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Abstract
Background: Twitcher mouse (twi/twi) is an authentic murine model of Krabbe's disease.
Accumulation of psychosine, resulting in apoptosis of oligodendrocytes and subsequent
demyelination, is a cardinal event to the pathogenesis of this disease. Moreover, recruitment of
inflammatory cells plays a significant role in the pathological process in the twi/twi central and
peripheral nervous systems. In this study, we investigated the 1) the relationship between tumor
necrosis factor-α (TNFα), pro-inflammatory cytokine, and the progression of this disease and 2)
effect of the anti-inflammatory therapy by ibudilast, a phosphodiesterase inhibitor.

Methods: We quantified the expression level of TNFα and TNF-receptor mRNA in twi/twi using
semi-quantitative RT-PCR. The relationship between TNFα expression, apoptosis of
oligodendrocytes and demyelination was studied with immunohistochemistry and TUNEL method.
We then treated twi/twi with a daily intraperitoneal injection of ibudilast (10 mg/kg), which suppress
TNFα production in the brain.

Results: We found that TNFα-immunoreactive microglia/macrophages appeared in the twi/twi
brain and that the mRNA levels of TNFα and TNF-receptor 1 was increased with the progression
of demyelination. The distribution profile of TNFα-immunoreactive microglia/macrophages
overlapped that of TUNEL-positive oligodendrocytes in the twi/twi brain. When twi/twi was treated
with ibudilast from PND30, the number of oligodendrocytes undergoing apoptosis was markedly
reduced and demyelination was milder. Obvious improvement of clinical symptom was noted in
two of five. The failure of constant clinical improvement by ibudilast may result from hepatotoxicity
and/or the inhibition of proliferation of NG2-positive oligodendrocyte precursors.

Conclusion: We conclude that anti-inflammatory therapy by a phosphodiesterase inhibitor can be
considered as a novel alternative therapy for Krabbe's disease.
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Background
The twitcher mouse (C57BL/6J-GALCtwi; twi/twi) is a
model of human globoid cell leukodystrophy (Krabbe's
disease), a disorder caused by an inherited deficiency of
the lysosomal enzyme galactosylceramidase [1-3]. Twi/twi
shows the symptoms of cerebellar dysfunction such as
action tremor and ataxia around postnatal day (PND) 25,
progressive weight loss after PND 35, and cranial and
peripheral nerve palsy, eventually leading to death around
PND 45 [4,5]. Obvious demyelination is recognized after
PND 30 in the central nervous system (CNS). Cliniconeu-
ropathological similarities of this model and the human
disease make this murine model useful for investigations
of pathogenesis as well as for therapeutic approaches [6].
The pathological physiology of twi/twi shares many com-
mon features with that of multiple sclerosis (MS), an
autoimmune demyelinating disease, including the expres-
sion of major histocompatibility complex (MHC) mole-
cules in the CNS [7-9], activation of resident microglia,
recruitment of blood-borne macrophages [10], and the
strong expression of pro-inflammatory cytokines such as
TNFα and interleukin (IL)-6 in the demyelinating focus
[10,11]. Therefore, this murine model is useful for inves-
tigating the pathomechanism of demyelination and devis-
ing therapeutic approaches to the neuroinflammation in
general.

We previously showed that demyelination of twi/twi was
strongly associated with apoptosis of oligodendrocytes
(OLs) [12]. TNFα is the most potent inducer of apoptosis
of OLs among many cytokines in vitro [13]. Additionally,
in twi/twi brains, TNFα was reported to be increased in
demyelinating regions [11] and expression of TNFα and
other immune-related molecules were down-regulated in
the pathologically improved regions [10].

Phosphodiesterase inhibitors increase the intracellular
cAMP levels and reduce the inflammatory cytokines such
as TNFα in vitro [14]. Ibudilast, a non-selective phos-
phodiesterase inhibitor, was reported to reduce demyeli-
nation in experimental allergic encephalomyelitis (EAE)
and to suppress TNFα production by microglia in vitro
[15,16].

