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Abstract
Background: There is increased interest in the contribution of the innate immune system to
multiple sclerosis (MS), including the activity of acute inflammatory mediators. The purpose of this
study was to test the involvement of systemic secreted phospholipase A2 (sPLA2) enzymes in
experimental autoimmune encephalomyelitis (EAE), an MS model, and to determine if enzyme
activity is elevated in MS patients.

Methods: A non-invasive urinary assay was developed in order to monitor enzymatically active
sPLA2 levels in Dark Agouti rats after induction of EAE. Some Rats were treated with nonapeptide
CHEC-9, an uncompetitive sPLA2 enzyme inhibitor, during the initial rise in urinary enzyme levels.
Body weight and clinical EAE score were measured for 18 days post immunization (PI), after which
the rats were sacrificed for H&E and myelin staining, and for ED-1 immunocytochemistry, the latter
to quantify macrophages and activated microglia. The urinary sPLA2 assay was also applied to un-
timed samples collected from a cross section of 44 MS patients and 14 healthy controls.

Results: Mean levels of enzymatically active sPLA2 in the urine increased following immunization
and peaked between days 8–10 PI which was just prior to the onset of EAE symptoms. At this time,
a transient attenuation of activity was detected in the urine of CHEC-9 treated rats consistent with
the activity-dependent properties of the inhibitor. The peptide also reduced or abolished EAE
symptoms compared to vehicle-injected controls. Histopathological changes in the spinal cords of
the EAE rats correlated generally with clinical score including a significant reduction in ED-1+ cells
after peptide treatment. Multiple Sclerosis patients also showed elevations in sPLA2 enzyme
activity. Mean levels of sPLA2 were increased 6-fold in the urine of patients with active disease and
4-fold for patients in remission, regardless of immunomodulating therapy.

Conclusion: The results suggest that sPLA2 enzymes, traditionally thought to be part the acute
phase inflammatory response, are therapeutic targets for MS.
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Background
The pathophysiology of multiple sclerosis (MS) involves
both antigen specific mechanisms and the innate immune
system, including elements of the acute inflammatory
response [1-4]. Since axonal loss is likely to begin at dis-
ease onset, the inflammation that accompanies this
degeneration may be a persistent contributing factor in
MS, as it all disorders in which there is destruction of nerv-
ous tissue. Increased hydrolysis of membrane phospholi-
pids by phospholipase A2 is a well-known early response
to tissue damage in all organ systems including the nerv-
ous system [5-7]. These enzymes are responsible for the
production of arachidonic acid and lysophospholipids
and therefore also control levels of inflammatory media-
tors and cytotoxic metabolites including prostaglandins,
leukotrienes, and reactive oxygen species. PLA2 enzymes
and products also influence several aspects of the cellular
and cytokine involvement in the inflammatory response.

Recent studies of rodent experimental autoimmune
encephalomyelitis (EAE) models of MS suggest PLA2
enzymes are involved in the onset and genesis of this dis-
ease [8,9]. Pinto, et al.[8], found that systemic infusion of
anchored lipid conjugates, targeting extracellular or
secreted (s)PLA2s, attenuated aspects of the autoimmune
response and EAE clinical disease. We have identified a
nonapeptide sPLA2 inhibitor called CHEC-9 that has
properties that may be particularly advantageous for
applications in vivo [32]. CHEC-9 is an internal fragment
of the endogenous protein DSEP/Dermcidin/PIF [10-16].
Both the parent polypeptide and isolated peptide mimet-
ics, including CHEC-9, have been used previously to
increase cell survival and inhibit inflammation in a variety
of experimental paradigms.

In the present study, we used a non-invasive urinary assay
to monitor changes in systemic levels of active sPLA2
enzymes following a standard EAE immunization proto-
col. We also examined the effects of CHEC-9 on the devel-
opment of EAE symptoms, including correlated
morphological changes in the spinal cord. Finally, this
same urinary assay was applied to randomly collected
urine samples from MS patients to determine if systemic
levels of enzyme are also elevated in this disease.

