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Abstract

Background: Inflammation and oxidative stress play a critical role in neurodegeneration associated with
acute and chronic insults of the nervous system. Notably, affected neurons are often responsive to and
dependent on trophic factors such as nerve growth factor (NGF). We previously showed in NGF-
responsive PCI2 cells that tumor necrosis factor alpha (TNFo) and NGF synergistically induce the
expression of the free-radical producing enzyme inducible nitric oxide synthase (iNOS). We proposed that
NGF-responsive neurons might be selectively exposed to iINOS-mediated oxidative damage as a
consequence of elevated TNFa. levels. With the aim of identifying possible therapeutic targets, in the
present study we investigated the signaling pathways involved in NGF/TNFo-promoted iNOS induction.

Methods: Western blotting, RT-PCR, transcription factor-specific reporter gene systems, mutant cells
lacking the low affinity p75NTR NGF receptor and transfections of TNFo/NGF chimeric receptors were
used to investigate signalling events associated with NGF/TNFo-promoted iNOS induction in PCI2 cells.

Results: Our results show that iINOS expression resulting from NGF/TNFo combined treatment can be
elicited in PCI2 cells. Mutant PCI2 cells lacking p75NTR did not respond, suggesting that p75NTR is
required to mediate iINOS expression. Furthermore, cells transfected with chimeric TNFo/NGF receptors
demonstrated that the simultaneous presence of both p75NTR and TrkA signaling is necessary to
synergize with TNFo to mediate iINOS expression. Lastly, our data show that NGF/TNFo.-promoted
iNOS induction requires activation of the transcription factor nuclear factor kappa B (NF-xB).

Conclusion: Collectively, our in vitro model suggests that cells bearing both the high and low affinity NGF
receptors may display increased sensitivity to TNFa in terms of iINOS expression and therefore be
selectively at risk during acute (e.g. neurotrauma) or chronic (e.g. neurodegenerative diseases) conditions
where high levels of pro-inflammatory cytokines in the nervous system occur pathologically. Our results
also suggest that modulation of NFkB-promoted transcription of selective genes could serve as a potential
therapeutic target to prevent neuroinflammation-induced neuronal damage.
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Background

Neuroinflammation is thought to play a prominent role
in neurodegeneration associated with a variety of acute
and chronic insults in both the central (CNS) and periph-
eral (PNS) nervous system [1,2]. Examples of neurotrau-
matic or neurodegenerative conditions where the
occurrence or role of neuroinflammation has been docu-
mented include peripheral nerve injury [3-6], acute and
chronic spinal cord injury [7-11], traumatic brain injury
[12-14], stroke [15-17], amyotrophic lateral sclerosis
(ALS, [18-20] and Alzheimer Disease (AD, [21-24].

Neurons susceptible to neuroinflammatory insults are
often dependent for their survival on target derived neuro-
trophic factors such as nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF) or glia-derived neu-
rotrophic factor (GDNF). The same neurodegenerative
conditions have also been associated with the presence of
damaging high levels of free radical species leading to
pathological oxidative stress [25]. For example, inflamma-
tory involvement in AD pathogenesis has been proposed
partly based on observations of increased levels of the
pro-inflammatory cytokines tumor necrosis factor alpha
(TNFa) and interleukin-1 beta (IL-1B) in cerebrospinal
fluid and brain cortex of AD patients [26,27]. Addition-
ally, among the most affected neurons in AD are the basal
forebrain cholinergic neurons (BFCN, [28-30]), which
rely upon trophic support by target-derived NGF [31,32].
Furthermore, there is strong evidence for the presence of
oxidative damage in the AD brain [33-36]. Similarly, neu-
ronal damage following acute spinal cord injury or
peripheral nerve injury has been shown to involve a neu-
roinflammatory as well as oxidative stress component
[1,8,10,11,37-39], and traumatic head injury is also
known to be associated with increased circulating concen-
trations of inflammatory cytokines and reduced numbers
of basal forebrain cholinergic neurons [13,40-42].