In this study we found that 1) the expression of TNFα and
its receptor TNF-R1 was associated with demyelination
and that 2) ibudilast could reduce demyelination and
alleviate the progression of disease and suppress TNFα
production in twitcher brain. These results were consist-
ent with the hypothesis that TNFα signaling enhances
apoptosis of OLs and demyelination in twi/twi, and sug-
gested that suppression of inflammation may provide
new therapeutic approaches to demyelinating diseases.

Methods
Animals
All animal experiments were performed according to the
Guidelines for the Protection of Experimental Animals
issued by the Japanese Government, the US National
Institutes of Health, and the Society for Neuroscience.
Heterozygous breeder pairs of twitcher (twi/+) were origi-
nally purchased from Jackson Laboratory (Bar Harbor,
ME). Twi/twi and normal age-matched siblings (+/+) were
identified by genotyping with genomic DNA extracted
from the clipped tails by use of a Puregene DNA Isolation
Kit (Gentra Systems, Minneapolis, MN). Genotyping was
performed as previously reported [17].

Materials
The following primary antibodies were used: phycoeryth-
rin (PE)-conjugated anti-TNFα (1:50; PharMingen, San
Diego, CA), mouse monoclonal anti-myelin basic protein
(MBP) antibody (1:200; Sternberger Monoclonals Incor-
porated, Lutherville, MA), rabbit polyclonal anti-rat-pi-
form of glutathione-S-transferase (pi-GST) antibody
(1:1000; MBL, Nagoya, Japan), rabbit polyclonal anti-cow
glial fibrillary acidic protein (GFAP) antibody (prediluted;
DAKO, Glostrup, Denmark), biotinylated Ricinus commu-
nis-agglutinin-1 (RCA-1) (50 µg/ml; Vector Laboratories,
Burlingame, CA), and rabbit polyclonal NG2 chondroitin
sulfate proteoglycan (NG2) antibody (1:200; Chemicon
International Inc., Temecula, CA). Biotinylated Ricinus
communis-agglutinin-1 (RCA-1) (50 µg/ml) was pur-
chased from Vector Laboratories (Burlingane, CA).

Tissue preparation
Brains from twi/twi and +/+ mice killed at PND 20, 30, and
40 (n = 3 for each timing period) were immunostained for
TNFα. The mice were perfused with cold physiological
saline under deep inhalation anesthesia with sevoflurane,
and the isolated brains were quickly frozen in liquid nitro-
gen. For routine histochemical staining, mice (n = 3 for
each groups) were perfused with physiological saline, fol-
lowed by 4% paraformaldehyde in 0.1 M phosphate
buffer (PB, pH 7.4). The brain was removed, postfixed and
embedded in paraffin blocks. Luxol fast blue (LFB)-peri-
odic acid Schiff (PAS) staining was performed on the par-
affin sections of twi/twi and +/+ at PND 40 for evaluation
of neuropathology.

For the determination of mRNA levels, groups of twi/twi
and +/+ (n = 3 each timing period) were killed at PND 20,
30, and 40 under appropriate anesthesia. The brains were
then removed, divided into the cerebrum and cerebellum/
brain stem, and quickly frozen in liquid nitrogen.

Immunocytochemistry
Frozen sections were fixed at 4°C in acetone and incu-
bated with PE-conjugated rat anti-mouse TNFα antibody
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for 48 h. For double labeling with RCA-1 and anti-TNFα,
TNFα-stained sections were reacted with biotinylated
RCA-1 for 30 min at room temperature, and then with avi-
din-D-fluorescein isothiocyanate isomer (avidin-FITC;
Vector Laboratories), diluted 1:1000 with PBS, for 30 min.
For NG2 immunostaining, after blocking with 0.3% Tri-
ton-X100 for 1 h, frozen sections were incubated with
anti-NG2 antibody for 12 h at 4°C, and incubated with
Alexa 488-conjugated anti-rabbit IgG (H+L) (1:400;
Molecular Probes, Inc., Eugene, OR) for 2 h.

