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Abstract
Background: Anti-inflammatory treatment affects ischemic damage and neurogenesis in rodent models of cerebral
ischemia. We investigated the potential benefit of COX-2 inhibition with parecoxib in spontaneously hypertensive rats
(SHRs) subjected to transient middle cerebral artery occlusion (tMCAo).

Methods: Sixty-four male SHRs were randomized to 90 min of intraluminal tMCAo or sham surgery. Parecoxib (10 mg/
kg) or isotonic saline was administered intraperitoneally (IP) during the procedure, and twice daily thereafter. Nineteen
animals were euthanized after 24 hours, and each hemisphere was examined for mRNA expression of pro-inflammatory
cytokines and COX enzymes by quantitative RT-PCR. Twenty-three tMCAo animals were studied with diffusion and T2
weighted MRI within the first 24 hours, and ten of the SHRs underwent follow-up MRI six days later. Thirty-three SHRs
were given 5-bromo-2'-deoxy-uridine (BrdU) twice daily on Day 4 to 7 after tMCAo. Animals were euthanized on Day
8 and the brains were studied with free-floating immunohistochemistry for activated microglia (ED-1), hippocampal
granule cell BrdU incorporation, and neuronal nuclei (NeuN). Infarct volume estimation was done using the 2D nucleator
and Cavalieri principle on NeuN-stained coronal brain sections. The total number of BrdU+ cells in the dentate gyrus
(DG) of the hippocampus was estimated using the optical fractionator.

Results: We found a significant reduction in infarct volume in parecoxib treated animals one week after tMCAo (p <
0.03). Cortical ADC values in the parecoxib group were markedly less increased on Day 8 (p < 0.01). Interestingly, the
parecoxib treated rats were segregated into two subgroups, suggesting a responder vs. non-responder phenomenon.
We found indications of mRNA up-regulation of IL-1β, IL-6, TNF-α and COX-2, whereas COX-1 remained unaffected.
Hippocampal granule cell BrdU incorporation was not affected by parecoxib treatment. Presence of ED-1+ activated
microglia in the hippocampus was related to an increase in BrdU uptake in the DG.
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Conclusion: IP parecoxib administration during tMCAo was neuroprotective, as evidenced by a large reduction in mean
infarct volume and a lower cortical ADC increment. Increased pro-inflammatory cytokine mRNA levels and hippocampal
granule cell BrdU incorporation remained unaffected.

Background
Ischemic stroke is one of largest socioeconomic challenges
in the health care systems of developed countries due to
the large number of patients who are left disabled [1].
Apart from acute thrombolysis within the first three to six
hours after onset of stroke symptoms, efficient treatment
options are still lacking.

The importance of the cyclooxygenase 2 (COX-2) enzyme
in ischemic brain injury has been emphasized by Iadecola
et al. [2-4]. Several groups reported beneficial effects of
COX-2 inhibition with wide therapeutic time windows in
in vitro studies of glutamate-mediated cell death [5] as
well as in different models of experimental brain ischemia
[6-10], hemorrhage [11], and traumatic brain injury [12].
However, in September 2004 rofecoxib (Vioxx®) was vol-
untarily withdrawn by Merck because it had severe cardi-
ovascular side effects after chronic administration [13].
Still, blockage of the COX-2 enzyme expressed on
ischemic neurons and downstream effectors of COX-2
neurotoxicity remains an intriguing target in the reduction
of glutamate exitotoxicity [14,15].

Parecoxib (Dynastat®) is a second generation COX-2
inhibitor, and registered as the only COX-2 inhibitor for
intravenous (IV) administration. It is a pro-drug and
hydrolyzed to the active metabolite valdecoxib. The abil-
ity of valdecoxib and other COX-2 inhibitors to cross the
blood brain barrier (BBB) has been demonstrated in
human studies [16]. Unfortunately, clinical trials with
parecoxib and valdecoxib revealed the same adverse cardi-
ovascular effects in high-risk patient populations [17].
Nevertheless, parecoxib does not increase the risk of myo-
cardial infarction or stroke in low-risk populations
referred to non-cardiac procedures [18]. To our knowl-
edge, this is the first report addressing the effects of
parecoxib in an experimental model of focal brain
ischemia [19]. In addition we studied a possible drug
effect on hippocampal granule cell BrdU incorporation as
a measure for post-injury neuronal precursor cell (NPC)
proliferation. Since neurogenesis following brain injury is
one of the most encouraging endogenous repair mecha-
nisms in the adult brain [20-23].

The aims of the present study were to investigate the effect
of parecoxib treatment in spontaneously hypertensive rats
(SHRs) subjected to transient middle cerebral artery
occlusion (tMCAo) by determining: (1) messenger ribo-
nucleic acid (mRNA) levels of key pro-inflammatory

cytokines in brain tissue 24 hours after tMCAo, (2) appar-
ent diffusion coefficient (ADC) values obtained from dif-
fusion weighted imaging (DWI) 24 hours and one week
after ischemic brain injury, (3) NPC proliferation in the
dentate gyrus (DG) of the hippocampus one week after
surgery, and (4) infarct volume estimated on immunohis-
tochemically stained tissue sections one week after
tMCAo.

Methods
All male 14–16-week-old SHRs were purchased from
Taconic (Germantown, NY 12526, USA) and housed in
cages of two with free access to water and standard chow
for laboratory rodents. The animals were kept in a twelve-
hour day:night cycle and checked daily by professional
staff. The experimental protocol was approved by The Ani-
mal Experiments Inspectorate (license no. 2003/561-702)
under the Danish Ministry of Justice, and it fulfilled the
requirements according to the European Community
Council's Directive of November 24th 1986 (86/609/
EEC).

Study design
The current study was carried out at two different institu-
tions. Animals (n = 27) subjected to magnetic resonance
imaging (MRI) were studied at the Institute of Clinical
Medicine (University Hospital of Aarhus, DK-8200
Aarhus N, Denmark), whereas the rest (n = 37) were oper-
ated at NEUROSEARCH A/S (DK-2750 Ballerup, Den-
mark). However, all animals were subjected to the same
regimen and randomized to one of the following four
groups: I. tMCAo + parecoxib intraperitoneally (IP) (n =
21); II. tMCAo + saline IP (n = 21); III. Sham + parecoxib
(n = 8); and IV. Sham + saline (n = 9). Exclusion criteria
were spontaneous death (n = 3); subarachnoid hemor-
rhage (n = 1); and missing ED-1 immunohistochemical
positivity in animals subjected to tMCAo (n = 1).