Thus, there seems to be an intimate relationship between
pro-inflammatory cytokines, oxidative stress and trophic
factors that underscores the neuropathological conse-
quences of extrinsic (e.g. traumatic) or intrinsic (e.g. dis-
ease-related) injury to the nervous system. Our previous
work has shown that in NGF-responsive rat pheochromo-
cytoma (PC12) cells TNFo induces expression of the free
radical nitric oxide (NO) synthesizing enzyme NOS II
(iNOS) only in the presence of NGF acting through its
high affinity receptor TrkA [43]. Indeed, perturbed levels
of NOS and NO-derived oxidative damage have been
reported in both acute and chronic neurodegenerative
conditions [25], including spinal cord injury [44-46],
stroke [47,48] and AD [49-53]. However, TNFo alone has
not been shown to be an effective inducer of human iNOS
promoter activity [54] or of rat cortical iNOS expression
when administered intracerebroventricularly [55]. None-
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theless, TNFoa has been shown to contribute to the death
of NGF-dependent neurons in wvitro [56] and in vivo
[57,58]. Therefore, our previous results suggest the attrac-
tive idea that one mechanism through which increased
levels of TNFa affect certain trophic factor-responsive
neurons may involve NO-derived oxidative damage
brought about by a synergistic induction of iNOS. Under-
standing the molecular mechanisms mediating the syner-
gistic NGF/TNFo.-promoted induction of iNOS may thus
provide novel therapeutic targets for the prevention of cer-
tain neurodegenerative events associated with acute or
chronic injury of the nervous system.

Here we report that a reversible expression of iNOS, pro-
duced in PC12 cells by simultaneous exposure to NGF
and TNFa, requires the simultaneous presence of both the
low-affinity p75NTR and the high-affinity TrkA NGF
receptors. Furthermore, using specific inhibitors and a
reporter gene assay, we show that such synergistic effect of
the combined NGF/TNFa treatment is mediated by the
transcription factor nuclear factor kappa B (NF-xB).

Methods
Materials
All routine reagents and chemicals were obtained from
Sigma-Aldrich (St Louis, MO, USA), except where noted

otherwise. Recombinant human and rat TNF® and rat IGF
were obtained from R&D Systems, Minneapolis, MN,
USA, purified mouse NGF from Harlan Bioproducts, Indi-
anapolis, IN, USA, and pyrrolidine dithiocarmbamate
(PDTC), the octapeptide proteasome inhibitor (PSI),
PD98059, K252a and 1400 W from Calbiochem, San
Diego, CA, USA.

Clonal cell lines

Stock cultures of rat pheochromocytoma cells (PC12; a
kind gift of Dr. Lloyd Greene, Columbia University, New
York, NY, USA) and PC12 cells lacking the low affinity
p75NTR NGF receptor were maintained in 75 cm? tissue
culture flasks in 10 ml RPMI-1640 culture medium sup-
plemented with 5% heat inactivated fetal bovine serum in
a humidified cell incubator at 37°C kept at a 5% CO,
atmosphere. Half of the medium was replaced every other
day and the cells were split once a week to maintain cell
viability.

Expression vectors

Transient transfection of cells was performed by a lipo-
somal packaging system. Briefly, 1.2 pmol of expression
vector were mixed with DMRIE-C (Life Technologies,
Carlsbad, CA, USA) in a 1:3 DNA to liposome ratio. The
DNA/liposomes were diluted in 400 ul serum free trans-
fection medium (Optimem) and then added to approxi-
mately 100,000 cells in a 12 well cell culture plate. The
cells were allowed to take up the liposomal DNA for 3
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hours before being washed and returned to cell culture
medium. Cells were allowed to recover for 24 hours
before any treatments. The cDNA coding for chimeric pro-
teins bearing the extracellular domain of the TNFR1 recep-
tor and the transmembrane and cytosolic domains of the
NGEF receptors (either p75NTR or TrkA) was a kind gift
from Dr. Eric Shooter and prepared as described [77],
(Stanford University, Palo Alto, Ca, USA). The p-SEAP
expression vector, containing the SEAP gene under NF-kB,
AP1 or CRE enhancer control, was purchased from Clon-
tech (Palo Alto, CA, USA). Conditioned medium from
cells transfected with the SEAP reporter vectors was
assayed for alkaline phosphatase by sampling the
medium and using the chemiluminescent Great EscAPe
SEAP assay (Clontech, Palo Alto, CA, USA), according to
manufacturer's instructions.

