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Abstract

Background: Activated microglia elicits a robust amount of pro-inflammatory cytokines, which are implicated in the
pathogenesis of tuberculosis in the central nervous system (CNS). However, little is known about the intracellular signaling
mechanisms governing these inflammatory responses in microglia in response to Mycobacterium tuberculosis (Mtb).

Methods: Murine microglial BV-2 cells and primary mixed glial cells were stimulated with sonicated Mtb (s-Mtb). Intracellular
ROS levels were measured by staining with oxidative fluorescent dyes [2',7'-Dichlorodihydrofluorescein diacetate (H,DCFDA)
and dihydroethidium (DHE)]. NADPH oxidase activities were measured by lucigenin chemiluminescence assay. S-Mtb-induced
MAPK activation and pro-inflammatory cytokine release in microglial cells were measured using by Western blot analysis and
enzyme-linked immunosorbent assay, respectively.

Results: We demonstrate that s-Mtb promotes the up-regulation of reactive oxygen species (ROS) and the rapid activation of
mitogen-activated protein kinases (MAPKSs), including p38 and extracellular signal-regulated kinase (ERK) 1/2, as well as the
secretion of tumor necrosis factor (TNF)-a, interleukin (IL)-6, and IL-12p40 in murine microglial BV-2 cells and primary mixed
glial cells. Both NADPH oxidase and mitochondrial electron transfer chain subunit | play an indispensable role in s-Mtb-induced
MAPK activation and pro-inflammatory cytokine production in BV-2 cells and mixed glial cells. Furthermore, the activation of
cytosolic NADPH oxidase p47phox and MAPKs (p38 and ERKI1/2) is mutually dependent on s-Mtb-induced inflammatory
signaling in murine microglia. Neither TLR2 nor dectin-1 was involved in s-Mtb-induced inflammatory responses in murine
microglia.

Conclusion: These data collectively demonstrate that s-Mtb actively induces the pro-inflammatory response in microglia
through NADPH oxidase-dependent ROS generation, although the specific pattern-recognition receptors involved in these
responses remain to be identified.
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Background

Mycobacterium tuberculosis (Mtb) infection of the central
nervous system (CNS), particularly in cases of meningitis,
accounts for 1 to 10% of all cases of tuberculosis (TB). It
is the most severe form of systemic TB because of its high
mortality rate and possible serious neurological complica-
tions. In the CNS, where the function of neurons is pro-
tected by the maintenance of an anti-inflammatory
environment [1], infection with Mtb leads to catastrophic,
inflammatory tissue destruction [2]. The mechanisms
behind this phenomenon are currently unknown. Unlike
pulmonary TB, which has been intensively investigated in
numerous clinical trials, the pathogenesis, diagnosis, and
treatment of CNS-TB have received little attention. A bet-
ter understanding of CNS-TB pathogenesis is urgently
required to improve existing therapies, which still leave
over half of those affected dead or paralyzed [3].

The CNS-resident macrophages, microglia, are produc-
tively infected with Mtb and may be the principal cellular
target in the CNS [4,5]. Activated microglia release a
number of cytokines/chemokines that contribute to both
defense against and the neuropathogenesis of CNS infec-
tion [6]. Upon activation, microglia produce and secrete
potentially neurotoxic pro-inflammatory cytokines,
including tumor necrosis factor (TNF)-a/p, interleukin
(IL)-1 /B, and IL-6 [7]. Both TNF-a and IL-1B have been
found at increased concentrations in the cerebrospinal
fluid (CSF) of patients with CNS-TB [8-10]. Upon myco-
bacterial infection, mitogen-activated protein kinases
(MAPKs) play important roles in promoting anti-myco-
bacterial activity and the production of immune effector
molecules, including TNF-o [11-15]. There is increasing
evidence that reactive oxygen species (ROS) also function
as second messengers to regulate several downstream sig-
naling molecules, including MAPKs or the NF-kB pathway
[16-18].

ROS are produced in mammalian cells in response to the
activation of various cell surface receptors [17]. In brain-
resident immune cells, the generation of free radicals
plays important roles in anti-microbial defense as well as
in pro-inflammatory signaling [19,20]. Activation of the
NADPH oxidase pathway initiates an intracellular ROS
signaling pathway that amplifies the production of pro-
inflammatory cytokines, such as TNF-a, [21]. Intracellular
ROS mediate f-amyloid peptide-induced microglial acti-
vation [22]. In addition, microglia-mediated neurotoxic-
ity is influenced by the release of microglial NADPH
oxidase-mediated ROS [23-25]. Previous studies indicate
that p47phox, an essential component of the phagocyte
NADPH oxidase, is required for superoxide anion release
from microglia [26]. To date, the roles of NADPH oxidase-
derived ROS and the intracellular regulatory mechanisms
by which these pro-inflammatory responses are induced
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in microglial cells during mycobacterial infection are
poorly understood.