In the first part of the study, animals (n = 19) were eutha-
nized after 24 hours to examine the effect of parecoxib
treatment on the mRNA level of Interleukin (IL)-1β, IL-6,
tumor necrosis factor alpha (TNF-α), cyclooxygenase
(COX)-1 and COX-2. Seven tMCAo animals only under-
went MRI after 24 hours. In the second part of the study
the remaining animals (n = 33) were subjected to subse-
quent injections of the thymidine analog, 5-bromo-2'-
deoxy-uridine (BrdU) and euthanized after one week to
study NPC proliferation in the molecular layer of the DG
in the hippocampus by immunohistochemistry.
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Anesthesia protocol
Anesthesia induction was accomplished within two min-
utes in a chamber filled with 5% isoflurane (Baxter Isoflu-
rane, Baxter Medical) in a 35/65% oxygen (O2) and
nitrous oxide (N2O) atmosphere. Following weighing and
shaving, the animals were placed in supine position on a
heating pad and allowed to breathe spontaneously
through a facemask. Isoflurane was decreased to 1.0–
1.5% and administered continuously in the O2/N2O mix-
ture at a flow rate of 1 L/min. The depth of anesthesia was
assessed with toe pinching and on the basis of arterial
blood gas parameters. An intramuscular (IM) injection of
atropine (Atropin SAD, 0.05 mg/kg BW) was given to
reduce mucus production during anesthesia. The incision
sites were infiltrated with a subcutaneous injection of
bupivacaine (Bupivacain SAD, 2.5 mg/ml) (Figure 1A).

Post surgery all animals were allowed to recover from
anesthesia by inhaling 100% O2 until they regained con-
sciousness. Buprenorphine (Temgesic® Schering-Ploug,
0.03 mg/kg BW) was administered IM twice daily for the
first two days as a post-surgical painkiller (Figure 1B and
1C).

Monitoring of physiological parameters
A BD Neoflon™ (Becton Dickinson, Sweden) was inserted
into the left femoral artery (FA) within the first ten min-
utes after induction of anesthesia and kept throughout
surgery. Arterial blood samples were withdrawn before,
during, and after the 90 minutes of tMCAo or sham sur-
gery. pH, pCO2, and pO2 were measured immediately
with an ABL500 or ABL615 blood gas analyzer (Radiom-
eter, Copenhagen, Denmark). Hemoglobin and glucose
were measured on HemoCue Photometers (HemoCue
AB, Ängelholm, Sweden) or the ABL615.

A PowerLab SP8 (ADInstruments, Castle Hill, NSW, Aus-
tralia) was connected to a Bridge Amplifier that measured
the middle arterial blood pressure (MABP) via a physio-
logical pressure transducer (Capto SP 844, Memscap AS,
Norway). The heart rate (HR) was determined from the
systolic peeks on the arterial pressure curve by Chart 5
software version 5.1.1 (ADInstruments, Castle Hill, NSW,
Australia). A rectal probe was coupled to a feed-back reg-
ulated heating pad system (Homeothermic Blanket Con-
trol Unit, Harvard Apparatus, Holliston, MA, USA) that
kept the core temperature around 37.5°C. The animals
were weighted daily to follow the post-surgical develop-
ment in body weight (Figure 2A).

Transient middle cerebral artery occlusion (tMCAo)
The right common carotid artery (CCA) was isolated
through a small midline incision in the neck region. The
vagus nerve was identified and carefully spared from sur-
gical trauma. The right occipital artery (OA) and ptery-

gopalatine artery (PA) were permanently ligated to assure
that the filament was not trapped in wrong side branches.
The superior thyroid artery (STA) was coagulated and
transected to mobilize the external carotid artery (ECA).
The ECA was ligated where it branches into the lingual
(LA) and the maxillary artery (MA). Distal to the ligature
the LA and MA were coagulated and cut. A small arteriot-
omy was made in the ECA stump and a filament with a
rounded tip was introduced and maneuvered into the
internal carotid artery (ICA) and advanced 22 mm beyond
the carotid bifurcation. During the entire ischemic chal-
lenge, the right CCA was clamped to diminish blood flow.
The intraluminal filament blocked the right MCA origin
for 90 minutes. After withdrawal of the filament, the ECA
stump was ligated and the CCA clamp removed. Reper-
fusion of the ICA was observed before wound closure.
Animals in the two sham groups were subjected to exactly
the same regimen, except that the filament was only
advanced to the bifurcation of the PA and the ICA.

Drug administration
Parecoxib (Dynastat® Pfizer, 10 mg/kg BW) or an equiva-
lent volume of isotonic saline was injected IP, within the
first five minutes after the animals were randomized into
one of the four groups. The parecoxib dosage was deter-
mined based on previous studies where COX-2 inhibitors
were proven to be neuroprotective after experimental
brain injury [8,11,12]. As specified in Figure 1B and 1C,
parecoxib or isotonic saline were administered twice daily
at 7 am and 7 pm.

Magnetic resonance imaging (MRI)
Twenty-three SHRs subjected to tMCAo underwent DWI
and T2WI in general anesthesia 24 hours after surgery. Ten
of these animals went through a similar MRI sequence
one week after tMCAo. Isoflurane anesthesia was induced
in all SHRs as described above. The animals were oro-tra-
cheally intubated and ventilated mechanically with a 1–
2% isoflurane mixture during the MRI protocol. The head
of the animals was positioned in a home-built surface
radiofrequency receiver coil that fits into a 7-Tesla hori-
zontal bore MR magnet (Oxford Instruments, Oxford,
UK) equipped with a 12.5 G/cm gradient system (Tesla
Engineering, West Sussex, UK). The magnet was interfaced
to a Unity Inova console (Varian, Palo Alto, CA, USA).