Western blot analysis

Cells were lysed using an SDS-based lysis buffer (2% SDS,
5 mM EDTA, 50 mM Tris, 1 mM each of DTT, PMSF and
protease inhibitor cocktail). Following an ice-cold PBS
wash, cells were lysed with SDS lysis buffer and the soni-
cated briefly before clarifying by centrifugation at 20,000
g for 20 minutes at 4 °C. After centrifugation the superna-
tant was collected and protein content was measured
using the standard BCA protein assay (Pierce, Rockford,
IL, USA). Protein extracts (40 pg) were diluted in 6X sam-
ple buffer and loaded onto a 6% SDS-polyacrylamide gel.
Gels were run for one hour at 100 V and then were trans-
ferred to a nitrocellulose membrane overnight at 25 V. All
incubations were at room temperature in 0.5% Tween in
Tris buffered saline (TTBS). The membranes were blocked
for one hour in 5% milk in TTBS. Primary monoclonal
anti-iNOS (Signal Transduction Laboratories, San Diego,
CA, USA) or polyclonal anti-TNFR1 (Santa Cruz Biotech-
nology, Santa Cruz, CA, USA) were diluted in 2.5% milk
in TTBS at 1:1000 and membranes were incubated with
the antibody for one hour at room temperature. Mem-
branes were washed three times for ten minutes each in
TTBS before incubating for one hour with a horseradish-
peroxidase secondary antibody (BioRad, Hercules, CA,
USA) at 1:7500 in 2.5% milk in TTBS. Finally, membranes
were washed again in TTBS three times for ten minutes
each. Immunoreactive bands were visualized by a chemi-
luminescent western blot detection kit (Amersham Bio-
sciences, Piscatay, NJ, USA) according to manufacturer's
instructions. Images were captured using a 12 bit mono-
chrome camera (UVP, Upland, CA, USA).

Reverse transcriptase polymerase chain reaction assay

Total RNA was extracted with Trizol Extraction Kit (Gibco
BRL, San Diego, CA, USA) according to manufacturer's
instructions. One ug of total RNA from each sample was
applied to Ready-to-go RT-PCR Beads (Amersham Bio-
sciences, Piscatay, NJ, USA) and used to complete the
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amplification protocol according to manufacturer's
instructions. Primer sequences for rat iNOS were as fol-
lows; forward 5'-CAC GGA GAA CAG AGT TGG-3' and
reverse 5'-GGA ACA CAG TAA TGG CCG ACC-3'. Ampli-
fied samples were run on agarose gels and stained with
ethidium bromide. Images were captured using a 12 bit
monochrome camera (UVP, Upland, CA, USA).

Flow cytometry

One ug of antibody against TrkA or p75NTR (Santa Cruz
Biotechnology, Santa Cruz, CA, USA) was labeled with
Zenon Rabbit IgG labeling kit from Molecular Probes
(Eugene, OR) according to manufacturer's instructions
and incubated for 1 hr with the cells in suspension. After
incubation, labeled cells were visualized and quantified
using a Becton Dickinson FACS Vantage Flow Cytometer
set at appropriate instrument parameters.

Statistical analysis

Where appropriate, data were expressed as mean +/-
standard error of the mean (S.E.M.), and analyzed by stu-
dent unpaired two-tailed t test with significance set at p <
0.05.

Results

Combined NGF and TNF ¢ induce iNOS message and
protein

The upper panel of figure 1 shows a western blot detecting
iNOS in PC12 cells treated simultaneously with 10 ng/ml
NGF and 10 ng/ml TNFa in the presence or absence of 50
nM K252a, an inhibitor of phosphorylative events associ-
ated with tyrosine kinase receptor activation that has been
shown to block the function of the high affinity NGF
receptor TrkA [61]. There was a marked induction of iNOS
expression only in cells simultaneously treated with NGF
and TNFa, while neither treatment alone elicited any
effect. Furthermore, K252a completely abolished NGF/
TNFo-promoted iNOS induction, suggesting that TrkA
function is essential to mediate it. As shown in the lower
panel of figure 1, along with increased protein levels there
was also an induction of iNOS mRNA in PC12 cells
treated with NGF and TNFo but not in cells treated with
either factor alone.

NGF and TNF ¢ are both required for sustained iNOS
expression

Figure 2A shows western blots detecting iNOS in cells
treated with increasing concentrations of NGF (top panel)
or TNFa (bottom panel), in the presence or absence of a
fixed amount of TNFa or NGF, respectively. Either factor
was ineffective when added alone at any of the concentra-
tions tested. However, there was a marked dose-response
increase in iNOS expression when increasing concentra-
tions of NGF or TNFo were added in the presence of a
fixed amount of TNFa or NGF, respectively. Figure 2B
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Figure |
A: (Top) Western blot analysis detecting the presence of
iNOS in 40 ug total protein extracts from PCI2 cells treated

for 24 hr with 10 ng/ml NGF and 10 ng/ml TNFY, individually
or combined (Both), in the presence of 50 nM of the recep-
tor tyrosine kinase inhibitor K252a. Positive control (Pos) is