Activated microglia express Toll-like receptors (TLRs)
[27], CD14 [4], and mannose receptors [28]. TLRs play an
important role in the activation of immune cells by path-
ogens such as Mtb. Receptors other than TLRs, including
C-type lectins, are also involved in mediating host
responses to Mtb. Recently, Yadav et al. [29] reported that
the B-glucan receptor dectin-1 works with TLR2 to medi-
ate Mycobacterium-induced pro-inflammatory responses
in macrophages. To date, no attempt has been made to
identify the specific mycobacterial antigens that interact
with specific TLRs or other pattern-recognition receptors
(PRRs) in microglia. To better understand the Mtb-
induced molecular signaling pathways in microglia, we
selected BV-2 cell lines that retain the characteristics of
activated microglial cells, and we confirmed our results in
murine primary mixed glial cells. We investigated the role
of ROS and MAPK signaling in the regulation of pro-
inflammatory cytokine expression in response to soni-
cated Mtb (s-Mtb). We found that s-Mtb activates inflam-
matory mediators in microglial cells and primary mixed
glial cells through NADPH oxidase-dependent ROS gener-
ation. In addition, p38 and extracellular signal-regulated
kinase (ERK) 1/2 signaling is essential for the expression
of TNF-a, IL-10, and IL-12p40 in s-Mtb-stimulated micro-
glia. Furthermore, we investigated the potential roles of
PRRs, such as TLR2 and dectin-1, in microglial cells.

Methods

Murine mixed glial cells, and cell lines

Mice with a targeted deletion in the TLR2 gene
(homozygous mice and their homozygous litter mates)
were kindly provided by Dr. S. Akira (Osaka University,
Osaka, Japan). All animals were maintained under stand-
ard laboratory conditions on a 12-h light/dark cycle, with
free access to food and water. All of the animal procedures
were conducted in accordance with the guidelines of the
institutional Animal Care and Use Committee, Chung-
nam National University.

Primary mixed glial cultures were prepared from 1- or 2-
day-old neonatal C57BL/6 mice. The cerebral cortices
were dissected, carefully stripped of their meninges, and
digested with 0.25% trypsin for 25 min at 37 °C. Trypsini-
zation was stopped by adding an equal volume of culture
medium (Dulbecco's modified Eagle medium-F-12 nutri-
ent mixture, fetal bovine serum 10%, penicillin 100 U/
mlL, streptomycin 100 ug/mL, and amphotericin B (Fung-
izone® 0.5 pg/mL) to which 0.02% deoxyribonuclease 1
was added. The solution was pelleted, resuspended in cul-
ture medium, and brought to a single cell suspension by
repeated pipetting followed by passing through a 105-
pm-pore mesh. Cells (at a density of 250,000 cells/mL)
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were cultured at 37°C in humidified 5% CO,/95% air.
Medium was replaced every 5-7 days. Cultures were used
between 12 and 15 days in vitro. At this point they typi-
cally consisted of 75% type-I astrocytes and 25% micro-
glia (data not shown). Separately, to obtain astrocyte-
enriched cultures, non-astrocytes (microglia) were
detached from the flasks by shaking, and removed by
changing the medium [30]. We confirmed that astrocyte-
enriched cultures consisted of > 95% astrocytes (data not
shown).

The BV-2 murine microglial cell lines were kindly pro-
vided by Dr. Sung Joong Lee (Seoul National University,
Seoul, Korea). The cells were grown and maintained in
Dulbecco's modified Eagle's medium (DMEM, Gibco,
U.K.) supplemented with 10% fetal bovine serum (FBS,
Gibco) and 1% penicillin/streptomycin (Gibco) at 37°C
in a humidified incubator under 5% CO,.

Cultures of Mtb and preparation of s-Mtb

Cultures of Mtb H37Rv were grown to mid-log phase in
Middlebrook 7H9 liquid medium supplemented with
oleic acid/albumin/dextrose/catalase (Difco, Becton-
Dickinson, Palo Alto, CA, USA), washed three times in
sterile saline, and resuspended in RPMI 1640 medium at
the various concentrations. Separate culture suspensions
were sonicated for 10 min on ice, in order to obtain non-
infective cell lysates, as described previously [31]. S-Mtb
was pooled and applied to an immobilized polymyxin B
column (Detoxi-Gel endotoxin removing gel; Pierce
Chemical Co.). Preparations of the s-Mtb used in experi-
ments were tested for lipopolysaccharide (LPS) contami-
nation by a Limulus amebocyte lysate assay
(BioWhittaker) and contained less than 50 pg/ml at the
concentrations of the s-Mtb used in experiments. In order
to show that the stimulatory capacity of the s-Mtb was not
the result of contamination with LPS, experiments were
performed with the addition of the specific LPS-inhibiting
oligopeptide polymyxin B (10.0 pg/ml) before s-Mtb
stimulation.