Paraffin sections were used for immunostaining for MBP
and pi-GST, and terminal deoxynucleotidyltransferase
(TdT)-mediated dUTP nick end labeling (TUNEL). For
immunocytochemistry, sections on glass slides were incu-
bated serially with mouse anti-MBP or rabbit anti-pi-GST
antibody, biotinylated goat anti-mouse or anti-rabbit
immunoglobulins (Vector Laboratories), and avidin-
biotin complex by using an ABC elite kit (ABC; Vector
Laboratories). Immunoreactions were visualized by
immersing the slides in a 0.03% H2O2 solution in 50 mM
Tris-HCl (pH 7.6) containing 0.05% diaminobenzidine
tetrahydrochloride (DAB) and 0.25% nickel ammonium
sulfate. Twi/twi and +/+ at PND 40 were subjected to
TUNEL staining. Nuclei with DNA fragmentation were
detected by using an in situ apoptosis detection kit (Takara
Biomedicals, Osaka, Japan). Briefly, after pretreatment
with 0.1% trypsin for 15 min at 37°C, sections were
reacted with TdT, dNTPs, and FITC-labeled dUTP for 90
min at 37°C, followed by horseradish peroxidase (HRP)-
conjugated anti-FITC antibody overnight at 4°C. The
immunoproduct was visualized with the same protocol
described above.

To identify the type of TUNEL-positive cells, we combined
the staining for pi-GST, GFAP and RCA-1 with the TUNEL
procedure. After TUNEL staining, sections were incubated
with PBS containing 0.3% TritonX-100 and 10% normal
goat serum for 30 min and then with rabbit anti rat-pi GST
antibody, rabbit anti-cow GFAP antibody or biotinylated
RCA-1 at 4°C overnight. The procedures were basically
the same as described above except for the use of ABC-
alkaline phosphatase and naphthol AS-BI phosphate cou-
pled with hexazotized new fuchsin (Merck, Darmstadt,
Germany) as a chromogen.

Quantification of the level of TNFα-mRNA
Total RNA was isolated from the quick-frozen brains with
Isogen (Nippon gene, Toyama, Japan). The random 9-
mers-primed cDNA was prepared with an RNA-LA-PCR
Kit (Takara Shuzo, Kyoto, Japan) and 2 µg of total RNA.

A LightCycler PCR and detection system (Roche Diagno-
sis, Mannheim, Germany) was used for the amplification
and quantification of mRNA for TNFα, TNFR1, TNFR2

and glycerol aldehyde-3-phosphate dehydrogenase
(G3PDH) as previously described [18]. G3PDH served as
an internal control. The sequence-specific primers used
were as follow: TNFα forward primer: 5'-AGT-
GACAAGCCTGTAGCCCACG-3', TNFα reverse primer: 5'-
TTTCTCCTGGTATGAGATAGC-3', TNFR1 forward
primer: 5'-CTAAACAGCAGAACCGAGTGT-3', TNFR1
reverse primer: 5'-AGATACGTAGAGTGTCCTTGG-3',
TNFR2 forward primer: 5'-ATAAAGCCACAC-
CCACAACCT-3', TNFR2 reverse primer: 5'-CATCTCCCT-
GCCACTCACAA-3', G3PDH forward primer: 5'-
TGAACGGGAAGCTCACTGG-3', and G3PDH reverse
primer: 5'-TCCACCACCCTGTTGCTGTA-3'. The con-
structs, used to create a standard curve, were made by
cloning each amplified fragment into the Hind III site of
a pGEM vector (Promega, Madison, WI). The number of
copies was calculated by plotting a dilution series on this
standard curve in each PCR experiment. For amplification
detection, the LightCycler DNA Master Hybridization
Probes Kit was used. Quantification of TNFα mRNA was
performed by conducting 50 cycles of repeated denatura-
tion (1 s at 89°C), annealing (5 s at 58°C), and enzymatic
chain extension (10 s at 72°C). The PCR amplification
conditions for G3PDH were 40 cycles of repeated denatur-
ation (1 s at 87°C), annealing (5 s at 57°C), and enzy-
matic chain extension (10 s at 72°C). Quantification of
TNFR1 and TNFR2 mRNAs was made by using 50 cycles
of repeated denaturation (1 s at 89°C), annealing (5 s at
58°C), and enzymatic chain extension (10 s at 72°C).
Duplicated PCR products were evaluated by melting curve
analysis.