4 ug of total protein extracts from mouse macrophages.
(Bottom) RT-PCR detecting iNOS mRNA in PCI2 cells

treated for 24 hr with 10 ng/ml NGF and 10 ng/ml TNFQ(,
individually or combined (Both) compared to untreated cells
(Cont). Internal PCR controls lacking reverse transcriptase
(RT-) were performed on each sample as shown. Results
shown are representative of 3 replicate experiments.

shows a representative western blot detecting iNOS
expression in cells continuously treated with NGF and
TNFa as compared to cells in which the combined treat-
ment was withdrawn after 24 hr. The expression of iNOS
returned to basal, undetectable, levels between 24 and 48
hr after withdrawal of both TNFo and NGF. Furthermore,
as shown in figure 2C, withdrawal of either NGF or TNFo
alone was sufficient to abolish iNOS expression induced
by the combined treatment, both at the protein (top
panel) and mRNA level (bottom panel). To exclude the
involvement of unknown serum factors, NGF/TNFo.-pro-
moted induction of iNOS was determined in cells cul-
tured for 24 hr in serum free or in defined medium N2
(Figure 2D). There was a detectable iNOS induction in
both serum free- and defined medium-cultured cells,
although much reduced in serum free conditions, which
is predictable as PC12 cells do not survive for longer peri-
ods of time (24-48 hrs) in the absence of serum or N2
supplements. Since insulin is present in both serum and
the N2 supplement, and can activate the insulin-like
growth factor (IGF) receptor, we asked whether TNFo. may
synergize with IGF, which is also present in serum, to
induce iNOS expression. The results shown in Figure 2E
indicate that this is not the case.
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TNF aINGF-mediated iNOS expression is independent of
NOS enzymatic activity

In order to determine whether the enzymatic activity of
iNOS may play a role in sustaining TNFo,/NGF-promoted
signaling we pretreated PC12 cells with two NOS inhibi-
tors prior to TNFo/NGF tretament. Pretreatment with
N(G)-nitro-L-arginine methyl ester (L-NAME) did not
affect expression of iNOS induced by the NGF/ TNFa
combined treatment (Figure 3A). The same result was
observed if a more specific inhibitor of iNOS (1400 W)
was used instead of L-NAME (Figure 3B). Concentrations
of 1400 W used here have been previously shown to be
effective in inhibiting selectively iNOS activity in PC12
cells by others [78]. These results suggest that sustained
iNOS expression in response of the combined NGF/TNFo
treatment is independent of NOS enzymatic activity.

NGFI/TNF . promoted iNOS induction requires the
transcription factor NF-xB

Figure 4 shows results from PC12 cells transiently trans-
fected with a secreted alkaline phosphatase reporter gene
construct (SEAP) promoted by enhancer sequences spe-
cific for nuclear factor kappa B (NF-xB), activator protein
1 (AP-1), cAMP-responsive element (CRE) or Tal (non-
inducible control). Twenty-four hr after transfection cells
were treated with 10 ng/ml each of TNFa and NGF (alone
or combined) and SEAP released in the culture medium
(an index of endogenous transcription factor activation)
was assayed 3 hr and 12 hr later. At 3 hr, cells treated with
TNFo showed a significant increase in NF-xB activity but
not AP-1 or CRE. Cells treated with NGF alone showed at
3 hr no significant increase in NF-xB, AP1 or CRE activity.
When cells were exposed to the combined NGF/ TNFa
treatment, there was a robust increase in NF-xB activity
that was significantly higher than the response induced by
the individual treatment with TNFo. On the other hand,
neither AP-1 nor CRE activity were significantly affected
by the combined NGF/ TNFo treatment. At 12 hr, both
TNFo and NGF/TNFa combined treatments significantly
increased NF-kB activity, but were not statistically signifi-
cantly different. NGF-treated cells showed a significant
increase in AP-1 and CRE activity at 12 hr, while NF-xB
activity was not affected. As a result, there was also a sig-
nificant increase in AP-1 and CRE activity elicited by the
NGF/TNFo. combined treatment at 12 hr. Neither NGF
nor TNFo (alone or combined) elicited any effect on the
control reporter construct Tal, either at 3 or 12 hr.