DWI was performed using a spin-echo diffusion-sensitive
imaging sequence with the following parameters: TR = 1.2
s, TE = 0.05 s, FOV = 4 × 4 cm2, slice thickness = 2 mm,
interslice distance = 0 mm and data matrix = 256 × 256
pixels. Diffusion gradients equivalent to b values of 0 and
1401 × 10-3 s/mm2 (denoted as b1 and b2) were employed.
T2-weighted imaging was carried out as a spin-echo multi-
slice imaging sequence with the following acquisition
parameters: TR = 1.5 s, TE = 0.05 s, FOV = 4 × 4 cm2, slice
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Schematic maps of animal experimentsFigure 1
Schematic maps of animal experiments. The course of tMCAo and sham surgery is shown in 1A. Note that all animals 
were anesthetized nearly 160 minutes while they underwent surgery. Parecoxib (10 mg/kg BW) or isotonic saline was adminis-
tered IP within the first five minutes after the start of tMCAo or sham. 1B illustrates steps in the qRT-PCR part of the study. 
Only half of the animals subjected to tMCAo underwent MRI prior to euthanasia. 1C shows complete drug administration plan 
in the neurogenesis part. Buprenorphine (0.03 mg/kg BW) was given IM as a pain killer for the first two days twice daily. 
Parecoxib (10 mg/kg BW) or isotonic saline was injected IP twice daily throughout the investigation period. Finally, BrdU (50 
mg/kg BW) was administered IP at 7 am and 3 pm on Day 4 to Day 7. Six tMCAo animals randomized to parecoxib treatment 
and four SHRs receiving isotonic saline commenced MRI on both Day 2 and Day 8.
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Development in body weight after tMCAo or shamFigure 2
Development in body weight after tMCAo or sham. 2A shows the development in the mean body weight after surgery 
for all four groups. Note the rapid decrease in body weight within the first four days where all animals lost around 15% of their 
preoperative body weight. black ■: sham + saline; red ■: sham + parecoxib; black ● : tMCAo + saline; and red ● : tMCAo + 
parecoxib. 2B depicts the DWI of an animal obtained 24 hours (1) and one week after surgery (2). Although this animal appar-
ently had no ischemic brain injury, there is a clear signal enhancement of the temporal muscle (white arrow) on the right side 
(B1). The signal changes are consistent with severe ischemia due to ECA ligation. Note the involution of the temporal muscle 
(white arrow) after one week (B2).
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thickness = 2 mm, interslice distance = 0 mm and data
matrix = 256 × 256 pixels. The ADC was estimated from
the obtained signal intensity acquired with the two differ-
ent b-values, S1 and S2, respectively:

Image post-processing of ADC maps was primarily done
using the freeware ImageJ 1.34s [24]. Calculation of ADC
was performed in a pixel-by-pixel basis. The cortex and
subcortical area were delineated in the ischemic and con-
tralateral hemispheres on calculated ADC maps. The ADC
maps shown in Figure 7 were processed with Mistar soft-
ware (Apollo Imaging Technology, Melbourne, Australia).

Quantitative reverse transcriptase polymerase chain 
reaction (qRT-PCR)
Around 24 hours after the tMCAo or sham procedure
ended, animals randomized to the qRT-PCR part of our
study were decapitated in deep isoflurane anesthesia. The
forebrain was divided into hemispheres and stored in
RNAlater® (Qiagen GmbH, Hilden, Germany) at 4°C until
total RNA was extracted by means of an RNeasy Maxi Kit
(Qiagen GmbH, Hilden, Germany). RNA preparations
were treated with DNase I (Sigma-Aldrich, St. Louis, MO,
USA) and verified to be DNA-free by PCR using rat β-actin
specific primers (Table 1). First-strand cDNA was synthe-
sized from 1 μg total RNA with a Oligo(dT)20 using Super-
Script™ III First-Stand Synthesis System for RT-PCR
(Invitrogen, Carlsbad, CA, USA) according to the manu-
facturer's instructions. qPCR for COX-1, COX-2, TNF-α,
IL-1β, IL-6 and the house-keeping gene β-actin was carried
out using 2 μl cDNA and Platinum® SYBR® Green qPCR
SuperMIX UDG (Invitrogen, Carlsbad, CA, USA). Primers
were designed with the open source software PerlPrimer
[25] (Table 1).

The qPCR was run in triplicates using the DNA Engine
OPTICON™ (MJ Research, Boston, MA, USA) and the
cycling program was conducted as follows: 50°C for 2
min, 95°C for 2 min and subsequently forty-five cycles of
95°C for 15 s, 60°C for 30 s, and 72°C for 30 s. Products
were electrophoresed to confirm specificity of the reac-

tions. Quantification was performed by Opticon Monitor
Analysis Software version 1.4. (MJ Research, Boston, MA,
USA).

BrdU labeling of neuronal precursor cell proliferation
The NPC proliferation one week after transient brain
ischemia or sham was assessed using IP administration of
the thymidine analog, BrdU. The BrdU dosage was 50 mg/
kg BW (Sigma-Aldrich, St. Louis, MO, USA) twice daily on
Day 4 to Day 7. The proliferation marker was given at 7
am and 3 pm to assure that proliferating cells were in the
S phase of the mitotic cell cycle (Figure 1C).

Perfusion fixation and tissue handling
Animals used for the studies of infarct volume and NPC
proliferation one week after surgery were transcardially
perfusion fixed in deep pentobarbital anesthesia (Mebu-
mal SAD, 50 mg/ml). Ice cold isotonic saline perfusion for
two minutes was followed by eight minutes of 4% para-
formaldehyde perfusion at a flow rate of 20 ml/minute.

After overnight immersion fixation in 4% paraformalde-
hyde at 4°C the brains were stored in phosphate buffered
saline (PBS) until cryosectioning on a calibrated Leica cry-
ostat (Leica, Germany). The brains were stored in 30%
sucrose at 4°C for cryoprotection at least three days prior
to tissue sectioning. The brain was mounted with Tis-
sueTek® (Sakura Finetek Europe B.V., Zoeterwoude, Neth-
erlands) and cut in the coronal plane. The section
thickness was 60 μm. All sections were collected with a
random beginning at the level of the anterior commisure.
Approximately 200 to 240 sections were collected from
one brain and divided into ten series. Each series con-
tained sections with an intersection distance of 600 μm
and were sampled in 24-well plates containing anti-freez-
ing solution composed of 30% glycerol, 30% ethylene-
glycol, and PBS. The brain sections were stored at -20°C
until the final immunohistochemical processing.

Immunohistochemistry (IHC)
All IHC was carried out as free floating reactions in a spe-
cially designed tray system that allowed us to process
series from twenty brains at one time. Primary antibodies
directed against activated microglia (ED-1), BrdU, COX-2,
and neuronal nuclei (NeuN) were used (Table 2). We
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Table 1: Primer sequences used for qRT-PCR.

Gene Forward primer (5' → 3') Reverse primer (5' → 3') Accession no.

COX-1 GTACTATCCCTGAGATCTGGAC TGAGTACTTCTCGGATGAAGG S67721
COX-2 TGAGATACGTGTTGACGTCC TTCCTTATTTCCTTTCACACCC S67722
TNF-α CTCTTCTCATTCCTGCTCGT GAGAAGATGATCTGAGTGTGAG AJ002278
IL-1β CATAAGCCAACAAGTGGTATTCTC TGTTTGGGATCCACACTCTC NM_031512
IL-6 CAGGGAGATCTTGGAAATGAG GGCAAATTTCCTGGTTATATCC NM_012589
β-actin TGACGGTCAGGTCATCACTATC TGACGGTCAGGTCATCACTATC NM_031144
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made double stains for BrdU/ED-1 and NeuN/COX-2.
Negative controls included omitting either the primary or
secondary antibodies.