Reagents and antibodies (Abs)

LPS (Escherichia coli 026:B6) and peptidoglycan (PGN,
Staphylococcus aureus) was purchased from Sigma (St.
Louis, MO, USA). BLP, a synthetic bacterial lipopeptide
(Pam,4Cys-Ser-Lys,-OH) derived from the immunologi-
cally active N-terminus of bacterial lipoproteins, was pur-
chased from Invitrogen (Carlsbad, CA, USA). NAC, DP],
allopurinol and rotenone were purchased from Calbio-
chem (San Diego, CA, USA). Dimethyl sulfoxide (DMSO;
Sigma) was added to cultures at 0.1% (vol/vol) as a sol-
vent control. Specific inhibitors of p38 MAPK, SB203580,
and specific inhibitors of MEK, U0126, and PD98059
were purchased from Calbiochem. The expression plas-
mids that encode p47phox WT and DN, and TAT-Ser345
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peptide were kindly provided by Dr. J. El-Benna
(Université Paris 7-Denis Diderot, Paris, France). Cells
were transfected using LipofectAMINE as indicated by the
manufacturer (InvitroGen, Carlsbad, CA, USA). Specific
Abs against ERK1/2, phospho-(Thr202/Tyr204)-ERK1/2,
p38, phospho-(Thr180/Tyr182)-p38 Abs were purchased
from Cell signalling Technology (Beverly, MA, USA). Anti-
Dectin-1 mAb (clone 2A11, IgG2b) was from Serotec
(Oxford, UK). Abs to p47phox (H-195), and a-actin (I-
19) were purchased from Santa Cruz Biotechnology
(Santa Cruz, California, USA). The anti-phospho-
(Ser345)-p47phos Ab was used, as previously described
[32]. Anti-IL-1B mADb (clone 303311, IgG1) and isotype
mAb were purchased from R & D system (Minneapolis,
MN, USA).

Measurement of intracellular ROS

Intracellular ROS levels were measured by 2',7'-Dichloro-
dihydrofluorescein diacetate (H,DCFDA) and dihy-
droethidium (DHE) assays, as previously described [32].
Briefly, BV-2 or primary mixed glial cells were stimulated
with s-Mtb or LPS for 30 min. The cells were incubated
with either 10 uM H,DCFDA or 2 uM DHE (Molecular
Probes, Eugene, OR, USA) for 15 min at 37°C in 5% CO,.
The cells were then washed and examined with a laser-
scanning confocal microscope (model LSM 510; Zeiss,
Germany) and the mean relative fluorescence intensity for
each group of cells was measured with a Zeiss vision sys-
tem (LSM510, version 2.3) and then averaged for all
groups.

Determination of NADPH oxidase activity

NADPH oxidase activities were measured by lucigenin
(bis-N-methylacridinium nitrate) chemiluminescence
assay (5 x 10° mol/L lucigenin, Sigma) in the presence
of its substrate NADPH (10-4 mol/L, Sigma) as described
previously [33]. In brief, BV-2 or primary mixed glial
cells were incubated with s-Mtb or LPS for 30 min in the
presence or absence of DPI. Lucigenin-enhanced chemi-
luminescence assay was performed to analyze the level
of superoxide production as previously reported [33].
The cells were transferred into scintillation vials contain-
ing Krebs-HEPES buffer (100 mM NaCl, 4.7 mM KCl, 1.9
mM CacCl,, 1.2 mM MgSO,, 1.03 mM K,HPO,, 25 mM
NaHCOj;, 20 mM Na-HEPES, pH 7.4) with 5 uM luci-
genin. The chemiluminescence, which occurred over the
ensuing 1 min in response to the addition of 100 uM
NADPH, was recorded using a luminometer (Lumet
LB9507; Berthold Technologies, Bad Wildbad, Ger-
many). The emitted light units, after subtracting a blank,
were used as a measure of superoxide production. Values
are expressed as relative light units per 1 x 105 cells.
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Enzyme-linked immunosorbent assay and Western blot

A sandwich enzyme-linked immunosorbent assay
(ELISA) was used for detecting TNF-o., IL-6 and IL-12p40
(PharMingen, San Diego, CA, USA) in culture superna-
tants. Assays were performed as recommended by the
manufacturers. Cytokine concentrations in the samples
were calculated using standard curves generated from
recombinant cytokines, and the results were expressed in
picograms per milliliter.

For Western blot analysis, total cell lysates were prepared
after treatment with s-Mtb or LPS during the time indi-
cated (0~480 min). Abs to phospho-ERK1/2, phospho-
p38, total ERK1/2, total p38 and a-actin were used at
1:1,000 dilutions. Membranes were developed using a
chemiluminescence assay (ECL; Pharmacia-Amersham,
Freiburg, Germany) and subsequently exposed to chemi-
luminescence film (Fuji Film, Tokyo, Japan)

Statistical analysis

For statistical analysis, data obtained from independent
experiments are presented as the mean + SD and they were
analyzed using a Student's t test with Bonferroni adjust-
ment or ANOVA for multiple comparisons. Differences
were considered significant for p < 0.05.

Results

S$-Mtb stimulation induces intracellular ROS generation
and MAPK (ERK1/2 and p38) activation in murine
microglial BV-2 cells and primary cultures of mixed glial
cells

ROS may serve as intracellular signaling molecules [34];
however, ROS generation in response to mycobacterial
antigens is poorly understood in microglia. We examined
whether s-Mtb stimulation caused ROS generation in
murine microglial BV-2 cells (Fig. 1A) and primary mixed
glial cells (Fig. 1B) using the oxidative fluorescent dyes
H,DCFDA and DHE to detect H,0O, and superoxide pro-
duction, respectively. LPS treatment activated ROS gener-
ation in microglia. The chemiluminescent signal
intensities attributable to H,0, and superoxide produc-
tion increased markedly in BV-2 microglial cells stimu-
lated with s-Mtb within 30 min (data not shown). The
antioxidant NAC and the NADPH oxidase inhibitor DPI
significantly attenuated s-Mtb-induced H,O, and super-
oxide production (Fig. 1A and 1B). When NADPH oxidase
activity was measured in cultured microglial BV-2 cells via
lucigenin chemiluminescence, the s-Mtb-stimulated cells
showed increased NADPH oxidase activity compared to
resting cells (Fig. 1C). The stimulatory effect of lucigenin
on NADPH consumption in microglial cells was nearly
abolished by pre-treatment with DPI.