Involvement of NF-xB was further explored by determin-
ing the extent to which pharmacological inhibition of NF-
kB would block NGF/TNFa-promoted iNOS induction in
PC12 cells. As shown in figure 5A, treatment of PC12 cells
with either pyrrolidine di-thio-carbamate (PDTC) or the
octapeptide proteasome inhibitor PSI (two effective NF-
kB inhibitors that have distinct mechanisms of action
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Figure 2

A: Western blots detecting iNOS in total protein extracts from PCI2 cells treated for 24 hr with increasing concentrations of
NGF in the presence or absence of 10 ng/ml TNFa (Top) or treated with increasing concentrations of TNFa. in the presence
or absence of 25 ng/ml NGF (Bottom). Positive control (Pos) is 4 |ig of total protein extracts from mouse macrophages.
Results shown are representative of 2 replicate experiments. B: Western blot analysis detecting iNOS in total protein extracts
from PCI2 cells simultaneously pre-treated with 10 ng/ml NGF and 10 ng/ml TNFo.. At 24 hr treatment was withdrawn and
the presence of INOS was determined 24, 48, and 72 hr thereafter. Results shown are representative of 3 replicate experi-
ments. C: Western blot analysis (Top) and RT-PCR (Bottom) detecting iINOS protein and mRNA in total protein extracts
and total RNA from PCI2 cells simultaneously pre-treated for 24 hr with 10 ng/ml NGF and 10 ng/ml TNFo (Both). After 24
hr, treatment was withdrawn and replaced with either NGF or TNFa alone or with both and iINOS expression determined 24
hr thereafter. Results shown are representative of 2 replicate experiments. D: Western blot detecting iNOS in total protein
extracts from PC12 cells simultaneously treated for 24 hr with 10 ng/ml NGF and 10 ng/ml TNFc. in medium containing serum,
in serum free medium (SF) or in defined medium (N2). Results shown are representative of 3 replicate experiments. E: West-
ern blot analysis detecting the presence of iINOS in total protein extracts from PCI2 cells treated for 72 hr with 100 ng/ml IGF

and 10 ng/ml TNFY, individually or combined, as compared to cells simultaneously treated with 10 ng/ml NGF and 10 ng/ml
TNFo. or untreated controls (Cont). Results shown are representative of 4 replicate experiments.
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A: Western blot detecting iINOS in total protein extracts
from PCI12 cells treated for 24 hr with 10 ng/ml NGF and 10
ng/ml TNFo, either individually or simultaneously (Both).
Cells were pretreated with vehicle or 0.5 UM of the generic
NOS inhibitor L-NAME. Positive control (Pos) is 4 ug of
total protein extracts from mouse macrophages. Results
shown are representative of 3 replicate experiments. B:
Western blot detecting iNOS in total protein extracts from
PCI2 cells simultaneously treated with 10 ng/ml NGF and 10
ng/ml TNFo (Both), in the presence or absence of a pre-
treatment with varying concentrations of the iNOS-specific
inhibitor 1400 W. Results shown are representative of 4 rep-
licate experiments.

[8,63-65], completely abolished NGF/ TNFa-promoted
iNOS induction. In this experiment, PD98059, a selective
MAPK inhibitor, was used as a negative control. Both NF-
kB inhibitors effectively blocked NF-kB-mediated tran-
scriptional activity as determined by SEAP reporter gene
assay (Figure 5B), whereas PD98059 had no effect. How-
ever, PD98059 completely blocked NGF-promoted neur-
ite outgrowth (Figure 5C), an event that in PC12 cells is
dependent on MAPK activation [66]. Furthermore, con-
sistent with the results reported in Figure 4, inhibition of
NOS activity by L-NAME did not affect NFxB activation by
NGF/TNFo combined treatment (Figure 5D).

NGFITNF o~promoted iNOS induction requires the
simultaneous presence of both the p75NTR and TrkA NGF
receptors

Next, we subcloned a PC12 mutant cell line (PC12p75NTR
()) that lacks p75NTR expression while retaining TrkA at
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Figure 4

Detection of SEAP in the culture medium of PCI2 cells
transfected with a SEAP reporter gene construct under the
transcriptional control of enhancers specific for NF-xB, AP-1|
or CRE. pTal is the non-enhanced control SEAP reporter
vector. Twenty-four hr after transfection, cells were treated
with vehicle (Control), 10 ng/ml NGF, 10 ng/ml TNFo or
NGF plus TNFa (Both) and the presence of SEAP in the cul-
ture medium assayed 3 hr (Top) or 12 hr (Bottom) there-
after. Results are normalized to control cells in each
transfection group (N = 3). * and #: p < 0.05 vs. control and
TNFo-alone, respectively (two-tailed unpaired Student's t-
test). Results shown are representative of 3 replicate
experiments.