Methods
EAE production and analysis
The animal experiments were conducted under the aus-
pices of an IACUC protocol from Drexel University. All
personnel involved were experimentally blinded for all
procedures. Mild to moderate EAE was induced in 20
female Dark Agouti rats (130–150 g) by bilateral foot pad
immunizations of 100 μg guinea pig myelin basic protein
in saline emulsified with Complete Freund's Adjuvant
[17]. The results presented are from 2 separate sets of

experiments with 10 in each cohort, equally divided
between peptide and vehicle-treated rats. The rats were
weighed and scored for EAE symptoms daily using a 1–4
rating scale for clinical disease (1-tail drop, 2 hind limb
paresis, 3 hind limb paralysis, 4 moribund), and 2–3
independent investigators were responsible for the scor-
ing. We scored 2.5 for complete paralysis of one hind limb
which was the most severe disease encountered in this
experimental system. The experiments lasted 18 days fol-
lowing immunization, after which the rats were perfused
with 4% paraformaldehyde in 0.1 M phosphate buffer
and their spinal cords removed for histology.

Urine collection and CHEC-9 treatment
Urine was collected in metabolic cages from all rats start-
ing 1–2 days before immunization and then every other
day for 18 days. The urine was collected between 9:00–
11:00 AM, immediately sterile filtered, and frozen at -40°
prior to use. CHEC-9 treatment started 5 days after immu-
nization during the rise in urinary sPLA2 activity (see
Results). Treatment consisted of a subcutaneous injection
of 60μg CHEC-9 in clear DMEM vehicle on the first day,
followed by daily 30μg doses for 9 days. CHEC-9,
CHEASAAQC, was made by Celtek (Nashville, TN), puri-
fied and cross-linked as described previously[10].

sPLA2 enzyme activity
Twenty-five μl samples of urine were reacted with 600μM
1,2-bis (heptanoylthio) glycerophosphocholine, a sub-
strate for all PLA2s with the exception of cPLA2 and PAF-
AH (Caymen Chemical, Ann Arbor MI). Reaction buffer
consisted of 50 mM tris, 0.1 M NaCl (pH = 7.4) contain-
ing 1 mM DTNB (Ellman's reagent) and 2 mM CaCl2.
Reaction rates were determined with a Deltasoft (Prince-
ton NJ) supported ELX 808 reader (Biotek, Burlington
VT). The urinary sPLA2 assay was developed because in a
previous study we found that monitoring active enzyme
in blood plasma may be subject to considerable variabil-
ity due to the stress of restraint and collection procedures,
as well as handling of samples for ex vivo monitoring [32].
Enzyme activity in urine was found to be much more sta-
ble, specifically in those rats tested prior to immunization
or in healthy human controls. As in previous studies in
which the active enzyme concentration was of interest, we
confirmed that product formation in the presence of an
excess of substrate was linear during a 40 minute measure-
ment period, and therefore that the measured rate of the
reaction is proportional to urinary concentration of active
sPLA2. These rates were expressed relative to total protein
in the samples and normalized either to average baseline
values for the rats (obtained in the two days prior to
immunization), or in the patient studies, to average value
obtained from healthy controls.
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Statistical tests
Data comparisons were by a two-tailed Mann Whitney
test, nonparametric (Spearmann) linear correlation, or
Friedman's repeated measures ANOVA.

Histology and immunohistochemistry
Serial 20μm transverse (n = 10) or parasagittal sections (n
= 10) were cut through spinal cord blocks that extended
from the conus medullaris to the lumbar enlargement.
Alternate transverse sections were stained with hemotoxy-
lin & eosin and cyanin R the latter for myelin and myelin
debris (e.g. see ref. [18]). The parasaggital sections
allowed for greater areal coverage of this part of the spinal
cord and therefore these were used for quantification of
macrophages, ameboid microglia, and activated microglia
using the ED-1 monoclonal antibody (Serotec, UK). The
cells were counted by experimentally blinded investiga-
tors in 5-vehicle treated rats and 5 peptide-treated rats
using three equivalent parasaggital sections from each rat.
The counts were expressed per area of the sections and
then normalized to the average value obtained in the vehi-
cle-treated rats.

Patients
Forty-four patients with a diagnosis of relapsing/remitting
Multiple Sclerosis provided urine samples for this study
(Table 1). Healthy controls were recruited by advertise-
ment. The Institutional Review Boards of Drexel Univer-
sity and Graduate Hospital of Philadelphia approved the
study and informed consent was obtained from all sub-
jects. Twelve of the patients presented with active disease
at the time of sample collection, which was defined as a
change of one or more points on the functional neuro-
logic status score in the absence of fever or infection [19].
Therapies noted in Table 1 were interferon beta-1a
(Avonex®, Biogen, 30μg/week I.M.) or glatiramer acetate
(Copaxone®, Teva Pharmaceutical Industries 20 mg/day,
S.C.). Subjects were carefully screened and those with
peripheral infections, inflammatory disorders, or those
using anti-inflammatory drugs within the 24 hours prior
to sample collection, were excluded from the study. Urine
was collected in a sterile 50 ml tube at random times dur-
ing the day (9:00 AM-4:00 PM), immediately sterile fil-
tered, frozen and analyzed as above.