MAPK activation plays an essential role in the macro-
phage response to pro-inflammatory stimuli such as LPS
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and cytokines [35-37]. Therefore, we investigated whether
ERK1/2 or p38 is activated in response to s-Mtb in BV-2
microglial or primary mixed glial cells. LPS induced p38
phosphorylation within 60 min of treatment. However,
LPS did not stimulate ERK1/2 activation in BV-2 cells,
indicating that ERK1/2 activation is not involved in LPS
action in this cell type, which is consistent with previous
finding [38]. S-Mtb stimulation activated both ERK1/2
and p38 in BV-2 cells. S-Mtb induced the phosphorylation
of ERK1/2 and p38 within 5 min, and peak activity was
observed after 15 min (Fig. 1D). Similarly, s-Mtb induced
the phosphorylation of ERK1/2 and p38 in primary cul-
tures of mixed glial cells. These results show that s-Mtb
strongly induces NADPH oxidase-dependent ROS genera-
tion and activates MAPK signaling in microglia.

S$-Mtb stimulation induces pro-inflammatory cytokine
production in murine microglia

We examined the microglial production of pro-inflamma-
tory cytokines in response to s-Mtb. Cell cultures were
stimulated with different doses of s-Mtb (0.01, 0.1, or
1%), and the supernatant was collected at the indicated
intervals for cytokine analysis. S-Mtb-stimulated BV-2
microglial cells produced robust amounts of TNF-a, IL-6,
and IL-12p40 in a dose-dependent manner (Fig. 2A-C).
Each cytokine had its peak response at 18 h or 48 h, which
declined with prolonged treatment. LPS also induced
cytokine production, although to a lesser extent than s-
Mtb. Cytokine production in primary cultures of mixed
glial cells was observed after 18 h of s-Mtb stimulation
(Fig. 2D).

The ERK1/2 and p38 pathways are critical for the s-Mtb-

induced production of TNF-¢, IL-6, and IL-12p40 in murine
microglia

To better understand the functional roles of the ERK1/2
and p38 pathways in the s-Mtb-induced pro-inflamma-
tory response, we assayed cytokine production in the
absence or presence of specific inhibitors of ERK1/2 and
p38. Pre-treatment with the MEK inhibitors PD98059 and
U0126 or the p38 inhibitor SB203580 prevented s-Mtb-
induced TNF-a and IL-6 production in BV-2 microglial
cells in a dose-dependent manner (Fig. 3). Similarly, IL-
12p40 production was inhibited in the presence of
PD98059 and U0126. In contrast, IL-12p40 production
was significantly up-regulated by SB203580 in a dose-
dependent manner. These data indicate that the ERK1/2
and p38 pathways positively regulate TNF-a and IL-6
production, whereas the p38 pathway negatively regulates
s-Mtb-induced IL-12p40 production in microglia.

Intracellular ROS formation is essential for MAPK
activation and pro-inflammatory cytokine production

We examined whether intracellular ROS formation
plays a role in MAPK activation and cytokine release in
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Figure |

S-Mtb induces intracellular ROS generation and MAPK (ERK1/2 and p38) activation in murine microglial BV-2
cells and in primary cultures of mixed glial cells. A) BV-2 cells were incubated with DCFH-DA (H,O, detection, left
panel) or DHE (superoxide detection, right panel) in the presence or absence of 1% s-Mtb or 100 ng/ml LPS for 30 min. Live
cells were washed with serum-free medium and imaged using a confocal microscope. Enhanced H,O, or superoxide was abol-
ished by pre-treatment with 20 mM NAC or 20 uM DPI, respectively. Images are representative of three independent experi-
ments. B) Primary cultures of mixed glial cells were analyzed for H,O, or superoxide production in response to s-Mtb or LPS
treatment. The experimental conditions were identical to those outlined in A. Quantitative data are the mean £ SD of values
from three random fields and are representative of three independent experiments. C) NADPH oxidase activity was quantified
by measuring the production of ROS using a lucigenin-derived chemiluminescence assay. The effect of the NADPH oxidase
inhibitor DPI (20 uM) was examined. M; mock. D) BV-2 cells (Upper panel) or primary mixed glial cells (Lower panel) were stim-
ulated with 1% s-Mtb or | ug/ml LPS for the indicated times (0—480 min). The cells were then harvested and subjected to
Western blot analysis to detect phosphorylated and total forms of p38 and ERK /2. The same blots were washed and blotted
for a-actin as a loading control. Data are representative of three independent experiments.