Administration of Ibudilast
Ibudilast was a generous gift from Kyorin Pharmaceutical
Co. Ltd. (Tokyo, Japan). After dissolved to a concentration
of 1 mg/ml in physiological saline containing 10% v/v of
polyoxyethylene hydrogenated castor oil 60 (HCO60),
ibudilast (10 mg/kg) was injected intraperitoneally daily
into three twi/twi from PND 15 to PND 40, and five twi/
twi from PND 30 to PND 45. For controls, the same vol-
ume of HCO 60 was injected into two twi/twi from PND
15 to PND 40 and four twi/twi from PND 30 to PND 45.
The density of TUNEL-positive cells in the demyelinating
lesion in twi/twi, treated from PND 30 to PND 45 was cal-
culated by using MacSCOPE software (Mitani Co, Fukui,
Japan). Two independent neuropathologists examined
the LFB-PAS-stained coronal sections (four sections per
mouse) at the level of the optic chiasm and at the cerebel-
lopontine angles containing the paraflocculus in a dou-
ble-blind manner and scored the severity of
demyelination from 0 to 5. 0: no demyelination, 1: slight
demyelination, 2: less than 25% of the areas are occupied
by a demyelination focus, 3: 25% ~ 50% of the areas occu-
pied, 4: 50 ~ 75% of the areas occupied, 5: more than 75%
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of the areas occupied. The scores were average of two
examiners' evaluations.

In situ hybridization for TNFα
The cDNA probe for TNFα comprised a 268-bp PCR frag-
ment (forward primer; 5'-GATGGGTTGTACCTTGTC-
TACTCC-3' and reverse primer; 5'-
CTAAGTACTTGGGCAGATTGACCT-3') from the mouse
TNFα, and was subcloned into a pGEM-T Easy vector
(Promega, Madison, Wisconsin). In situ hybridization was
carried out by using manual capillary action technology
with a Microprobe staining system (Fisher Scientific Inter-
national, Hampton, NH) as previously described [19,20].
First, brain sections (10 µm) were deparaffinized with
Auto Dewaxer (Research Genetics, Huntsville, AL). The
sections were rinsed in Auto Alcohol, Universal Buffer,
and Immuno/DNA buffer (Research Genetics). Prediges-
tion by proteinase K (15 µg/ml; Sigma-Aldrich, St Louis,
MO) was performed to increase the tissue penetration of
the probe. After this digestion, the tissue sections were
treated with Immuno/DNA buffer. The DIG-labeled cRNA
probe was diluted to 0.5 µg/ml with Brigati probe diluent
(Research Genetics), 50% deionized formamide, and 50%
dextran sulfate. The probe solution was heated at 90°C to
denature the cRNA structures and applied to the slides.
The hybridization of tissue and probe was done at 50°C
for three hours. After hybridization, the slides were
washed in 2 × SSC containing nonionic detergent. The
detection of the DIG-labeled RNA was performed by using
the Genius DNA labeling and detection kit (Roche Diag-
nostics). For counterstaining, neutral red was applied.

Statistical analysis
Student's t test was performed by using Stat View software
(SAS Institute, Cary, NC). p< 0.05 was considered as
significant.

Results
Levels of TNFα and TNFR1 are increased in the twitcher 
cerebellum
The level of TNFα mRNA was the same in both cerebellum
and cerebrum of the +/+ at any age examined. In the cere-
brum, the level of TNFα-mRNA in twi/twi was almost the
same as that in +/+ until PND 30, however, it increased to
become approximately 15 times higher at PND 40 than
that of +/+. In the cerebellum, there was no difference in
the TNFα mRNA level between twi/twi and +/+ at PND 20,
however, its level increased significantly in twi/twi after
PND 30, becoming 40 times higher in twi/twi than +/+ at
PND 40 (Fig. 1A).

Next, we investigated the levels of TNFR1 and TNFR2. In
the +/+ cerebellum, the level of TNFR1 mRNA was con-
stant throughout all the ages examined, whereas in the
twi/twi cerebellum, it significantly increased with the pro-

gression of demyelination, becoming 50 times higher
than that in +/+ at PND 40. In contrast, mRNA for TNFR2
increased in twi/twi only after PND 40, when compared
with that for +/+ (Fig. 1B).