levels comparable with wild type PC12 cells (Figure 6A).
NF-xB activity was not significantly increased by the NGF/
TNFo. combined treatment over the levels induced by
TNFo alone in PC12p75NTR () (Figure 6B). Consistent with
this finding, PC12pP75NIR (1) cells exposed to the combined
NGF/TNFo. treatment did not show any induction of
iNOS expression as compared to the parent cell line (Fig-
ure 6C). It is important to note that the PC12P75NTR () cells
used here express TNFo receptor type 1 (TNFR1) at levels
comparable (or even higher) than wild type PC12 cells
(Figure 6D). Therefore lack of iNOS induction by the
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A: Western blot detecting iINOS in PC12 cells simultaneously treated with 10 ng/ml NGF and 10 ng/ml TNFa. for 24 hr. Thirty
minutes before NGF/ TNFa. treatment cells were pre-treated with 10 UM pyrrolidinedithyocarbamate (PDTC), 2 UM of a oli-
gopeptide proteosome inhibitor (PSI) or 10 uM of a MAPK inhibitor (PD98059). Results shown are representative of 2 repli-
cate experiments. B: SEAP release in the culture medium of PC12 cells transfected for 24 hr with an NF-kB-sensitive SEAP
reporter gene construct and treated for |12 hr with vehicle (Control), 10 ng/ml NGF, 10 ng/ml TNFa or NGF plus TNFa. in the
presence of 10 uM PD98059, |10 uM PDTC or 2 uM PSI. Data are shown as mean * S.E.M. from 3 independent replicate exper-
iments. * and #: p < 0.05 vs. control or TNFo.-alone cells, respectively (two-tailed unpaired Student's t-test). C: Representative
photomicrographs of PC12 cells treated for 48 hr with 10 ng/ml NGF in the presence or absence of 10 uM PD98059 or 2 uM
PDTC. D: NFkB transcriptional activity (as measured by a transiently transfected SEAP reporter vector) in PCI12 cells treated
for 24 hr with 10 ng/ml NGF, 10 ng/ml TNFa or NGF plus TNFa (Both) in the presence of 0.5 uM L-NAME. Data are shown
as mean = S.E.M. from 3 independent replicate experiments. * and #: p < 0.05 vs. control or TNFo.-alone cells, respectively
(two-tailed unpaired Student's t-test).
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NGF/TNFo combined treatment in these cells cannot be
ascribed to lack of TNFo responsiveness (as can also be
appreciated by the NFkB response induced by TNFo alone
shown in figure 6B).

The results obtained in PC12pP75NTR(-) would suggest that
p75NTR is essential to mediate iNOS induction by the
combined TNFo/NGF treatment while the results
obtained using K252a (Figure 1) would suggest a promi-
nent role for TrkA. In order to ultimately ascertain the rel-
ative role of the two NGF receptors in mediating TNFo,/
NGF-promoted iNOS induction we made use of PC12
cells transiently transfected with expression vectors coding
for chimeric TNFo/NGF receptors constructed as
described by Rovelli et al. [77]. These constructs bear the
ligand binding domain from the human TNFR1 and the
signal transduction domain from rat NGF receptors, either
TrkA or p75NTR. Previously, it has been shown that trans-
fection with these chimeras allows for TNF-promoted
NGEF signaling [77]. Figure 7 shows a western blot detect-
ing iNOS in PC12 cells individually or simultaneously
transfected with chimeric TNFo receptors bearing the
intracellular domain of p75NTR (p55/p75NTR) or TrkA
(p55/TrkA). Transfected cells were then treated either with
TNFo and NGF alone, or with both TNFo. and NGF. As
expected, the combined TNFa/NGF treatment induced a
robust expression of iNOS in these PC12 cells, regardless
of the presence of any transfected expression vector. As
also expected, NGF alone did not elicit iNOS expression
in any of the transfected cells. Similarly, TNFo alone did
not induce iNOS in cells transfected with either p55/
p75NTR or p55/TrkA chimeric receptors. However, TNFo
promptly induced iNOS expression in cells transfected
with both p55/p75NTR and p55/TrkA chimeric receptors.