The brain sections allocated for BrdU staining underwent
a denaturizing pretreatment to visualize the BrdU incor-
poration into the DNA double strand. Sections were incu-
bated in 50% formamide in 50% 2 × SSC (0.3 mol/L NaCl
and 0.03 mol/L sodium citrate) buffer at 65°C for two
hours. After rinsing in PBS, the tissue was pretreated in 2N
HCl at 37°C for 30 minutes followed by washing in 0.1 M
boric acid at pH 8.5 for 10 minutes. Thereafter, all stains
followed the same protocol. Endogenous peroxidase
activity was blocked with 2% H2O2 in PBS for 20 minutes.
All sections were incubated in 5% normal swine serum
(NSS), 1% bovine serum albumin (BSA), and 0.3% Triton
X (TX) in PBS for 30 minutes at room temperature to pre-
vent a nonspecific immunoreaction. The brain sections
were incubated overnight with the primary antibodies at
4°C in 1% BSA and 0.3% TX in PBS in the mentioned
working dilutions (Table 2). For COX-2, biotinylated goat
anti-rabbit IgG (1:2000) (Vector Laboratories, Burlin-
game, CA, USA, cat. no. BA-1000), and for BrdU and ED-
1, biotinylated donkey anti-mouse F(ab)2 (1:2000) (Jack-
son ImmunoResearch Laboratories INC., West Grove, PA,
USA, cat. no. 715-066-150) were used as secondary anti-
bodies. The primary NeuN antibody was biotinylated and
incubation with a secondary antibody was therefore omit-
ted. Finally, brain sections were incubated with avidin-
biotin-peroxidase complex (ABC) Elite Standard Kit (Vec-
tor Laboratories, Burlingame, CA, USA, cat. no. PK-6100)
for one hour at room temperature, before peroxidase
development with nickel-enhanced DAB or NovaRed®

(Vector Laboratories, Burlingame, CA, USA, cat. no. SK-
4100 and SK-4800).

Stereology
The infarct volume was estimated on NeuN-stained coro-
nal sections using the 2D nucleator and the Cavalieri prin-
ciple [26-29]. The center of the infarct area was marked
manually as origin on the computer screen. CAST® soft-
ware (Visiopharm, Hørsholm, Denmark) generated sys-
tematic random directions for measurements using three
test lines. The intersections between the test lines and the
infarct boundary were marked on the screen and the com-
puter calculated the area. Finally, the infarct volume from

each animal was estimated by adding the infarct areas
multiplied with the distance between each section.

We used ED-1 and BrdU double-stained sections for esti-
mation of BrdU-positive cells in the DG of the hippocam-
pus (Figure 9A to 9F). The counting procedure followed
the optical fractionator design using an Olympus BX50
light microscope (Olympus, Japan) equipped with a
motorized specimen stage, a microcator and a 3-CCD
video camera interfaced to a PC via a frame grabber [27].
First the DG was delineated with a 4× objective. An area
sampling fraction of 28% of the delineated area was used
for the cell counting. The CAST® system created an unbi-
ased counting frame with a 40× objective within the delin-
eated DG area. We counted on average 100–150 BrdU
positive cells in seven to nine different coronal sections
per DG. The whole section thickness of 60 μm was used
following analysis of a z-axis distribution.

Statistics
All statistical analyses were carried out with Stata Inter-
cooled 8.2 software (StataCorp LP, College Station, TX,
USA). Physiologic parameters, ADC and BrdU data were
analyzed with a one-way ANOVA test with Bonferroni
post-hoc analysis for comparison between groups. The
infarct volumes were analyzed with an unpaired Student's
t-test. P < 0.05 was considered statistical significant.

Results
Physiological parameters
All parameters monitored before, during, and after sur-
gery are presented in Table 3. We found a significantly
lower pCO2 after surgery in the sham group subjected to
saline treatment. The blood glucose level was significantly
elevated in the sham groups. However, all differences
among the four groups are considered of no physiological
importance. In general, we found a high blood glucose
level in all animals, which could be due to surgical stress
or a strain characteristic.

As shown in Figure 2A, animals had a striking weight loss
in the first four days postoperatively, regardless of
whether the animals belonged to the tMCAo or the sham
groups, or whether they were subjected to saline or
parecoxib treatment. A similar weight loss profile in the
intraluminal tMCAo model has recently been addressed

Table 2: Primary antibodies used for immunohistochemistry.

Antibody Target Manufacture Working dilution

BrdU 5-bromo-2'-deoxy-uridine Becton Dickinson Cat. no. 347580 1:200
COX-2 Cyclooxygenase 2 enzyme Cayman Chemical Company Cat. no. 160126 1:4000
ED-1 Glycoprotein of 90–100 kD expressed on the lysomal 

membrane of activated microglia, macrophages and monocytes.
Chemicon International Cat. no. MAB1435 1:4000

NeuN DNA binding neuron-specific protein Chemicon International Cat. no. MAB377B 1:1000
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[30,31]. It seems likely that varying degrees of ischemia in
the right jaw muscles could contribute to the pronounced
decrease in body weight. In three out of 23 animals under-
going MRI 24 hours after surgery, we found enhancement
in the DWI signal of the right temporal muscle (Figure
2B).

MRI
Twenty-three tMCAo animals divided equally into two
groups receiving either parecoxib or saline treatment
underwent DWI and T2WI 18–19 hours after the surgical
procedures were accomplished (Table 4). The absolute
ADC values in the cortex and the subcortical area of both
hemispheres from each animal are shown in Figure 3A,
and the ADC ratios of the ischemic vs. the contralateral
hemisphere are shown in Figure 3B.

The ADC in the striatum of the non-ischemic hemisphere
tended to be slightly higher than in the cortex (Figure 3A).

However, this regional difference did not reach statistical
significance. We found a significant decrease (p < 0.01) in
the ADC value in both striatum and cortex on Day 2 after
surgery in both groups (Figure 3B). The mean ADCs were
lower in the saline-treated group (approximately 72% of
the contralateral hemispheres) than in the parecoxib-
treated group (approximately 79% of the contralateral
hemispheres) (Figure 3B), but the differences were not
significant. Interestingly, we found a clear division of the
ADC values in the ischemic cortex of the parecoxib-treated
animals. Thus, the animals apparently segregated into a
group with low ADCs and a group with high ADCs.

Ten out of the 23 animals scanned on Day 2 underwent
similar MRI sequences on Day 8 after surgery. The ADC
values were higher in the ischemic than in the contralat-
eral hemisphere in both treatment groups. The mean cor-
tical ADC values were 113% in the parecoxib group
compared with 147% in the saline group (p < 0.03),

Table 3: Physiological parameters.

