.

It appears that one of the reasons for AB accumulation
in Alzheimer’s disease is the failure of microglia to react
properly. As mentioned, inflammation limits the phago-
cytic potential of microglia [127], but does this occur
in vivo? Early on in disease pathogenesis, there does seem
to be an attempt to clear Ap. Jimenez et al. [132] observed
at 6 months, when AP begins to accumulate in the APP/
PS1 Alzheimer’s disease mouse model, that there were
YM1" cells present in the CNS; however, by 18 months
YM1 mRNA levels decreased and there was a massive up-
regulation in inflammatory factors, suggesting a switch
from M2 to M1 as pathology worsened [132]. This is con-
sistent with the idea that microglia become less responsive
to M2 induction signals as they age, perhaps owing to an
age-associated decrease in IL-4Ra levels [133]. Corres-
pondingly, in older, non-diseased mice there is downregu-
lation of receptors associated with AP engulfment, such as
scavenger receptor A and the AP degradation enzymes
Nep, IDE, and MMP-9 [134]. These observations suggest
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that the AP induced inflammatory environment, combined
with age-associated effects on microglia, lead to a situation
where M1 cells predominate and microglia lose the ability
to switch phenotypes and mitigate damage.

Several groups have utilized animal models of Alzhei-
mer’s disease to demonstrate that altering the microglial
activation state can be beneficial (Table 2). As previously
mentioned for multiple sclerosis, GA is a promising mol-
ecule that can alter the inflammatory environment by
recruiting Th2 T cells to the CNS and induce production
of IL-4. Since it has shown positive benefits in patients
with multiple sclerosis, there is the potential that GA
could be a useful Alzheimer’s disease treatment. Data from
Michal Schwartz’s group demonstrated that GA treatment
leads to increased AP clearance and elevated levels of
neurotropic cytokines such as IGF-1 [99]. The phenotype
of microglia after treatment was similar to those treated
with IL-4, suggesting that the GA effect could be IL-4
(and subsequently M2) dependent [135]. PPARy activation
is another approach that can robustly induce the
polarization of M2 microglia and may be a promising
therapy for Alzheimer’s disease. Several groups have ob-
served that prolonged treatment with PPARy agonists can
reduce Alzheimer’s disease pathology, demonstrating its
potential therapeutic efficacy [102,136,137]. In addition to
reducing plaques, the PPARy agonist pioglitazone in-
creased mRNA levels of the M2 marker YM1 [137] as well
as the scavenger receptor CD36 [102]. Recently, activation
of the retinoid X receptor (RXR), which forms a heterodi-
mer with PPARY, was implicated as a promising therapeutic
treatment for Alzheimer’s disease. Landreth’s group [103]
demonstrated that treatment with the FDA-approved RXR
agonist bexarotene reduced CNS AP levels and improved
cognition in an Alzheimer’s disease mouse model [103].
Interestingly, PPARy treatment has been demonstrated to
polarize human monocytes to an M2 state [138], which fur-
ther supports the idea that manipulating proinflammatory
M1 microglia to an M2 phenotype is a potentially viable
therapeutic option.