Immunocytochemical analysis revealed that TNFα-immu-
noreactive cells were not recognized at PND 20 (Fig. 1C)
in twi/twi. However, many TNFα-immunoreactive cells
were found in the cerebral white matter, brain stem and
cerebellar white matter (CWM) at PND 30 (Fig. 1D) and
40 (Fig. 1E). On the other hand, TNFα-immunoreactive
cells were not detected anywhere in the +/+brain even at
PND 40 (Fig. 1F). These data were compatible with the
data of the quantitative RT-PCR.

TNFα expression is increased in microglia/macrophages 
within demyelinating lesions in twi/twi
The morphological characteristics of TNFα-positive cells
were an irregular cellular contour and lack of delicate
processes, reminiscent of ameboid microglia/macro-
phages. Furthermore, TNFα-positive cells were positive
for RCA-1, a marker for macrophage (arrows in Fig. 2A),
but negative for pi-GST, a marker for OLs, or GFAP, a
marker for astrocytes (data not shown), confirming those
cells to be microglia/macrophages. In the twi/twi brain,
both TNFα-positive cells and TUNEL-positive cells were
most abundant in the CWM (Fig. 2B, C) and in the spinal
trigeminal tract (sp5) in the superior midbrain (Fig. 2E,
F). The majority of TUNEL-positive cells were also positive
for pi-GST (arrowheads in Fig. 2C, F, I), identifying them
as OLs (inset in Fig. 2C). These lesions of the cerebellum
were most severely demyelinated judged by MBP immu-
nostaining (Fig. 2D, G). In contrast, in the corpus callo-
sum, where demyelination was milder than in the
cerebellum, only a few TNFα-positive cells were detected
(Fig. 2H – J).

Administration of phosphodiesterase inhibitor ameliorates 
demyelination and the clinical symptoms
To investigate whether the inflammatory response in
microglia/macrophages contributes to the demyelination
in twi/twi, we administered a phosphodiesterase inhibitor,
ibudilast, to twi/twi. Two out of five twi/twi treated from
PND 30 revealed strikingly milder clinical symptoms (Fig.
3A). Even at PND 45, two of ibudilast-treated twi/twi from
PND 30 could move smoothly despite mild hindlimb
paralysis, and showed less severe tremor and ataxia than
vehicle-treated twi/twi. These mice were bigger than vehi-
cle-treated twi/twi, as they had less weight loss (Fig. 3B). In
contrast, ibudilast-treated twi/twi from PND 15 showed
neither apparent clinical improvement nor elongation of
lifespan, however, their body weights were heavier than
those of vehicle-treated twi/twi.
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TNFα and its receptors increased as demyelination proceededFigure 1
TNFα and its receptors increased as demyelination proceeded. A-B: Quantification of mRNA for TNFα (A) and its receptors 
(B). The copies of mRNA for TNFα have increased in twi/twi (■) after PND 30, especially in the cerebellum, when compared 
with those in +/+ (▲). Those for TNFR1 in the cerebellum have increased in twi/twi after PND 30. The copies of mRNA for 
TNFR2 have increased in twi/twi only after PND 40, when compared with those for +/+, but the difference was not significant 
(B). Bar represents mean ± SE. * p < 0.01. C-F: TNFα immunostaining in the cerebellum. There are no TNFα-positive cells in 
the cerebellum of twi/twi mice at PND 20 (C). Immunoreactive cells for TNFα are progressively increased in number in the twi/
twi cerebellar white matter between PND 30 (D) and PND 40 (E). In contrast, there are no TNFα positive cells in +/+ brains 
at any ages examined (F). Tw and W represent twi/twi and wild-type mice, respectively. The data represent mean ± SE. IG: 
internal granular layer, CWM: cerebellar white matter. Scale bar = 50 µm.
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TNFα is expressed in activated microglia/macrophages in the regions where many apoptotic OLs are recognized with severe demyelinationFigure 2
TNFα is expressed in activated microglia/macrophages in the regions where many apoptotic OLs are recognized with severe 
demyelination. A: Double labeling of TNFα and RCA-1 of the twi/twi cerebrum at PND 40. Arrows indicate microglia/macro-
phages, which are double positive for TNFα and RCA-1. B-J : In twi/twi at PND 40, there are many TNFα-positive cells (B, E) as 
well as many TUNEL-positive cells (C, F) in the CWM and sp5, where severe demyelination was present as judged from the 
results of MBP immunostaining (D, G). These apoptotic cells are immunostained with pi-GST, identified to be OLs (inset in C). 
In the corpus callosum (cc), there are only a few TNFα-positive cells (H) and TUNEL-positive cells (I), where demyelination 
was milder than in the cerebellum (J). Asterisks and double asterisks represent the same region in the serial sections. Scale bars 
= 50 µm (B-J), 10 µm (inset in "C").
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The signal for TNFα mRNA obtained by in situ hybridiza-
tion was recognized in the cells with small nuclei in the
CWM and sp5 of vehicle-treated twi/twi (inset in Fig. 4A),
corresponding to the presence of TNFα-immunoreactivity