Page 5 of 16

(page number not for citation purposes)



Journal of Neuroinflammation 2007, 4:27

http://www.jneuroinflammation.com/content/4/1/27

A 5000-
£ 4000
(o]
£ 3000
o
[T -
L 2000
=
1000
036184896 0 3 6184396 0 3 6 184896 0 3 6 184896 (h)
Mtb 0.01% Mtb 0.1% Mtb 1% LPS
B 25000
=20000-
E
2 15000-
{Q
1 10000
5000 -
036184896 036184396 03 6184896 0 3 6 184896 (h)
Mtb 0.01% Mtb 0.1% Mtb 1% LPS
C 350,
£
5 280-
e
o 210
<
o
ﬂl 140 -
=
70
036184896 03 6 184896 0 3 6 184896 0 3 6 1848 96(h)
Mtb 0.01% Mtb 0.1% Mtb 1% LPS
3500 | TNF.a 400016 40001 |L.-12p40
2800 3200 3200
E 2100 2400 2400
2 1400 1600 1600
700 800 800
- Mtb Mtb ' - Mtb
1% 1% 1%

Figure 2

S-Mtb increases pro-inflammatory cytokine production in microglia. A-C) BV-2 cells were stimulated with 0.01, 0.1,
or 1% s-Mtb or with | pg/ml LPS for the indicated times (0- 96 h). The supernatant was analyzed for cytokine production using
ELISA. A significant increase in TNF-a (A), IL-6 (B), and IL-12p40 (C) production was observed. D) TNF-a,, IL-6, and IL-12p40
protein levels in primary cultures of mixed glial cells were analyzed after 18 h of s-Mtb stimulation. Values are the mean * SD

of triplicate samples.
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Effect of MAPK inhibitors on pro-inflammatory cytokine production in s-Mtb-stimulated microglia. BV-2 cells
were pre-incubated with or without protein kinase inhibitors (PB98059, 5, 10, or 20 uM; U0126, 5, 10, or 20 uM; SB203680, I,
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12p40 by ELISA. Data are expressed as the mean + SD of values from three separate experiments. Significant differences com-
pared to cultures incubated with 1% s-Mtb alone: *, P < 0.05; ***, P < 0.00/. M, media only; D, 0.1% DMSO.
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microglia using various inhibitors of ROS generation. As
shown in Fig. 4A, S-Mtb-induced ERK1/2 and p38 activity
in BV-2 microglial cells was substantially attenuated in the
presence of such ROS scavengers as NAC (a general ROS
scavenger), DPI (an NADPH oxidase inhibitor), and
rotenone (a mitochondrial electron transfer chain subunit
I inhibitor) in a concentration-dependent manner.

To evaluate whether ROS are involved in s-Mtb-mediated
pro-inflammatory cytokine production, BV-2 microglial
cells were pre-treated with various ROS scavengers. Pre-
treatment with NAC, DP]I, or rotenone significantly atten-
uated s-Mtb-induced TNF-q, IL-6, and IL-12p40 produc-
tion in microglia (Fig. 4B). In contrast, pre-treatment with
allopurinol, a xanthine oxidase inhibitor, did not affect
MAPK activation or cytokine production in microglia
(Fig. 4B, MAPK activation data not shown). These data
suggest that s-Mtb-induced MAPK activation and pro-
inflammatory cytokine release in microglial cells are prob-
ably mediated via ROS generated by NADPH oxidase and
mitochondria.

Activation of the cytosolic NADPH oxidase component
p47phox and MAPK is mutually dependent on s-Mtb-
induced inflammatory signaling in murine microglia
Phosphorylation of the cytosolic subunit p47phox is nec-
essary for NADPH oxidase activation and regulation [39].
Although p47phox has been detected in cultured micro-
glia [26], its role in MAPK activation and cytokine produc-
tion in microglia has not been investigated. To examine
whether ERK1/2 or p38 activation is dependent on
p47phox activation, we examined the effect of wild-type
(WT) or dominant-negative (DN) p47phox constructs on
p38 and ERK1/2 phosphorylation. Our results showed
that ERK1/2 and p38 phosphorylation increased substan-
tially in BV-2 microglia transfected with WT p47phox,
whereas phosphorylation was abolished in cells express-
ing DN p47phox (Fig. 5A). In addition, we pre-treated
cells with an inhibitory cell-permeable peptide (TAT-
Ser345 peptide) that corresponds to amino acids 339-
350 (ARPGPQSPGSPL) of p47phox [40]. In cells treated
with the TAT-Ser345 peptide, TNF-a, IL-6, and IL-12p40
production decreased significantly in a dose-dependent
manner, whereas the TAT-scramble peptide had little or
no inhibitory effect on cytokine production (Fig. 5B).
These results suggest that p47phox activation is necessary
for MAPK activation and the pro-inflammatory response
in microglial cells.

It was reported that p47phox phosphorylation at Ser345
serves as a point of convergence for various MAPKs to
induce the priming of ROS production [40]. To explore
the possible role of MAPK upstream from the NADPH oxi-
dase in microglia, we examined the effects of MAPKs
inhibitors on the phosphorylation of p47phox and ROS

http://www.jneuroinflammation.com/content/4/1/27

production in BV2 microglial cells. Pretreatment with
inhibitors of MEK1 (U0126) or p38 (SB203580) signifi-
cantly downregulated the phosphorylation of p47phox in
BV2 cells in a dose-dependent manner (Fig. 5C and 5D).
In addition, superoxide production by BV-2 cells was sub-
stantially inhibited by pretreatment with inhibitors for
MEK1 (U0126) and p38 (SB203580). Combined, these
findings indicate that p47phox phosphorylation and
MAPK (ERK1/2 and p38) activation are mutually depend-
ent on s-Mtb-mediated inflammatory signaling pathways
in microglial cells.