In addition to pharmacological methods to induce M2
activation, direct use of anti-inflammatory cytokines can
lead to AP removal. As previously stated, the definitions for
multiple phenotypes of alternatively activated macrophages
originate from the periphery and therefore might not be
completely applicable to the CNS. However, microglia
treated with different anti-inflammatory cytokines exhibit
unique activation states and functions. This topic is actively
being pursued, in order to better understand differences be-
tween states [54]. For the sake of simplicity and a point of
reference, we will refer to the activation states that are
known for peripheral macrophages. TGEP is a cytokine
with potent anti-inflammatory properties that polarizes
microglia to an M2c phenotype. Importantly, mice overex-
pressing TGFP have reduced plaque loads [139] and mice
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deficient for TGFp signaling showed elevated pathology
[140]. In-vitro cultures also confirm that TGFP treatment
can enhance microglial uptake of AB [141]. Interleukin-4,
the prototypic M2 inducing cytokine, has been shown in
several cases to mitigate Alzheimer’s disease pathology.
Acute injection of 100 ng of IL-4 decreased A levels in just
a few days [32]. The AP decrease was correlated with an in-
crease in pro AP phagocytic and degradation enzymes
CD36 and neprilysin that colocalized to YM1 and Argl”®
M2 cells. Using an adeno-associated virus type 2 vector to
provide sustained IL-4 expression, Kiyota et al. observed a
reduction in gliosis, decreased AP, and improved spatial
memory [100]. Interestingly, this same group attempted to
replicate these results with IL-10 and only observed an in-
crease in neurogenesis [101]. This discrepancy between
M2-inducing cytokines suggests that different subtypes of
alternatively activated microglia have unique functions.
Interleukin-4-induced M2a microglia seem to be better in
terms of engulfing A, while IL-10-induced M2c microglia
might play more of a supportive function.

Interestingly, and somewhat surprisingly, several groups,
using both immunohistochemistry and ELISA as measure-
ments, have observed that injection of inflammatory cyto-
kines can also result in decreased AP. Work from our
laboratory, in which the APP/PS1 Alzheimer’s disease
mouse [142] was crossed with a mouse that conditionally
expressed IL-1B, demonstrated that four weeks of sus-
tained inflammation led to decreased A plaque depos-
ition as opposed to enhanced pathology [143]. Other
groups have observed similar effects with different proin-
flammatory mediators and cytokines, such as lipopolysac-
charide, IFNy, TNFa, and IL-6 [144-147]. At first, this
does not seem consistent with the in-vitro observations of
inflammatory cytokines impairing AP clearance; however,
one important distinction is that the in-vitro experiments
exist in a closed system. Single treatments with cytokines
in vitro impair phagocytic functions of microglia but do
not take into account other cells and how they react to the
inflammatory state in vivo. As previously mentioned, there
is an established pattern of immune cell activation during
inflammation. Initially there is a proinflammatory re-
sponse, which gives way to an anti-inflammatory response
that mitigates and repairs damage. Cells capable of secret-
ing Th2 cytokines, such as T cells [148-150] and mast cells
[151,152] migrate to the inflamed area and are potential
sources of anti-inflammatory cytokines. However, the
presence and function of these cells during Alzheimer’s
disease is still debated. Even though the activity of periph-
eral cells is not clear, endogenous cells like astrocytes and
microglia have been observed to secrete IL-4 or IL-10 dur-
ing pathological conditions [153]. This important distinc-
tion between in-vivo and in-vitro data needs to be kept in
context when observing how inflammatory stimuli affect
the CNS.
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Figure 1 Working model of microglial polarization. (A) A variety of cytokines are able to polarize microglia to unique phenotypes. These
phenotypes constitute a spectrum as opposed to two binary states. Depending on the stimulus, microglia can be polarized towards one end of
the spectrum and be more M1- or M2-like. (B) Upon prolonged or chronic inflammation, an overabundance of inflammatory cytokines skews
microglial polarization towards the M1 phenotype. M1 microglia, in turn, produce additional inflammatory cytokines, generating a cycle that
further induces inflammation and maintains the M1 state. This skewed population of M1 microglia exhibits impaired phagocytosis and is cytotoxic
in, for example, Alzheimer's disease and multiple sclerosis. (C) To treat neuroinflammatory diseases, certain therapeutic agents, such as glatiramer
acetate, bexarotene, and PPARy agonists, have been used. These treatments have been shown to inhibit inflammation as well as induce M2
activation, resulting in reduced disease severity. A more complete list of such therapeutic agents can be found in Table 2. AD, Alzheimer’s disease,
EAE, experimental autoimmune encephalomyelitis; GA, glatiramer acetate; MS, multiple sclerosis.

M2 microglia: always beneficial?