Results
Body weight
There was an initial loss of body weight in all rats post-
immunization (PI). From PI day 5 (the start of treatment)
onward, peptide treated animals gained weight at a signif-
icantly higher rate than vehicle treated rats. Weight gain in
the peptide-treated animals was 0.517 g/day compared to
0.392 g/day in vehicle-treated rats. The difference between
groups was significant (p = 0.011, Friedman's repeated
measures ANOVA).

sPLA2 activity and clinical score
Mean urinary sPLA2 activity increased steadily for the first
8 days following immunization in both treatment groups
(Fig. 1, Top). In vehicle treated rats, the mean activity lev-
eled off and declined at this point. The effects of CHEC-9
treatment were not detected until days 10 and 12 PI, when
the peptide significantly attenuated sPLA2 activity. It was
during this period that the behavioral deficits appeared in
the rats (Fig. 1, Bottom). However, only 3/10 peptide-
treated rats showed symptoms of disease and one of these
had a late onset tail paresis (at day 17 post-immuniza-
tion). This compared to 8/10 in the vehicle treated group
showing generally more severe symptoms that appeared
between days 10 and 13 PI. As might be expected from
these differences, the statistical difference between the two
groups was very significant (p = 0.0002, Friedman's
repeated measures ANOVA).

Histology and immunohistochemistry
Hematoxylin & eosin together with cyanin R staining in
alternate sections of the spinal cord revealed pathology
consistent with the clinical score. The most conspicuous
changes appeared in rats showing the most severe deficits
(clinical score 2.0 or greater). In the caudal-most regions
of the cord of these rats, the region around the conus med-
ullaris was severely shrunken and contained large areas of
degenerating myelin. In more rostral sections, large EAE
lesions were found often localized to the white matter
(Fig. 2). Adjacent sections stained for cyanin R revealed
that these areas were also characterized by dense myelin
debris (Fig. 2). Symptom-free rats had limited and more
scattered small cell infusion and myelin debris. To quan-
tify the immune response, we determined the number of
macrophages and microglia by counts of ED-1+ cells
within the spinal cord. The counts were made in repre-

Table 1: Patient population and control subjects used for the sPLA2 measurements.

Group n (F/M) Age yrs ± sd MS Onset yrs ± sd MS Duration yrs ± sd βIF GA None

Active 12 (8/4) 38.2 ± 9.5 29.5 ± 8.9 7.3 ± 4.5 9 1 2
Stable 32 (25/7) 43.6 ± 8.1 33.4 ± 8.6 10.6 ± 9.3 15 3 14

Control 14 (9/5) 37.5 ± 9.0 - - - - -

The means of subject age, age of MS onset, duration of the disease, and ongoing therapies are listed. F/M = female/male; βIF = beta-interferon; GA 
= glatiramer acetate; sd = standard deviation.
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sentative vehicle-treated rats (n = 5, mean clinical score,
1.6) and peptide-treated rats (n = 5, mean clinical score,
0.2). Both groups of rats showed immunoreactive cells on
the spinal cord surface with a variable numbers of cells
occupying sub-adjacent white matter and parenchyma.
The ED-1+ cells included large round macrophages,

smaller round ameboid microglia, and "activated" micro-
glia, which were large (presumably hypertrophied) cells
with processes. The latter cell type dominated the tissue
especially in the vehicle treated rats (Fig. 3). In fact,
CHEC-9 treated rats had over 60% fewer ED-1+ cells per
unit area of the sections (p < 1 × 10-3, Mann Whitney test).
In addition, there was an obvious difference in the extent
to which the cells had infiltrated the spinal cord in the
control-treated rats. However, the calculated difference in
density may be inflated because in two of the vehicle
treated rats used for this part of the study, there was
shrinkage of the caudal spinal cord (EAE scores 2.0, 2.5).
Nevertheless, these results showed clearly that clinical EAE
score reflected the histopathological changes in the spinal
cord, as has been described in numerous other studies
with the EAE model [20]. The results also suggested that
the peptide's therapeutic effects included inhibition of
some aspects of the cellular immune response, as has been
shown previously after traumatic CNS lesions [10].