Group SHR tMCAo, parecoxib (n = 21) SHR tMCAo, saline (n = 21) SHR sham, parecoxib (n = 8) SHR sham, saline (n = 9)

MABP, before (mmHg) 137.0 ± 18.82 139.2 ± 17.87 152.3 ± 12.14 144.8 ± 12.02
MABP, during (mmHg) 129.3 ± 19.64 131.4 ± 20.39 141.5 ± 12.37 132.6 ± 16.49
MABP, after (mmHg) 111.4 ± 20.36 120.9 ± 24.33 136.8 ± 19.62 135.0 ± 28.29

HR, before (BPM) 374 ± 28.6 364 ± 29.2 363 ± 25.3 373 ± 25.9
HR, during (BPM) 372 ± 24.5 379 ± 28.5 359 ± 24.8 368 ± 21.0
HR, after (BPM) 336 ± 28.3 353 ± 25.3 335 ± 25.8 349 ± 27.3

Rectal Temp., before (°C) 37.8 ± 0.40 37.6 ± 0.38 37.6 ± 0.22 37.4 ± 0.30
Rectal Temp., during (°C) 37.8 ± 0.15 37.7 ± 0.14 37.7 ± 0.07 37.7 ± 0.11
Rectal Temp., after (°C) 37.5 ± 0.27 37.6 ± 0.24 37.3 ± 0.18 37.4 ± 0.25

pH, before 7.46 ± 0.04 7.45 ± 0.03 7.46 ± 0.02 7.44 ± 0.02
pH, during 7.44 ± 0.02 7.44 ± 0.02 7.45 ± 0.01 7.45 ± 0.02
pH, after 7.43 ± 0.02 7.42 ± 0.02 7.44 ± 0.02 7.44 ± 0.03

pCO2, before (kPa) 5.70 ± 0.65 5.71 ± 0.58 5.81 ± 0.42 5.92 ± 0.28
pCO2, during (kPa) 5.53 ± 0.33 5.52 ± 0.35 5.37 ± 0.22 5.21 ± 0.17
pCO2, after (kPa) 5.55 ± 0.21 5.47 ± 0.43 5.20 ± 0.33 5.12 ± 0.22*

pO2, before (kPa) 28.36 ± 5.01 29.13 ± 3.68 29.17 ± 2.65 29.87 ± 1.65
pO2, during (kPa) 29.10 ± 4.24 27.76 ± 4.36 28.49 ± 3.11 27.42 ± 4.17
pO2, after (kPa) 29.27 ± 3.47 29.20 ± 2.92 28.75 ± 2.80 28.53 ± 3.29

Hemoglobin, before (mmol/L) 9.5 ± 0.42 9.5 ± 0.41 9.5 ± 0.46 9.7 ± 0.77
Hemoglobin, during (mmol/L) 8.6 ± 0.45 8.7 ± 0.41 8.9 ± 0.47 8.8 ± 0.50
Hemoglobin, after (mmol/L) 8.1 ± 0.47 8.1 ± 0.51 8.3 ± 0.39 8.2 ± 0.56

Glucose, before (mmol/L) 12.7 ± 2.72 13.0 ± 2.98 15.8 ± 1.45* 15.8 ± 0.77*
Glucose, during (mmol/L) 10.0 ± 2.74 10.3 ± 2.68 13.1 ± 0.78* 12.0 ± 1.62
Glucose, after (mmol/L) 9.8 ± 2.70 10.3 ± 2.88 13.1 ± 2.28* 11.9 ± 1.44

Body weight (grams) 314.9 ± 16.74 309.1 ± 20.74 300.5 ± 16.82 294.1 ± 22.39

Duration of anesthesia (min) 154.2 ± 6.94 156.9 ± 17.72 154.8 ± 7.48 156.2 ± 9.01

Physiological parameters monitored before, during and after tMCAo or sham procedure in all four groups. Mean values ± SD. One-way ANOVA 
with Bonferroni post hoc analysis was used for the comparison between the groups. * indicate p < 0.05.
Page 8 of 19
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which suggests delayed "pseudonormalization" within
the treated animals (see Discussion) [32,33]. This pattern
was similar in the subcortical area; however, the difference
between the groups was less pronounced (105% of the
contralateral hemispheres in the parecoxib group, 121%
in the saline group – Figure 3B). A visible infarct on T2WI
and a "pseudonormal" ADC suggests development of
vasogenic brain edema. We found T2-weighted infarct
changes and high ADCs on Day 8 in three out of four
saline-treated animals and two out of six parecoxib-
treated rats.

Cytokine expression
All animals were euthanized within 23–25 hours after the
sham or tMCAo procedures ended (Table 4). The cytokine
levels were corrected for the expression of the house-keep-
ing gene β-actin and are presented as right:left hemisphere
ratios (Figure 4).

As shown in Figure 4A, the COX-1 mRNA expression was
not affected by transient focal brain ischemia. On the con-
trary, we found clear indications of a higher COX-2 mRNA
level 24 hours after ischemia (Figure 4B). The COX-2 up-
regulation happened regardless of whether the animals
underwent saline or parecoxib treatment. In immunohis-
tochemical pilot studies we found a consistent COX-2
protein presence in the border zone of the infarct 24 hours
after tMCAo (Figure 5A and 5B). On Day 8 after ischemia
it was impossible to visualize the same COX-2 protein
expression around the matured infarct (Figure 5C and
5D). Together with IL-1β and IL-6, TNF-α is one of the
major pro-inflammatory cytokines released by activated
microglia following ischemic brain injury. For all three
cytokines, we saw a similar mRNA expression pattern 24
hours after tMCAo (Figure 4C, 4D, and 4E). In the two
ischemia groups our measurements indicated an mRNA
up-regulation of TNF-α, IL-1β, and IL-6 that was unaf-
fected by COX-2 enzyme blockage. For TNF-α, the mRNA
up-regulation differed significantly between the
parecoxib-treated tMCAo group and the two sham groups.
The significant differences in TNF-α expression should be
interpreted with caution due to large spreads in small
sample sizes.

Infarct volume
Estimation of the total infarct volume using the 2D nucle-
ator and the Cavalieri principle on NeuN-stained sections
one week after tMCAo showed that the parecoxib-treated

rats fell into two subgroups. In seven out of the twelve rats
subjected to parecoxib treatment, we found small subcor-
tical infarcts restricted to the territory of the right anterior
choroidal artery (AChA) (Figure 7). The AChA can be con-
sidered an end artery due to the variation in collateral
blood supply from the MCA and posterior cerebral artery
(PCA) [34]. In the remaining five rats in the parecoxib
group, we found relatively large infarcts involving the lat-
eral aspect of the right striatum and varying parts of the
overlaying neocortex. This difference in infarct pattern in
the parecoxib group suggests a divided response like a
responder vs. non-responder phenomenon. In all eleven
saline-treated tMCAo rats, we found a classical MCA inf-
arct pattern comprising most of the striatum and varying
parts of the temporal and parietal neocortex. Overall, the
parecoxib treatment reduced the mean infarct volume sig-
nificantly (p < 0.03) (Figure 6).