Discussion

The work presented here stems from our original observa-
tion that iNOS expression and subsequent NO produc-
tion can be synergistically induced by NGF and TNFa in a
TrkA-dependent manner in PC12 cells [43]. Our present
results investigated the signalling pathways involved.
Since we consistently observed a higher iNOS expression
if NGF is added simultaneously to TNFo., we propose that
iNOS expression was induced selectively in NGF-respon-
sive cells. These results do not allow us to rule out the
possibility that intermediate factors induced by TNFo or
NGF may play a role in sensitizing indirectly cells to NGF
or TNFa, respectively. However, the results shown in Fig-
ure 2 seem to exclude such a possibility. Indeed, while
withdrawal of NGF and/or TNFoa allows for a prompt
ablation of iNOS expression (Figure 2B), neither NGF nor
TNFo alone is sufficient to sustain iNOS expression fol-
lowing withdrawal of TNFo or NGF (Figure 2C). These
observations suggest that the simultaneous and continu-
ous presence of both factors is required to sustain iNOS

http://www.jneuroinflammation.com/content/2/1/19

induction/expression and that cell sensitization through a
priming mechanism seems unlikely. Nonetheless, other
researchers have attributed increased TNFo toxicity in
PC12 cells to NGF-induced differentiation [67]. However,
our results seem to exclude that differentiation of PC12
cells may have played a role. First, in our experimental
conditions iNOS expression occurs as early as 3 hr after
the exposure to the combined NGF/TNFa treatment [43],
earlier than any morphological differentiation induced by
NGF. Second, while blockade of NGF-induced differenti-
ation by the MAPK inhibitor PD98059 (Figure 5C, [68])
had no effect on NGF/TNFo-promoted iNOS expression
(Figure 5A), blockade of NFxB did not affect NGF-
induced differentiation (Figure 5C) but completely inhib-
ited iNOS expression.

In the present study we also report that induction and
maintenance of iNOS expression by the combined NGF/
TNFo treatment requires continuous de novo iNOS mRNA
synthesis, presumably due to transcription factor regula-
tion. Indeed, abolishing iNOS enzymatic activity had no
effect on NGF/TNFa-promoted iNOS induction (Figure
4A,B). Therefore, the involvement of positive feedback
due to NO seems unlikely. On the other hand, analysis of
transcriptional activity of NF-xB, AP-1 and CRE revealed
that NF-xB most likely mediates synergistic iNOS induc-
tion by TNFo and NGF. Since iNOS induction can be
observed as early as 3 hr after NGF/TNFo combined treat-
ment in PC12 cells [43], the results shown in figure 5 sug-
gest that NF-xB is the only transcription factor among
those tested here that is responsive to the simultaneous
treatment with TNFo and NGF in a fashion consistent
with induction of iNOS expression. In fact, while TNFo
alone induced NFxB at 3 hr, this induction was signifi-
cantly lower than the one promoted by the combined
NGEF/TNFa treatment. Whether the extent to which NFkB
is activated or whether qualitative differences in NFxB
subunit composition in response to TNFo as compared to
NGF/TNFo. treatment may play a role in inducing iNOS
expression remains to be established. Nonetheless, inhibi-
tion of NF-kB completely inhibited iNOS induction while
inhibition of MAPK was ineffective (Figure 5A). Lastly,
inhibition of NOS activity failed to block NGF/TNFa.-pro-
moted NFkB activation, thus further supporting the idea
that targeting NO may acutely ameliorate associated oxi-
dative stress, but could not represent the most
comprehensive approach to achieve a long term correc-
tion of these events.

Previous studies indicated that NGF can induce NF-xB by
acting through the low affinity p75NTRreceptor [70]. Thus,
involvement of NF-xB in mediating NGF/TNFa combined
effects would suggest a role for p75NTR. Indeed, we found
that mutant PC12 cells that lack expression of the p75NTR
receptor failed to respond in terms of iNOS expression
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Figure 6