MS patients
The mean level of active sPLA2 enzymes was significantly
elevated in the urine of patients with both active and sta-
ble MS (Fig. 4). Enzyme concentrations were higher on
average in relapsing patients compared to non-relapsing
patients although the difference did not reach statistical
significance (p = 0.107, Mann Whitney test). Interestingly,
the increased concentration of enzyme found in stable
patients receiving no treatment was nearly identical to
that from patients treated with beta interferon (mean 393
± 130% of controls n = 15, versus 409 ± 98% s.e.m., n =
14, p = 0.585, Mann Whitney test), although both these
patient populations were somewhat heterogeneous as
shown by the large variances.

In order to rule out differences in renal function between
the groups, we compared total urinary protein with sPLA2
enzyme levels. Enzyme and protein levels were not corre-
lated in any group (p values for protein-sPLA2 correlation,
Active = 0.572; Stable = 0.350; Control = 0.885, Spear-
mann's nonparametric linear correlation). Therefore, it
was unlikely that the patients simply leaked more sPLA2
because of a systematic and unrecognized renal/urinary
tract pathology associated with MS. Notably, untimed
'spot' samples as used in this study are routinely applied
and accepted as an indicator of excess protein in the urine
(proteinuria) [21], which is expected to correlate with ele-
vated PLA2 enzyme levels under conditions of compro-
mised renal function [22,23].

Discussion
The present results suggest that increased levels of sPLA2
enzymes, long associated with inflammation outside the
nervous system[24], also characterize Multiple Sclerosis
and Experimental Autoimmune Encephalomyelitis.

Secreted phospholipase A2 (sPLA2) activity and clinical dis-ease in EAE rats treated with sPLA2 inhibitor CHEC-9Figure 1
Secreted phospholipase A2 (sPLA2) activity and clin-
ical disease in EAE rats treated with sPLA2 inhibitor 
CHEC-9. Top: Urinary sPLA2 enzymatic activity, normal-
ized to average pre-immunization values, increased steadily 
to day 8 in both CHEC-9 and vehicle-treated rats. A signifi-
cant reduction in activity was observed on days 10 and 12 
post-immunization in the peptide treated group either by 
comparing values of peptide and vehicle directly (p = 0.049, 
0.026 respectively, Mann Whitney), or by peak to trough 
comparison between days 8 and 12, where reduction in 
sPLA2 levels with peptide treatment was significant (p = 10-

3). Bottom: Mean clinical scores from day 10 onwards were 
also significantly lower in the peptide treated rats (see text).
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Low power photomicrograph of hematoxylin & eosin (A, B) and cyanin R (C, D) stained sections through the lumbar spinal cordFigure 2
Low power photomicrograph of hematoxylin & eosin (A, B) and cyanin R (C, D) stained sections through the lumbar spinal 
cord. Left panels (A, C): Spinal cord of a peptide-treated rat that was symptom-free showing limited small cell infusion and 
myelin degeneration. Right panels (B, D): Spinal cord of a vehicle treated rat that had an EAE score of 2.0. The tissue was char-
acterized by EAE lesions consisting of small darkly staining cells in the ventral and lateral white matter (arrows), and myelin 
degeneration as shown in an adjacent section (D).
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Although the EAE model has been questioned recently in
terms of its validity for identifying potential MS therapies
[25,26], the model is clearly useful to help define the role
of inflammatory enzymes, specifically the PLA2s, in
autoimmune attack of the nervous system. Using a simple
urinary assay for active enzyme concentration, we found
that rats immunized to produce EAE had evidence of
increased systemic sPLA2 following immunization. The
same assay applied to samples collected from MS patients
also showed increased levels of active enzyme even with
random or "spot" sampling. Based in part on the parallel
results in the rodent model, we conclude that sPLA2
inflammatory activity is ongoing in the majority of MS
patients, active or stable, regardless of treatment. The
highest levels of enzyme were found in patients with
active disease, i.e., during relapse. Interestingly, asympto-
matic EAE rats had elevated enzyme activity but became
symptomatic only after a peak in activity was detected.
Finally, and most important, EAE symptoms were attenu-
ated by sPLA2 inhibitor CHEC-9. This finding, along with
similar results by others [8,9], support the idea that PLA2
enzymes play a direct role in the pathogenesis of MS and
related autoimmune disorders.

