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Abstract

Background: The periventricular subventricular zone (SVZ) contains stem cells and is an area of
active neurogenesis and migration. Since inflammation can reduce neurogenesis, we tested whether
Theiler's murine encephalomyelitis virus (TMEV) induces inflammation and reduces neurogenesis
in the SVZ.

Methods: We performed immmunohistochemistry for the hematopoietic cell marker CDA45
throughout the central nervous system and then examined neuroblasts in the SVZ.

Results: CD45+ activation (inflammation) occurred early in the forebrain and preceded cerebellar
and spinal cord inflammation. Inflammation in the brain was regionally stochastic except for the SVZ
and surrounding periventricular regions where it was remarkably pronounced and consistent. In
preclinical mice, SVZ neuroblasts emigrated into inflamed periventricular regions. The number of
proliferating phoshpohistone3+ cells and Doublecortint (Dcx) SVZ neuroblasts was overall
unaffected during the periods of greatest inflammation. However the number of Dcx+ and
polysialylated neural cell adhesion molecule (PSA-NCAM+) SVZ neuroblasts decreased only after
periventricular inflammation abated.

Conclusion: Our results suggest that after TMEV infection, the SVZ may mount an attempt at
neuronal repair via emigration, a process dampened by decreases in neuroblast numbers.

Background potential are the subventricular zone (SVZ) which lines
The two regions of the brain most intensively scrutinized  the lateral ventricles and the subgranular zone (SGZ) of
in recent years for their reparative or cell replacement  the hippocampal dentate gyrus [1,2]. Both regions daily
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generate thousands of interneurons that integrate into
synaptic circuitry. SVZ neuroblasts migrate long distances
from their birthplaces near the lateral ventricles to the
olfactory bulbs via the rostral migratory stream (RMS) [3].
The SVZ, including human SVZ, contains cells that self-
renew and are multipotential when exposed to appropri-
ate growth factors in vitro; they are stem cells [4]. As such,
they may provide a source for cell replacement, and many
experiments have shown they attempt repair of damaged
or diseased tissue [1].

Hipppocampal microglia dampen neurogenesis during
inflammation [5,6]. Hematopoietic lineage cells comprise
approximately five percent of cells in the SVZ [7-9], yet the
constitutive and pathological role of these cells within the
SVZ is poorly understood. SVZ microglia are distinctive:
they express relatively high levels of CD45, a tyrosine
phosphatase, they proliferate more than microglia in non-
neurogenic regions, and are resistant to traumatic brain
injury that causes microglial activation in adjacent nuclei
[7]. Macrophages migrate into the brain during late devel-
opment in certain foci, including the lateral ventricles and
SVZ [10] and then become resident microglia. Interest-
ingly, neural macroglia (astrocytes and oligodendrocytes)
are generated in the SVZ during late development and
migrate throughout the forebrain. Thus although micro-
glial and macroglial lineages are different [11], their emi-
gration routes from the SVZ into the postnatal forebrain
are very similar. These same migratory routes, fanning out
into the forebrain from the SVZ, are followed by SVZ neu-
ronal cells after a variety of injuries and diseases [12,13].

CD45 exhibits multiple splicing isoforms and modulates
microglial and T cell activation [14-16]. Upon activation,
resident microglia undergo morphological changes con-
sistent with their function: amoeboid for migrating to
areas of injury and round for phagocytosis. FACsorting of
immunofluorescent cells is used to distinguish resident
microglia (CD45!°%) from infiltrating macrophages
(CD45high) [17]. We have shown that immunolabelling
sections with anti-CD45 antibodies also reveals CD45low
(the majority of cells under normal conditions) versus
CD45high cells [7]. Levels of CD45 expression correlate
with levels of microglial activation, CD45high expression
indicating significant activation. Interestingly, CD45
mutations have been observed in some multiple sclerosis
(MS) patients suggesting that it is not merely a "marker"
but may contribute to the etiology of the disease [18].

MS is a demyelinating disease mediated by inflammation.
In addition to loss of oligodendrocytes and myelin, neu-
ronal apoptosis occurs in the forebrain and other regions
[19-21]. The etiology of the disease is still elusive; possi-
bilities range from spontaneous autoimmunity to a pri-
mary CNS insult such as infection. Because of the
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variability and uncertain etiology of MS, a variety of pre-
clinical models are used to replicate specific features of the
disease. The sclerotic lesions evident in the CNS are sites
of CD45+ microglial, macrophage, dendritic cell, and T-
cell accumulation indicative of an inflammatory
response. Theiler's murine encephalomyelitis virus
(TMEV) infection of susceptible SJL mice is a model used
to study this response [22-24]. The TMEV model is con-
sistent with chronic, progressive inflammatory demyeli-
nation rather than the relapsing/remitting disease profile
of the experimental autoimmune encephalomyelitis
(EAE) model [25]. In addition, TMEV results in the direct
infection of microglia, whereas in EAE, microglia are acti-
vated secondary to the autoimmune response [25].