A: Graph depicting the percentage of TrkA- or p7/5NTR- immunopositive cells in wild type (wt)PC12 cells and PC12 cell
mutants lacking the low affinity NGF receptor (PC12P75NTR()) from flow cytometry data. Results shown are representative of 3
replicate flow cytometry experiments on the same cell line. B: SEAP release in the culture medium of PC|2r75NTR () cells trans-
fected for 24 hr with an NF-xB-sensitive SEAP reporter gene construct and treated for 12 hr with vehicle (Cont), 10 ng/ml
NGF, 10 ng/ml TNFo or NGF plus TNFo (Both). Data are shown as mean * S.E.M. from 3 independent replicate experiments.
*:p <0.05 vs. control or NGF-alone cells (two-tailed unpaired Student's t-test). C: Western blot detecting the presence of
iNOS in wtPC12 cells and PC12r75NTR () cells treated for 24 hr with vehicle (Cont), 10 ng/ml NGF, 10 ng/ml TNFa or NGF
plus TNFo (Both). Membrane was re-probed for B-actin (lower panel) to control for equal protein loading. Positive control
(Pos) is 4 ug of total protein extracts from mouse macrophages. Results shown are representative of 4 replicate experiments.
D: Western blot detecting the presence of TNFR-I in total protein extracts from wtPC12 cells and PC12p75NTR () cells. Twenty
lg of total protein extracts from rat dorsal root ganglia (DRG) were used as a positive control.
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Western blot detecting iNOS in 40 g total protein extracts from PCI2 cells treated for 24 hr with 10 ng/ml human TNFo., 10
ng/ml NGF, or both. Twenty-four hr before treatment, cells were transfected with either an empty vector or expression vec-
tors for chimeric receptor proteins bearing the human TNFRI ligand binding domains and the intracellular domain of either rat
p75NTR or TrkA NGF receptors (p75NTR, TrkA or p75NTR+TrkA). Positive control (Pos) is 40 Lig of total protein extract
from wild type PC12 cells treated with both rat TNFo: and NGF. Membrane was re-probed for -actin (lower panel) to control
for equal protein loading and is representative from 3 independent transfections and treatments.

when simultaneously treated with NGF and TNFo.. Con-
sistent with this finding, in PC12 cell mutants lacking
p75NTR expression NF-kB activity was not induced by the
combined NGF/TNFa treatment above the levels
observed in cells treated with TNFa alone (Figure 6B).

That PC12 cells bearing only the TrkA receptor failed to
respond the combined NGF/TNFa. treatment suggests that
signaling from p75NTR in combination with TNFa is nec-
essary to induce iNOS expression. On the other hand, our
previous work illustrated the importance of TrkA-associ-
ated signaling in mediating NGF/TNFo-promoted
induction of iNOS [43] (see also figure 1). These results
are only apparently in contrast. Indeed, in an admittedly
artificial system making use of chimeric constructs we
observed that only in the presence of both TNFa-respon-
sive NGF receptor signaling can TNFo promote iNOS
expression when added alone. Whether this is a conse-
quence of simultaneous but independent signaling of
both types of NGF receptors [79] or recruitment of intrac-
ellular signalling elements uniquely driven by the simul-
taneous activation of both NGF receptors' signaling

domains remains to be investigated. On the other hand,
these results exclude the possibility that the combined
action of TNFo and NGF may derive from yet undescribed
interaction(s) of the extracellular domains of their respec-
tive receptors following ligand binding.

Thus, our combined results would indicate that there
exists a specific pathway involving NF-xB and requiring
the simultaneous expression or both types of NGF recep-
tors that is synergistically induced by TNFa and NGF to
promote expression of iNOS. This is of particular interest
given that neuron types expressing both TrkA and
p75NTR receptors are limited and known to be affected in
neurodegenerative conditions where neuroinflammation
and pro-inflammatory cytokines have been shown to play
a significant role. Notably, simultaneous expression of
TrkA and p75NTR in the CNS is mostly restricted to the
BFCN that are known to be particularly affected in AD.
Indeed, others have also described signaling pathways
that require the simultaneous expression of both TrkA and
P75NTR [71,72] as well as the convergence of TrkA and
p75NTR-mediated signaling impinging upon NF-xB [73].
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Recent reports in neurons of TNF-promoted signaling
occurring selectively in the presence of the glutamate
agonist NMDA [4] illustrate the importance of
considering the signaling "context" when studying the
effects of cytokine treatment.

Overall, our data indicate the possibility that a conver-
gence between NGF-promoted trophic signaling and
TNFa could selectively endanger NGF-responsive neurons
under conditions of neuroinflammation because of a
synergistic action between TNFo and NGF to induce iNOS
expression. For example, TNFo overexpressing transgenic
mice show selective neurodegeneration of NGF-respon-
sive basal forebrain cholinergic neurons [57] and direct
TNFo administration in the brain of mice results in an
impairment of basal forebrain cholinergic function [58].
However, whether induction of iNOS and subsequent oxi-
dative damage may play a role in these two models
remains to be determined [80].

Conclusion

TNFo and NGF, via concerted signaling events involving
NFxB transcriptional activity and targeting NGF-respon-
sive cells bearing both the high and low affinity NGF
receptors, converge to stimulate de novo transcription of
iNOS. Our present results are relevant to neurodegenera-
tive conditions such as AD [22,74], stroke [17,75], ALS
[20,76] and spinal chord injury [8,10] where neuroin-
flammation and high levels of pro-inflammatory
cytokines have been shown to play a significant role and
proposed as therapeutic targets.
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