Neuronal precursor cell proliferation in the molecular 
layer of the dentate gyrus
BrdU incorporation in the DG of the hippocampus was
unaffected by ischemia or parecoxib treatment as shown
in Figure 8A. The hippocampus is usually not affected by
ischemia after tMCAo. However, in two animals with
large stroke volumes (marked with crosses in Figure 8A),
we saw ischemic damage of the DG and infiltration with
activated microglia and macrophages (Figure 9D to 9I).
We excluded the BrdU counts from these animals in our
statistical analyses. However, their impact on the mean
BrdU number would not change the stated conclusions.

The right:left hemisphere ratio is illustrated in Figure 8B.
We observed no difference in BrdU incorporation
between the ischemic and contralateral hemispheres.

Discussion
The aims of the present study were to investigate different
effects of parecoxib at a clinically relevant dosage in a
model of transient focal brain ischemia. However, this
study cannot be considered a dose-response study follow-
ing the STAIR criteria [35]. The most significant finding is
the reported mean stroke volume reduction in SHRs
treated with parecoxib IP after 90 minutes of tMCAo. The
post-ischemic ADC increase in the neocortex due to
"pseudonormalization" was consistently and significantly
lower in parecoxib-treated than in the saline-treated ani-
mals.

Table 4: Mean times ± SD for DWI and qRT-PCR studies after surgery.

Group SHR tMCAo, parecoxib SHR tMCAo, saline SHR sham, parecoxib SHR sham, saline

DWI – Day 2 18 h 57 min ± 3 h 23 min (n = 12) 18 h 39 min ± 2 h 28 min (n = 11) - -
qRT-PCR – Day 2 25 h 11 min ± 1 h 48 min (n = 6) 23 h 17 min ± 1 h 54 min (n = 6) 25 h 34 min ± 23 min (n = 3) 24 h 36 min ± 45 min (n = 4)
Page 9 of 19
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ADC values and ratios on Day 2 and Day 8 after tMCAoFigure 3
ADC values and ratios on Day 2 and Day 8 after tMCAo. 3A illustrates the absolute ADC values for each of the 
tMCAo animals that underwent MRI on Day 2 and Day 8. The measurements were performed on cortical and subcortical 
regions on one coronal ADC map from each animal. Black ❍● : tMCAo + saline; and red ❍● : tMCAo + parecoxib. The con-
tralateral non-ischemic hemispheres are marked with unfilled symbols, whereas the ischemic hemispheres are represented 
with filled dots. On Day 2 there was a significant mean ADC decrease in cortex and striatum of both groups (p < 0.01). On 
Day 8 the ADCs were "pseudonormalized" in the ischemic hemispheres due to cystic brain tissue necrosis. We found a signifi-
cant mean ADC increase in the cortex of the saline-treated group (p < 0.01) compared with both the contralateral cortex and 
the ischemic cortex of the parecoxib group. 3B visualizes the ADC ratios of the ischemic vs. the contralateral hemispheres for 
both groups on Day 2 and Day 8. Note that the ADC ratios on Day 2 are lower than one in striatum and cortex in both 
groups which represent the initial ADC decrease after ischemia. However, on Day 8 the ADC ratios lie around or above one 
due to the "pseudonormalization" phenomenon (p < 0.03). In the cortex of saline-treated animals we found a significantly 
higher mean ADC ratio. Black ● : tMCAo + saline; and red ● : tMCAo + parecoxib. Mean values are marked with horizontal 
black lines. # indicates p < 0.01 and * p < 0.03.
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Cytokine mRNA expression 24 hours after surgeryFigure 4
Cytokine mRNA expression 24 hours after surgery. The mRNA was purified from each hemisphere separately 24 hours 
after the end of surgery. The mRNA expression of COX-1, COX-2, TNF-α, IL-1β, and IL-6 is presented as right:left hemi-
sphere ratios for each animal. As expected, we found no indications of COX-1 mRNA upregulation 24 hours after tMCAo (A). 
For COX-2 (B), TNF-α (C), IL-1β (D), and IL-6 (E) we found consistent results implying mRNA up-regulation 24 hours after 
sham or tMCAo. We only found significant TNF-α up-regulation in the parecoxib group due to small sample sizes and large 
biological variation in the ischemia groups. Note that the COX-1 and COX-2 mRNA ratios were only determined for two ani-
mals in the parecoxib sham group. Black ■: sham + saline; red ■: sham + parecoxib; black ● : tMCAo + saline; and red ● : 
tMCAo + parecoxib. Mean values are indicated with black horizontal lines. # means p < 0.01 and * p < 0.05.
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COX-2 and NeuN double stains 24 hours and one week after tMCAoFigure 5
COX-2 and NeuN double stains 24 hours and one week after tMCAo. The COX-2 IHC was developed with nickel-
enhanced DAB (black), whereas NeuN was visualized with NovaRed® (brownish red). The images 5A and 5B are obtained 
from a pilot study where the animal was euthanized 24 hours after tMCAo. 5A visualizes a relatively small neocortical infarct in 
the right hemisphere. The box delineates a part of the ischemic border zone that is shown at forty times magnification in 5B. 
The penumbra contains large swollen neurons that express the membrane-bound COX-2 enzyme. In the infarct core the neu-
rons tend to be small and star-shaped due to irreversible neuronal death. 5C and 5E are from a saline-treated animal one 
week after tMCAo. Forty times magnifications of the boxes are shown in 5D and 5F. The neurons in the border zone on Day 
8 after ischemic injury showed a perinuclear expression pattern of the COX-2 enzyme (5D). COX-2+ neurons can be found in 
areas like the neocortex, piriform cortex and the DG of the hippocampus under normal conditions. 5F shows COX-2 
expressed in dendrites of neurons in the molecular cell layer of the DG. The scale bar in 5A is 5 mm, whereas the scale bars in 
5B, 5D and 5F equals 50 μm.
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We used out-bred male SHR rats in the current study
owing to our unpublished experience with the success rate
of the intraluminal tMCAo in different rat strains. In addi-
tion, hypertension is one of the most prominent risk fac-
tor in the underlying pathophysiology of the ischemic
stroke [36]. Monitoring of the relative decrease in the
blood flow in the ischemic MCA territory during surgery
has an unmistakable relevance in the intraluminal fila-
ment occlusion model [37,38]. Recent pilot studies con-
ducted in our lab with laser-doppler blood flow
measurements have confirmed a decrease in the relative
blood flow during tMCAo. However, since this study was
performed without peroperative laser-doppler flow mon-
itoring, we used the ED-1 immunohistochemical stain as
a histological exclusion criterion. Activated microglia is
known to be a very sensitive marker for different kinds of
central nervous system (CNS) injury [39,40]. One animal
subjected to tMCAo was excluded from our study because
of lacking ED-1 positivity in the ischemic hemisphere due

to incomplete occlusion of the MCA origin. Subarachnoid
hemorrhage is another well-described pitfall in the intra-
luminal tMCAo model [37,38]. We observed one animal
with subarachnoid hemorrhage. In addition, we lost three
tMCAo animals due to unexpected deaths, but without
any macroscopic signs of intra-cerebral or subarachnoid
hemorrhages.