Not all share the idea that alternatively activated
microglia are a beneficial cell type. As was the case
with Hortega almost a century ago, the function of
microglia is still a debated issue. However, the discus-
sion now centers on the relative contributions of dif-
ferent microglial phenotypes and whether or not they
are truly beneficial. Instead of viewing M2 microglia as
alternatively activated, some believe that this cell type
resembles a deactivated population that actually loses
proper function. In a study by Chakrabarty et al. [154],
an AAV vector carrying IL-4 was injected into the CNS
of the TgCRNDS8 Alzheimer’s disease mouse model.
Contrary to previously published studies [100], an increase
in amyloid pathology was seen [154]. The authors rea-
soned that this increase is due to IL-4 inhibiting microglia
from properly scavenging AP. However, exactly why their
result is so different from other in-vivo and in-vitro data is
unclear.

Additionally, even though downstream products of
Argl activity have been observed to contribute to
wound repair, matrix deposition, and axon regeneration,
excess polyamines can trigger inflammation [155] and
macrophage recruitment [156], suggesting that Argl ac-
tivity can be proinflammatory. This further highlights
the complex nature of alternatively activated microglia

and emphasizes the need to view these cells in context ra-
ther than assume they are beneficial in all circumstances.

Alternative activation in human beings?

The recent advances in our understanding of alternatively
activated microglia and their potential efficacy in treating
disease have led to greater interest in translational human
studies. Unfortunately, the leap to human M2 cells is not
without its own problems. As noted in Table 1, several
commonly used markers, such as Argl and YM1 are not
expressed in human myeloid cells [33], which limits the
ability to identify distinct human microglial phenotypes.
However, other markers appear to be consistent. CD163-
positive cells have been observed in stroke and multiple
sclerosis, providing a means to identify M2 microglia in hu-
man diseases [39,157]. Furthermore, mutations in TREM2,
a molecule implicated in both human and murine M2
microglial function, are associated with increased risk of
Alzheimer’s disease [158]. In relation to this idea, levels of
M2-inducing molecules, such as resolvin D1 [21,159] and
IL-10, were reduced in patients with Alzheimer’s disease
[160]. Moreover, resolvin D1 levels significantly corre-
lated with worse Mini-Mental State Examination scores
[160], suggesting that the lack of factors to induce M2
polarization has potential functional relevance in hu-
man disease. To that end, efforts have been taken to



Cherry et al. Journal of Neuroinflammation 2014, 11:98
http://www.jneuroinflammation.com/content/11/1/98

examine different populations of M1 or M2 markers in
human Alzheimer’s disease patients. Using several differ-
ent mRNAs for M2 markers, two different populations
can be identified: Alzheimer’s disease brains that are
skewed towards M1 and those with an M2a bias [161].
Furthermore, the different populations are associated with
different disease stages. In what appears to be early Alzhei-
mer’s disease, there is an M1 bias, while patients with later
stage Alzheimer’s disease have an M2a bias. This suggests
a potential functional relevance of different microglia pop-
ulations. However, whether the transition from M1 to
M2a is related to disease progression or is simply a re-
sponse to the enhanced pathology is yet to be understood.
Obviously, more work is needed to determine just what
these populations represent.

Conclusion

There is compelling evidence that alternatively activated
macrophages are not only a vital homeostatic element
in the periphery, but that microglia, and perhaps all tis-
sue specific macrophages, also have the capacity for
multiple activation states, defined by the environmental
milieu in normal and disease conditions. Although con-
siderably more work pertaining to peripheral macro-
phages has been accomplished, a significant effort has
been made to better define microglial activation pheno-
types. The notion that there are either ‘good’ or ‘bad’ ac-
tivation states of microglia has lost favor. Rather, there
exists a spectrum that spans several different activation
types with different functions, as represented in our
working model (Figure 1). By understanding the nature
of microglial activation states and identifying particular
induction signals for select states, we come closer to
utilizing such signals as therapeutic tools in pathological
conditions where detrimental polarization may contrib-
ute to disease.
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