in the microglia. This signal was significantly reduced in
the ibudilast-treated twi/twi (Fig. 4B, D). The number of
TUNEL-positive cells was decreased in the CWM in ibudi-
last-treated twi/twi (Fig. 4F, H) compared with that of the
vehicle-treated mice (Fig. 4E, G). TUNEL-positive cells
were decreased in other regions such as the 8th nerve (8 n)
and sp5 in ibudilast-treated twi/twi than in vehicle-treated
mice (Fig. 5, the upper bar graph).

LFB-PAS staining revealed that the demyelination was
remarkably suppressed in the ibudilast-treated mice from
PND 30 (Fig. 4J, L) compared with the vehicle-treated
ones (Fig. 4I, K), as shown in the score of demyelination
(Fig. 5, lower bar graph). From these lines of evidence, we
concluded that the demyelination and clinical symptoms
were reduced with inhibition of TNFα in twi/twi.

Ibudilast treatment decreased NG2-positive OL progenitors
To evaluate the effect of ibudilast to the OL progenitors,
frozen sections were stained with anti-NG2 antibody. In
contrast to the vehicle-treated twi/twi, ibudilast-treated
twi/twi showed fewer NG2-positive OL progenitors (Fig.
6), suggesting that incomplete clinical improvement may
result from the insufficient remyelination in ibudilast-
treated twi/twi.

Discussion
Our results suggested that secondary inflammation via
TNFα produced in microglia/macrophages remarkably
enhances the apoptosis of OLs and aggravates the demy-
elination due to the metabolic defect in twi/twi. These are
consistent with previous reports showing that TNFα
induces apoptosis of OLs in vitro [21,22], and that TNFα
is upregulated in macrophages and globoid cells in twi/twi
[11].

TNFα is a well-established pro-inflammatory mediator of
immune process, and is essential to the maintenance of
CNS homeostasis. However, its overexpression leads to
the development of chronic CNS inflammation and
degeneration [23]. We previously observed emergence of
TNFα-expressing cells with progression of demyelination
and the number of those cells declined following bone
marrow transplantation with prolonged survival in twi/twi
[10]. TNFα was expressed by infiltrating blood mononu-
clear cells, and its expression was well correlated with the
extent of demyelination in another genetic demyelinating
disease, X-linked adrenoleukodystrophy[24], and in the
MS [25]. TNFα-transgenic mice showed more severe
demyelination and macrophage infiltration in EAE, a
mouse model for MS [26]. Of two TNFRs, TNFR1 was
reported to mediate the pathogenetic effects of TNFα,
such as inflammation, cytotoxicity, and apoptosis of OLs
in EAE [13,27-29]. Our study showed that TNFR1 was
dominant from the early demyelinating stage and that