Pro-inflammatory cytokine mRNA levels unaffected by 
parecoxib treatment
We decided to investigate the mRNA expression of major
pro-inflammatory cytokines 24 hours after surgery since
the expression of most pro- and anti-apoptotic proteins
peaks 12–36 hours after ischemic brain injury [41]. The
RNA was purified from the whole hemispheres since the
injury induced by the intraluminal tMCAo model affects
both cortical and subcortical territories. Many of our find-
ings are supported by previous reports [2,42,43] and addi-
tional immunohistochemical observations.

However, we were not able to show an effect of parecoxib
administration due to the divided treatment response of
parecoxib, large biological variation in stroke volume, and
small sample sizes. It is evident that dynamic changes in
mRNA expression are missed since only a single time
point was selected for our measurements of mRNA levels
by qRT-PCR at 24 hours. Further, the blockage of the
COX-2 enzyme does not imply that the transcription of
pro-inflammatory cytokines is affected.

Neuroprotective effect measured on apparent diffusion 
coefficient values
Diffusion weighted magnetic resonance imaging is a very
sensitive method in the detection of early ischemic injury
of cerebral tissue in animal models of focal ischemia as
well as in humans [44,45]. DWI provides information
about the self-diffusion of water and allows detection of
ischemic injury within a few minutes after regional per-
fusion is decreased [46]. The technique has enjoyed wide
use in neuroprotective animal studies as a valuable meas-
ure of lesion size and the extent of cytotoxic edema
[47,48].

We observed a beneficial effect of parecoxib administra-
tion based on ADC measurements, as hyperacute ADC
reduction was less pronounced in parecoxib-treated than
in saline-treated animals. This reduction immediately
after the decrease in regional perfusion is believed to be
caused by a shift of water from the extracellular to the
intracellular space due to cytotoxic edema [49]. Others
have also demonstrated less ADC reduction in early focal
ischemia after neuroprotective therapy in experimental
animal studies [48]. Furthermore, we observed a benefi-
cial effect of parecoxib administration based on cortical
ADC measurements obtained one week after surgery. In

Infarct volume one week after tMCAoFigure 6
Infarct volume one week after tMCAo. The infarct vol-
ume was estimated by means of the 2D nucleator and the 
Cavalieri principle applied on NeuN stained brain sections 
one week after surgery. Saline and parecoxib-treated animals 
are marked with black and red dots (●) respectively. 
Parecoxib significantly reduced the mean infarct size (p < 
0.03). Interestingly, the parecoxib group was divided into 
two subgroups suggesting a "responder" and "non-
responder" phenomenon of the COX-2 inhibitor. All eleven 
animals in the saline group had an infarction pattern with 
neocortical involvement. In the parecoxib group only five out 
of twelve animals had cortical infarction. Mean values are 
marked as black horizontal lines. * indicate p < 0.03.
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Examples of saline and parecoxib treatment one week after tMCAoFigure 7
Examples of saline and parecoxib treatment one week after tMCAo. Representative examples of saline (A) and 
parecoxib (B) treatment are shown. The first four rows show DWI and the corresponding ADC maps from Day 2 and 8. Note 
the "pseudonormalization" of the ADC map in the saline-treated animal on Day 8 (A). The last two rows show the ED-1 and 
NeuN stains. The area where activated microglia and invading white blood cells are seen on the ED-1 stain clearly overlap the 
area of neuronal loss visualized on the NeuN stain. The treatment effect of parecoxib was only seen in the right MCA area 
whereas the medial striatal area supplied by the AChA did not respond.
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rodents, ADC begins to normalize 24 to 48 hours after
onset of ischemia ("pseudonormalization") due to pro-
gressive extracellular edema, which reflects vasogenic
edema and a subsequent increased diffusion [50]. In the
following days, ADC increased up to 300% of normal val-
ues, as cell lysis caused increased water diffusion in the
necrotic stroke cavity. In the present study, the markedly
lower "pseudonormalized" cortical ADC in the parecoxib-
treated group therefore reflects a lesser degree of infarct
formation one week after the ischemic injury. ADC
changes can therefore be considered a measure of the
severity of the ischemic stroke [51]. We found indications
of a significant correlation between the ADC decrease and
the IL-1β mRNA level after 24 hours (data not shown). As
proposed by Mancuso et al. [52], we believe that the ini-
tial ADC decrease can be linked to the degree of neuroin-
flammation following tMCAo.

One of the limitations in the MRI part of our study is the
slice thickness of two millimeters. Hence, relatively small
infarcts can hardly be detected as was the case for a
number of animals in the parecoxib-treated group (Figure
7B). We therefore were not able to calculate the stroke vol-
ume based on either DWI or T2WI. Our ADC data were
obtained without baseline lesion size measurements prior
to drug administration. The efficacy of parecoxib treat-
ment presented here may therefore encompass pretreat-
ment bias [53].