Neither TLR2 nor dectin-1 is involved in s-Mtb-induced
inflammatory mediator expression in murine microglia
Among the PRRs, TLR2 and dectin-1 are thought to be piv-
otal mediators of Mtb signaling. Thus, we investigated
whether TLR2 or dectin-1 mediates s-Mtb-induced inflam-
matory cytokine production in microglia. S-Mtb, heat-
denatured Mtb (H37Rv), and H37Ra induced TNF-o and
IL-6 production, indicating that a heat-stable, non-protein
bacterial component activates the pro-inflammatory
response in microglial cells. Latex bead phagocytosis had
no effect (Fig. 6A). Importantly, cytokine production in
BV-2 microglial cells was not affected by treatment with
19-kDa antigen, which is a well-characterized mycobacte-
rial TLR2 agonist. These data suggest that TLR2 may not be
the only receptor that mediates the s-Mtb-induced pro-
inflammatory response in microglia. Furthermore, we
examined the expression of pro-inflammatory mediators
in mixed glial cells from TLR2 -/- mice (Fig. 6B). Although
the level of TNF-a was slightly lower in the TLR2 -/- cells
than in WT cells, neither the TLR2 nor the dectin-1 block-
ade had an effect on the s-Mtb-induced pro-inflammatory
response in microglia (Fig. 6B and 6C). Taken together,
we conclude that neither TLR2 nor dectin-1 plays an indis-
pensable role in s-Mtb-induced pro-inflammatory
cytokine production in murine microglia; instead, s-Mtb
appears to activate inflammatory responses via an as yet
unknown PRR.

Neither astrocytes nor indirect stimuli such as IL-1/
adversely affected the s-Mtb-induced ROS release and
cytokine production by primary mixed glial cells

To investigate the cellular sources of the s-Mtb-induced
ROS and cytokines, astrocyte-enriched (> 95% astrocytes)
cultures were collected and exposed to s-Mtb (1%). The
intracellular ROS and cytokine production was then
measured in these cell cultures. S-Mtb stimulation
induced ROS generation, as well as TNF-a and IL-6 pro-
duction, in astrocyte-enriched cultures (Fig. 7A and 7B).
However, the amounts of superoxide in primary astrocyte-
enriched cultures were negligible when compared with
those in primary mixed glial cell cultures. In addition,
the production of TNF-o/IL-6 from astrocyte-enriched
cultures was not comparable to that of primary mixed
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ROS scavengers block MAPK activation and pro-inflammatory cytokine production in s-Mtb-stimulated micro-
glia. A) Effect of ROS scavengers on p38 and ERK /2 activation. After pre-treatment for 30 min with NAC (10, 20, or 30 mM),
DPI (10, 20, or 50 pM), or rotenone (I, 10, or 100 M), BV-2 cells were stimulated with 1% s-Mtb for 30 min. The cells were
then harvested and subjected to Western blot analysis to detect phosphorylated p38 and ERK1/2. The same blots were
washed and blotted for a-actin as a loading control. B) Effect of ROS scavengers on TNF-q, IL-6, and IL-12p40 production.
Cells were pre-treated with NAC, DPI, and rotenone as described in A. Culture supernatants were harvested after stimulation
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were washed with serum-free medium and imaged using confocal microscopy. The images are representative of three inde-
pendent experiments. M, medium only; D, 0.1% DMSO as a solvent control.
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S-Mtb-induced microglial activation is not associated with TLR2 or dectin-1. A) Measurement of TNF-a and IL-6
from cultures stimulated with | pug/ml LPS, 1% s-Mtb, or 19-kDa (0.5 or | pg/ml). Latex beads, heated Mtb, and H37Ra were
added with MOI at |. The supernatants were harvested at 18 h and cytokine production was quantified by ELISA. Data are pre-
sented as the percentage of the control and compared to cultures incubated with LPS. B) Comparison of cytokine production
in mixed glial cells from WT and TLR2 -/- mice. Primary mixed glial cells from WT and TLR2-/- mice were prepared and stim-
ulated with 1% s-Mtb, | pg/ml LPS, 10 pug/ml PGN, or 10 nM BLP. The supernatants were harvested at 6 h and 18 h and ana-
lyzed for TNF-a,, IL-6, and IL-12p40 production by ELISA. Data are presented as the percentage of the control and compared
to cultures incubated with s-Mtb for 6 h. C) BV-2-cells were stimulated with % s-Mtb in the presence of PBS or a neutralizing
monoclonal antibody against dectin-1. After | h of incubation at 37°C, the supernatants were analyzed for cytokine production
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Neither astrocytes nor indirect stimuli such as IL-1[3 adversely affected the s-Mtb-induced ROS release and
cytokine production by primary mixed glial cells. A) ROS generation in astrocyte-enriched cultures. Astrocyte-enriched
cultures were incubated with DHE (for superoxide detection) in the presence or absence of 1% s-Mtb or 100 ng/ml LPS for 30
min. The live cells were washed with serum-free medium and imaged using confocal microscopy. Images are representative of
three independent experiments. B) Cytokine production in astrocyte-enriched cultures. Astrocyte-enriched cultures were
stimulated with 1% s-Mtb for the indicated times (0- 48 h). The supernatant was analyzed for cytokine production using ELISA
for TNF-o and IL-6. Values are the mean * SD of triplicate samples. C) The effects of IL-13 on superoxide production. Primary
mixed glial cells were stimulated with 1% s-Mtb or 100 ng/ml LPS in the presence of a neutralizing monoclonal antibody to IL-
IB (1 pg/ml) or isotype control (I pg/ml). After a |-h incubation at 37°C, the cells were incubated with DHE (for superoxide
detection) for 30 min. The live cells were washed with serum-free medium and imaged using confocal microscopy. The images
are representative of three independent experiments. D) The effects of IL-1[3 on cytokine production. Primary mixed glial cells
were pre-incubated with a neutralizing monoclonal antibody to IL-1§ (I pg/ml) or isotype control (I pg/ml) in the presence or
absence of NAC (20 mM), DPI (20 uM), rotenone (10 pM), allopurinol (100 uM), or 0.1% DMSO control for 30 min. The cells
were then stimulated with 1% s-Mtb for 18 h. The supernatant was analyzed for cytokine production using ELISA for TNF-a
and IL-6. Values are the mean % SD of triplicate samples.
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cultures (Fig. 2 and 7B). Thus, the microglial cell
population plays a dominant role in ROS generation and
the inflammatory response to s-Mtb.