It important to recognize that increased PLA2 activity is
found after a variety of inflammatory stimuli, from local-
ized tissue damage to systemic infections [32]. In addi-
tion, a variety of antigenic stimuli are expected to raise
systemic sPLA2 levels, which suggests the nature of the
antigen is also critical in determining the resulting pathol-
ogy. On the other hand, the contribution of some types of
peripheral or systemic infections to induction and exacer-
bation of autoimmune disorders, including those affect-
ing the nervous system, is well known [27,28]. This non-
specific regulation of specific autoimmune disorders, or
cross talk between innate and acquired immune
responses, could depend in part on acute phase mediators
like sPLA2. A key element in this interaction may be lyso-
phosphatidyl choline, an important but often overlooked
product of sPLA2 activity. LysoPC has been implicated in
several aspects of acquired immunity including lym-
phocyte and monocyte chemotaxis, as well as dendritic
cell differentiation [29-31].

The appearance of symptoms at or shortly after the peak
of sPLA2 activity is interesting, especially if this peak
reflects maximal levels of inflammation and oxidative

Macrophages and microglia were reduced by CHEC-9 treatment of EAEFigure 3
Macrophages and microglia were reduced by CHEC-9 treatment of EAE. Graph (left panel): The density of ED-1+ cells in the 
spinal cord was reduced over 60% following peptide treatment (p < 1 × 10-3). Although the immunostained cells tended to 
accumulate at or near the surface of both groups, fewer cells, occupying a smaller area within the cord were found CHEC-9 
treated rats (B) compared to vehicle treated rats (C). The majority of intraspinal ED-1 immunoreactive cells were activated 
microglia (arrows).
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stress. For example, it is under these conditions that sPLA2
may exert the most profound effects on the activity of
cytosolic PLA2 (cPLA2 [32]). The specific involvement of
cPLA2 in EAE has also been demonstrated [9]. It is also
under such conditions that the sPLA2 inhibition by the
peptide is expected to be maximal because of its proper-
ties as an uncompetitive inhibitor, including activity-
dependent inhibition [32]. These properties may also
explain our ability to detect a significant attenuation of
enzyme activity in urine of peptide treated rats only at this
time but not before or after, even with peptide treatment.
However, measurements every 48 hours are not likely to
be sensitive enough to reveal the actual pharmakinetics of
CHEC-9, which is currently under study. Therefore the
peptide's full effects on enzyme activity during the course
of these experiments are unknown. In addition, small
intermittent reductions of activity, that may go undetected

in urine, could be sufficient to slow or even prevent the
onset or appearance of more severe EAE symptoms.

The above discussion of the therapeutic effects of CHEC-9
assumes that the peptide's effects are due to enzyme inhi-
bition, i.e., decreases in sPLA2-mediated inflammation
and in the inflammatory products of PLA2-driven metab-
olism, directly and via cross talk with cPLA2. This explana-
tion is especially attractive since CHEC-9 is the third of
three different PLA2 inhibitors that has been used to treat
the disease. However, there are other properties of these
enzymes, including their direct influence on neuron via-
bility. For example, sPLA2 enzymes potentiate excitoxic-
ity, a mechanism suggested to be involved in most
instances of neurodegeneration [33, 34]. Also, as noted
above, there are likely to be interactions of the PLA2
enzymes with elements of antigen-specific immunity. Fur-
thermore, sPLA2s influence levels of proinflammatory
cytokines in a variety of cell types (either directly or via
cPLA2), especially during periods of oxidative stress [24,
32, 35, 36, 37]. In some instances this influence does not
depend on enzymatic activity. Thus, sPLA2 enzymes may
be an important therapeutic target for a variety neurode-
generative disorders associated with exaggerated autoim-
mune or inflammatory reactions, and especially for
diseases such as MS, where elements of both processes
contribute to pathology.

Conclusion
Further study of sPLA2-regulated processes in EAE models
may provide new insights into therapies for autoimmune
disorders affecting the nervous system. Amelioration of
EAE by uncompetitive sPLA2 inhibitor CHEC-9 suggests a
direct role for these enzymes in such disorders. Further-
more, monitoring sPLA2 activity in MS patients, for exam-
ple in relation to their susceptibility to relapse, could help
define periods of vulnerability in these patients as well as
appropriate regimens for application of therapies involv-
ing sPLA2 inhibition.
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Mann Whitney test). Treated and untreated stable patients 
were grouped since their average levels of active enzyme 
were almost identical (see text). Patients with active disease 
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