Neuronal precursor cell proliferation is not affected by 
parecoxib treatment
A large number of factors including age, environmental
enrichment, exercise, growth, and neurotrophic sub-
stances influence neurogenesis in the adult brain [20-23].
Kumihashi et al. [54] were the first to address the possible
role of COX-2 in neurogenesis after transient forebrain
ischemia in gerbils. They found a significant decrease in
neurogenesis in DG two weeks after the insult in animals
treated with acetylsalicylic acid (30 mg/kg BW). Sasaki et
al. [55,56] used a model of transient forebrain ischemia in
COX-2 knock-out and wild type mice to investigate the
role of the COX-2 protein in post-ischemic hippocampal
neurogenesis. Ten days after the ischemic insult,
indomethacin (10 mg/kg BW) and the selective COX-2
inhibitor NS398 (20 mg/kg BW) significantly reduced
BrdU incorporation in the DG of wild type mice. A similar
decrease in hippocampal NPC proliferation was found in
COX-2 knock-outs. Recently, Kluska et al. [57] published
an interesting study where BrdU incorporation in the DG
was evaluated up to ten weeks after photothrombotic cor-
tical stroke in Wistar rats. Although the total number of
BrdU+ cells decreased over time, there was a significant
increase in BrdU+ cells with a mature NeuN phenotype.
Treatment with MK-801 (2 mg/kg BW) and indomethacin
(2.5 mg/kg BW) enhanced neurogenesis in the DG four

BrdU incorporation in the dentate gyrus of the hippocampusFigure 8
BrdU incorporation in the dentate gyrus of the hip-
pocampus. We estimated in average between four to six 
thousand BrdU-positive cells in the hippocampal DG (A). 
We revealed no significant differences between or within the 
four groups. The mean number of BrdU-positive cells was 
generally lower in the tMCAo groups than in the sham 
groups. However, if the DG was affected by ischemia (see 
Figure 9D to 9I) the BrdU incorporation increased dramati-
cally (black × and red ×). Note that in one animal (marked 
with red ×) the ischemic injury also affected the contralateral 
hippocampus. B shows the BrdU incorporation ratio 
between the right and left hemispheres. The mean ratios for 
the four groups indicated no difference in the BrdU incorpo-
ration between the hemispheres or groups. Black �■: sham 
+ saline; red �■: sham + parecoxib; black ❍● : tMCAo + 
saline; and red ❍● : tMCAo + parecoxib. The ischemic or 
sham (right) hemispheres are represented with filled sym-
bols, whereas the contralateral (left) hemispheres are 
unfilled. Mean values are indicated with black horizontal bars.
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weeks after photothrombotic ischemia [57]. We found no
increase in BrdU incorporation in the DG in the ischemic
hemispheres after tMCAo. Hoehn et al. [58] recently
reported a suppression of BrdU+ cells in the subventricular
zone (SVZ) within the first week after reperfusion follow-
ing tMCAo in Sprague-Dawley rats. In the same paper
enhanced neurogenesis in the striatum and cortex due to

indomethacin intake (2.5 mg/kg BW) was observed 14
and 28 days after the ischemic insult.

As shown in Figure 9D to 9I ischemic damage of CA1 in
the hippocampus dramatically stimulated the BrdU
uptake. Although the DG was not directly affected by the
ischemic injury, the presence of ED-1+ microglia indicated

BrdU, ED-1 and NeuN stains one week after tMCAoFigure 9
BrdU, ED-1 and NeuN stains one week after tMCAo. 9A to 9F show the IHC for BrdU and ED-1. BrdU was developed 
with nickel-enhanced DAB (black), whereas the activated microglia marker ED-1 was visualized with NovaRed® (brownish 
red). 9A shows a representative example of a tMCAo animal one week after surgery. Four and forty time magnifications of the 
boxes in 9A and 9B are shown in 9B and 9C, respectively. The BrdU+ cells are typically found in clusters in the subgranular 
cell layer in DG. Our counting procedure started with delineating the DG. Hereafter, the BrdU+ cells in the whole DG were 
counted at forty times magnification (9C). We generally observed a very scarce ED-1 expression in the DG unless the hippoc-
ampus was directly affected by ischemic injury. 9D to 9I show an example of ischemia affecting the right hippocampus. The 
boxed area in 9D is shown at higher magnification in 9E. Activated microglia was abundantly seen in a part of the CA-1 and the 
whole DG. 9F shows a forty time magnification of the box in 9E. Clearly, activated microglia had an intimate relation to an 
increasing number of BrdU+ cells. Panel 9G to 9I show NeuN IHC developed with nickel-enhanced DAB. 9G and 9H corre-
spond to 9D and 9E. The boxed area in 9H of the CA-1 is shown at forty time magnification in 9I. Note the ischemic degen-
eration of this part of the CA-1. The scale bar in 9A is 5 mm. In 9B the scale bar represents 300 mm, and in 9E and 9H 1 mm. 
The scale bars in 9C, 9F and 9I equals 50 μm.
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a neuroinflammatory activity. Ekdahl et al. [59] and
Monje et al. [60] reported that inflammation observed
after lipopolysaccharide (LPS) administration in rat mod-
els of status epilepticus and whole brain irradiation has
detrimental effects on neurogenesis in the adult brain.
Further blockage of microglia activation with minocycline
restored hippocampal neurogenesis after LPS-induced
neuroinflammation [59,60]. We think that microglia acti-
vation after different kinds of brain injury should not be
considered a homogeneous response. This notion is sup-
ported by a recent in vitro study where different microglia
activation types determined whether the effect on NPCs
was beneficial or detrimental [61]. Further microglia can
stimulate hippocampal neurogenesis under non-patho-
logical conditions [62].

Different responsiveness to parecoxib treatment
Surprisingly, we found a divided response in animals
treated with parecoxib IP twice daily for one week. Seven
out of twelve animals had small subcortical infarcts,
whereas the last five animals had large stroke volumes
involving substantial parts of the neocortex. Over the past
five years, both Iadecola et al. [2-4,8] and Candelario-Jalil
et al. [7,9,10] have reported consistent neuroprotective
effects of the selective COX-2 inhibitor nimesulide in dif-
ferent rodent models of ischemic brain injury. However,
none of the mentioned studies observed a divided treat-
ment effect similar to the one observed in our study. We
continued the parecoxib administration beyond the mat-
uration point of ischemic brain injury. A possible explana-
tion for the observed divided response could therefore be
secondary thrombosis of the MCA origin due to endothe-
lial damage by the occluding filament. This hypothesis is
supported by the fact that selective COX-2 inhibitors
impair the delicate endothelial balance of COX-1 depend-
ent thromboxane A2 (TXA2) and COX-2 dependent pros-
tacyclin (PGI2) [14,15]. Accumulation of TXA2 favors
platelet aggregation, vasoconstriction, and smooth mus-
cle cell proliferation.

New studies are necessary to elucidate whether the
observed treatment response of parecoxib is due to a rat
strain characteristic, a dose-response relation or the way of
drug administration.

Conclusion
IP parecoxib administration (10 mg/kg) during tMCAo
was neuroprotective as evidenced by a large reduction in
mean infarct volume and cortical ADC measurements one
week after tMCAo. Increased pro-inflammatory cytokine
levels measured after 24 hours remained unaffected. Hip-
pocampal granule cell BrdU incorporation one week after
tMCAo as a measure for post-injury NPC proliferation was
not affected by parecoxib administration. The presence of

ED-1+ activated microglia in the hippocampus was related
to an increase in BrdU uptake in the DG.
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