Because IL-1p affected ROS generation by astrocytes [41],
we also investigated whether the s-Mtb-induced cytokine
and ROS production by primary mixed glial cells resulted
from indirect stimuli such as IL-1B. To investigate this
hypothesis, we examined the cytokine and ROS produc-
tion from primary mixed glial cells in the absence or pres-
ence of anti-IL-1B Ab (Fig. 7C and 7D). Both superoxide
and H,O, were robustly produced by primary mixed glial
cells in response to s-Mtb, regardless of treatment with
anti-IL-1B Ab (Fig. 7C and data not shown). In addition,
s-Mtb-induced TNF-o and IL-6 production was not
affected by pretreatment with anti-IL-13 Ab (Fig. 7D).
Thus, neither astrocytes nor indirect stimuli such as IL-1
adversely affected the overall findings for primary mixed
glial cells.

Discussion

Given that human microglia are productively infected
with Mtb and may be the principal cellular target in the
CNS [4,5,42], understanding the molecular mechanisms
of microglial activation and the anti-microbial response is
required to develop targets for therapeutic intervention in
CNS-TB. Rabbits are an excellent in vivo model for the
study of CNS infection and pathogenesis because of their
sensitive inflammatory response and their similarity to
humans in terms of the clinical and histological symp-
toms of disease [43,44]. Mice are also used to study host
immune responses to TB meningitis [45] because of the
advantages in terms of genetic manipulation and the
availability of commercial immunological reagents. We
demonstrated that murine microglia produces pro-
inflammatory cytokines in response to s-Mtb, and
revealed the important roles of MAPK signaling and ROS
production in this process. Although ROS signaling con-
trols a broad range of physiological and pathological
processes, including cellular proliferation, inflammation,
and apoptosis [46,47], our study is the first to demon-
strate its role in microglial activation in response to Mtb.

LPS activates both macrophages and microglial cells,
which have specific roles in microbial defense within the
peripheral and central nervous systems, respectively. Pre-
viously, Watters et al. [38] investigated the mechanism of
LPS signaling in murine macrophages and microglial
cells, and revealed different roles for MAPK signaling in
these two cell types. We also demonstrated that LPS stim-
ulates the production of TNF-a, IL-6, and IL-12p40 in
murine BV-2 cells and in primary cultures of mixed glial
cells, which is consistent with previous studies using pri-
mary cultures of human, murine, and rat microglial cells
[5,48,49]. In contrast, very little research has been con-
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ducted regarding the mechanisms of recognition and
intracellular signaling that induce the initial immune
response to Mtb in microglia. In this study, we prepared
non-infective Mtb lysates, as described previously by
Netea et al. [31], and used them throughout the study. We
found that s-Mtb strongly activated the inflammatory
response and ROS generation in BV-2 microglial cell lines,
as in those infected with live Mtb (data not shown). In
addition, the astrocyte-enriched cultures did not play a
major role in the s-Mtb-induced cytokine production and
ROS generation by primary mixed glial cells. These find-
ings are supported by previous findings that the tubercle
bacillus preferentially infects human microglia, rather
than astrocytes [5]. The same study also reported that
microglial Mtb infection elicited the production of a vari-
ety of cytokines, including TNF-a, IL-18, and IL-6 [5].
Because IL-1 affected the ROS generation from astrocytes
[41] and because it might be released by activated micro-
glia, we examined whether IL-1f affects the s-Mtb-
induced ROS production by primary mixed glial cells. Pre-
treatment with anti-IL-18 Ab did not affect the s-Mtb-
induced ROS generation or cytokine production, suggest-
ing that the results for primary mixed glial cultures were
specific to s-Mtb.