A: Two twi/twi at PND 44, one ibudilast-treated and other vehicle-treated from PND 30Figure 3
A: Two twi/twi at PND 44, one ibudilast-treated and other 
vehicle-treated from PND 30. The ibudilast-treated twi/twi is 
much bigger and can walk faster and reach the feedbox, in 
spite of mild paralysis and spasticity in lower limbs. In con-
trast, the vehicle-treated twi/twi can no longer walk nor feed 
itself. In addition, the ibudilast-treated twi/twi has much 
milder tremor than the vehicle-treated twi/twi. B: The change 
of body weight (g) of ibudilast- and vehicle-treated twi/twi. 
Both twi/twi treated with ibudilast or vehicle from PND 15 
(● : ibudilast-treated twi/twi, ❍: vehicle-treated twi/twi) 
showed less weight gain compared with those treated from 
PND 30 (■: ibudilast-treated twi/twi, �: vehicle-treated twi/
twi), and no prolongation of the life span. However, ibudilast-
treated twi/twi showed less body weight loss than vehicle-
treated twi/twi. N = 3 and 2 in ibudilast- and vehicle-treated 
twi/twi from PND 15. The ibudilast-treated twi/twi from PND 
30 were bigger and showed milder clinical detrerioration. N 
= 5 and 4 in ibudilast- and vehicle-treated twi/twi from PND 
30. The data represent mean ± SE.
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Suppression of TNF mRNA expression is accompanied by inhibition of apoptosis and subsequent milder demyelination in ibud-ilast-treated twi/twi at PND45Figure 4

Suppression of TNF  mRNA expression is accompanied by inhibition of apoptosis and subsequent milder demyelination in 
ibudilast-treated twi/twi at PND45. A, B, E, F, I, J: CWM, C, D, G, H, K, L: sp5. A-D: In situ hybridization of TNFα mRNA in 
vehicle-treated twi/twi (A, C) and ibudilast-treated twi/twi (B, D). Whereas vehicle-treated twi/twi show abundant signals in 
CWM (A) and sp5 (C), TNFα mRNA signals are remarkably reduced in the ibudilast-treated twi/twi (B, D). Inset in "A" shows 
TNF-α mRNA-positive microglia. E-H: TUNEL staining of vehicle-treated twi/twi (E, G) and ibudilast-treated twi/twi (F, H). Ibud-
ilast-treated twi/twi shows fewer TUNEL-positive cells than are seen in vehicle-treated twi/twi. Arrowheads indicate TUNEL-
positive cells. I-L: LFB-PAS staining of vehicle-treated twi/twi (I, K) and ibudilast-treated twi/twi (J, L). In the ibudilast-treated twi/
twi, CWM and sp5 show much milder demyelination than in vehicle-treated twi/twi. Scale bar = 100 µm (I-L), 50 µm (A-H), 10 
µm (inset in "A").
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demyelination and OL apoptosis was alleviated by the
suppression of TNFα in ibudilast-treated twi/twi. These
lines of evidence suggested that the stimulation of TNFR1
was associated with apoptosis of OLs and demyelination
in twi/twi. Therefore, we believe that TNFα/TNFR1-medi-
ated secondary inflammation is involved in the progres-
sion of pathology in varieties of demyelinating diseases.

In this study, we selected ibudilast as an immunomodula-
tory agent which also suppressed the production of other
inflammatory mediators, such as nitric oxide (NO), IFN-
γ, and IL-6, and enhanced the production of the inhibitory
cytokine, IL-10, and neurotrophic factors, including nerve
growth factor (NGF), glia-derived neurotrophic factor
(GDNF) and neurotrophin (NT-4) [30]. Since inducible
nitric oxide (iNOS) and IL-6 were strongly upregulated in
twi/twi and Krabbe's disease [10,11,31], the positive effect
of ibudilast may be also associated with suppression of
iNOS and IL-6, and enhancement of inhibitory cytokines

and neurotrophic factors. However, taking into account
that TNFα is the most potent cytotoxic cytokine, and that
signals for TNFα mRNA were remarkably suppressed in
the areas of severe demyelination in ibudilast-treated twi/
twi, the effect of ibudilast may be mediated, at leaset in
part, by the suppression of TNFα expression.