The mechanisms resulting in tissue destruction in TB
meningitis are currently unclear. However, growing evi-
dence suggests that inflammatory responses in the brain
lead to tissue destruction in the distinct immunological
setting of the CNS [50]. Roles for Mtb-induced proinflam-
matory cytokines and chemokines in CNS-TB have been
suggested because dexamethasone treatment suppresses
the production of pro-inflammatory cytokines and chem-
okines in Mtb-infected human microglia [5]. It may
explain the beneficial effects of this adjunctive therapy
with steroids on the outcome of TB meningitis [3]. Fur-
thermore, recent studies by Harris et al. [51] showed that
treating human astrocytes with conditioned medium
from Mtb-infected monocytes significantly up-regulated
matrix metalloproteinase-9, which suggests that Mtb may
increase the activity of tissue-destructive matrix metallo-
proteinases. Therefore, pro-inflammatory mediators or
tissue-destructive enzymes could contribute to the neuro-
logical damage observed in CNS-TB.

Our data clearly demonstrate that the activation of
p47phox and MAPK is mutually dependent on inflamma-
tory signaling in s-Mtb-stimulated microglia. The results
indicate that ROS formation occurs immediately after s-
Mtb stimulation and that ROS act as signaling molecules in
MAPK activation and subsequent processes. Possible redox-
dependent signaling leading to MAPK activation includes
the H,0,-mediated inactivation of phosphatase and the
deletion of the tensin homologue on chromosome 10 [52].
In addition, ROS mediate calcium release, as all three
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MAPKs are downstream of calcium-dependent processes
[53]. These studies and our data suggest that the NADPH
oxidase-derived ROS operate upstream of MAPKs. In addi-
tion, the data demonstrate that MAPK activation is required
for the phosphorylation of p47phox and ROS production
in microglial cells. The phosphorylation of p47phox at sev-
eral serine residues within the polybasic region of the pro-
tein is an essential step in the activation of the NADPH
oxidase complex [54]. Previous studies have shown that
p47phox is a good in vitro substrate for ERK2 and p38
MAPK [55,56], and that the phosphorylation of p47phox
on Ser345 is directly related to GM-CSF- and TNF-o-
induced priming of ROS production [40]. Taken together,
the crosstalk between p47phox and MAPK activation may
play a pivotal role in the induction of ROS-dependent
inflammatory responses by microglial cells.

Although they play different roles, both IL-12 and TNF-a
are critical factors in the defense against mycobacteria. IL-
12 is crucial for the differentiation of IFN-y-producing Th1
cells [57]. Because mycobacteria are strong inducers of IL-
12, mycobacterial infection can skew the response to a sec-
ondary antigen toward the Th1 phenotype [58]. We previ-
ously demonstrated that Mtb-induced IL-12 (p40 and p35)
expression is negatively regulated by ERK1/2 signaling,
whereas TNF-a is induced by ERK1/2 at both the transcrip-
tional and translational levels in human monocyte-derived
macrophages (MDMs) [13]. In the present study, we found
that IL-12p40 was negatively regulated by p38, but not by
ERK1/2. This is inconsistent with previous findings [59]
showing that ERK1/2 suppresses the production of 1L-12,
whereas p38 promotes IL-12 production. This discrepancy
may be the result of the differences between microglia and
MDMs. Our results strongly suggest that macrophages and
microglia have distinct regulatory machinery for the modu-
lation of IL-12 proteins. Additional studies are required to
clarify the precise regulatory mechanism of IL-12 produc-
tion and its role in microglia.

It is important to identify the PRR that triggers microglial
activation after Mtb stimulation. The TLR family recog-
nizes a diverse spectrum of microbial ligands. TLR2 is clas-
sically recognized as a principal inducer of the pro-
inflammatory signal, TNF-a, in response to Mtb [60]. In
addition, it has been suggested that the soluble, heat-sta-
ble mycobacterial fraction signals mainly through TLR2,
whereas the heat-labile components signal through TLR4
[61]. However, we showed that live, sonicated, or heated
Mtb elicited robust amounts of cytokines in TLR2 knock-
out mixed glial cells, indicating that TLR2 is not essential
for activation of the pro-inflammatory response. Our data
also demonstrate that s-Mtb-induced pro-inflammatory
cytokine production in microglia was not dependent on
dectin-1. These results are partly consistent with previous
studies [29] showing that TNF-a production in response
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to virulent M. avium 724 and M. tuberculosis H37Rv was
not dependent on dectin-1 in macrophages, although dec-
tin-1 was required for TNF-a secretion in macrophages
infected with M. smegmatis and other avirulent mycobac-
terial strains. Therefore, s-Mtb may be recognized through
other PRRs or an as yet uncharacterized signaling path-
way. To understand the neuropathogenesis of CNS-TB
infection, additional studies are required to identify the
PRRs that detect pathogen-derived molecules and lead to
the development of both innate and adaptive immunity.

Conclusion

In conclusion, our results provide important insight into
microglial biology. First, s-Mtb is a potent inducer of ROS
generation, pro-inflammatory cytokine production, and
MAPK signaling. Second, intracellular ROS play an essential
role in the regulation of s-Mtb-activated pro-inflammatory
cytokine production in murine microglia, which is medi-
ated via MAPK activation. Our data also emphasize the key
roles of crosstalk between p47phox and MAPK activation in
the pro-inflammatory response to s-Mtb in microglia.
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