Several different types of anti-TNFα therapy have been
recently reported. For example, TNF-receptor-p55-immu-
noglobulin fusion protein was reported to suppress demy-
elination in EAE [32,33], whereas it showed no significant
efficacy in MS patients [34,35]. Infliximab and etanercept,
used as anti-TNFα agents for rheumatoid arthritis and
Crohn's disease, are rather reported to induce demyelina-
tion [36,37]. In contrast to the poor outcomes of these
direct TNFα suppression, interferon (IFN) β [38,39] and
glatiramer acetate (GA) [40,41] have been widely
approved as effective immunomodulatory treatments for
MS. TNFα production was significantly reduced in mono-
cytes from patients treated by GA [42], which acts prima-
rily as an antigen for T lymphocytes. Furthermore, MS
patients who received administration of IFNβ revealed
decreased mRNA for TNFα [43] and an increase in serum
TNFRs, of which TNFR2 may play a protective role for
myelin [44].

The clinical symptoms were improved in only two ibudi-
last-treated twi/twi, whereas the demyelination was milder
in all of the treated twi/twi. In the ibudilast-treated twi/twi
without clinical improvement, the number of NG2-
immunoreactive OL progenitors was decreased, compared
with that in vehicle-treated twi/twi. Lack of TNFα has been
reported to result in a significant delay of remyelination in
a cuprizone-induced demyelination model, due to a
reduced number of proliferating OL progenitors [45],
since the signal transduction of TNFα via p75 TNF recep-
tor 2 (TNFR2) is known to induce proliferation of OL pro-
genitors [27,28]. Therefore, TNFα stimulation may be
involved not only in the apoptotic signal pathway medi-
ated by TNFR1, but may also play a regenerative role via
activation of TNFR2 [46]. Earlier treatment with ibudilast
from PND 15 showed less apparent clinical effect com-
pared with that from PND30, probably due to the follow-
ing two reasons: daily intraperitoneal injection itself
could be too invasive for younger twi/twi to gain weight
and/or TNFR2-stimulated proliferation of OLs in this
period of active myelination is profoundly inhibited by
the reduced TNFα production. These lines of evidence
suggested that TNFα inhibitor should be used for a lim-
ited period of time or in a TNFR1-specific manner.

The cytotoxicity of ibudilast may be another explanation
for the failure of clinical improvement in some cases:
when we administered a high dosage (20 mg/kg) of ibud-
ilast to twi/twi, it induced vacuolar degeneration of

Ibudilast-treated twi/twi show pathological improvementFigure 5
Ibudilast-treated twi/twi show pathological improvement. 
Population of TUNEL-positive cells and neuropathological 
scores of LFB-PAS in ibudilast- (closed-boxed; N = 4) or 
vehicle-treated (hatched; N = 3) twi/twi. In CWM, 8 n, and 
sp5 of the ibudilast-treated twi/twi, the number of TUNEL-
positive cells is decreased to half of those in the vehicle-
treated twi/twi. They also recognized significantly milder 
demyelination in LFB-PAS stain. 8 n: the 8th nerve. *p < 0.01, 
**p < 0.05. The error bars represented standard deviations.
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hepatocytes and the mice died of the hepatic failure (data
not shown). When ibudilast was directly administered by
an intraventricular injection to avoid systemic adverse
effect, periventricular tissues were extensively damaged by
this chemical. These results indicate that other drugs with
less cytotoxicity are necessary to improve the symptoms of
twi/twi and other demyelination diseases.

From these lines of evidence, we propose that anti-inflam-
matory therapy by a phosphodiesterase inhibitor during
an appropriate period, may be a reliable supportive treat-
ment for Krabbe's disease for which there is no effective
treatment except bone marrow transplantation [6,23,47-
49].

Conclusion
These results suggest that the suppression of inflamma-
tion by a phosphodiesterase inhibitor could be a novel
therapy in genetic demyelination.
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Ibudilast surpresses proliferation of NG2-positive OL progenitorsFigure 6
Ibudilast surpresses proliferation of NG2-positive OL progenitors. A: Vehicle-treated twi/twi shows many NG2-positive OL 
progenitors. B: Ibudilast-treated twi/twi shows decreased number of NG2-positive OL progenitors. Allows: NG2-positive OL 
progenitors labeled with Alexa 488. Scale bar = 50 µm
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