Interestingly the two co-receptors used by different
Theiler's virus strains, sialic acid and heparan sulfate [26]
are expressed at high levels in the SVZ. In fact, polysialic
acid residues attached to the neural cell adhesion mole-
cule (PSA-NCAM) are required for SVZ neuroblast migra-
tion [27]. The SVZ augments new oligodendrocyte
production in EAE [28,29], and syngeneic SVZ neuro-
spheres ameliorated EAE pathology in mice, pointing to
the potential for SVZ repair of MS [30]. The clinical MRI
and pathological description of "Dawson's fingers",
lesions extending from the lateral ventricles to surround-
ing regions [31,32] suggest that the SVZ and periventricu-
lar regions are particularly sensitive to MS. Despite these
tantalizing data, whether TMEV induces inflammation in
the SVZ, and the effects of TMEV on SVZ neurogenesis and
migration have remained unstudied until now. If SVZ
inflammation is prominent in MS and this reduces neuro-
genesis, it may reduce autologous repair. Also, though
there is an extensive literature on TMEV, a within-study
comprehensive characterization of the time-course and
anterior to posterior spread of viral induced CD45+ cell
activation has not been carried out. Therefore, in these
experiments we examined CD45+ cell activation and stud-
ied its spatio-temporal relationship to SVZ neurogenesis
and emigration after TMEV. We show here with an anti-
body that recognizes all isoforms of CD45, that forebrain
CD45+ cell activation precedes spinal cord activation and
that the SVZ is the area with the most consistent CD45+
cell activation. We also document SVZ neuroblast emigra-
tion into inflamed periventricular regions and a delayed
decrease in neurogenesis.

Methods

Mice

Eighty 6-7 week old female wild type SJL/J mice (Taconic
Labs) were used in the TMEV studies. All mice were
housed in the Northwestern University animal care con-
tainment facility and were provided with unlimited access
to standard laboratory food and water. Easier access to
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food and water was provided for TMEV injected animals
exhibiting neurological impairment.

TMEY disease induction

Three groups of mice were used: TMEV, sham, and naive.
Together, sham and naive mice constituted "controls".
TMEV and sham mice were anesthetized with 4% isoflu-
rane. 3 x 10° PFU BeAN 8386 virus, suspended in sterile
0.03 ml BSS, was injected into the right cerebellar cortex
through a 27 gauge needle fitted with a needle guard to
prevent penetration beyond 3.5 mm ventral to skull.
Injections were localized to a point half-way to midline at
ear level. Sham mice received injections of 0.03 ml BSS.
Naive mice were not anesthetized or injected. All mice
were monitored for changes in neurological status two to
three times per week. Mice were assigned numerical scores
as follows: 0 = asymptomatic; 1 = mild waddling gait; 2 =
moderate waddling gait without spastic paralysis; 3 =
severe waddling gait with mild spastic paralysis; 4 = severe
waddling gait with moderate to severe spastic paralysis; 5
= total hind limb paralysis; 6 = moribund. Mice were fur-
ther divided into three groups according to clinical scores
or time point match for sham and naive: preclinical =
prior to onset of any symptoms but after initial inflamma-
tory/increased stress due to injections (D 14-24); early
onset = clinical score of 1 or more for 2 consecutive days
(D 42-47); chronic = increased clinical score (2 or 3) for
minimum of 5 consecutive days (D 90). Each group had
its respective control mice. Preclinical sham N = 4, Preclin-
ical naive N = 1, Preclinical TMEV N = 27; early onset
sham N = 5, early onset naive N = 1, early onset TMEV N
= 25; chronic sham N = 4, chronic naive N = 1, chronic
TMEV N = 4.

Cuprizone induced demyelination

Chow containing 0.2% cuprizone (Harlan Teklad) was
fed to C57BI mice (N = 7) ad libitum for 3 weeks. Control
mice (N = 7) received the same chow minus cuprizone.

Tissue preparation and immunohistochemistry

Mice were perfused with 4% paraformaldehyde, brains
post-fixed overnight, and cryoprotected in 30% sucrose
overnight at 4 °C before sectioning. Free-floating coronal
sections, 30 um thick, were cut on a sliding microtome
and stored in cryoprotectant at -20°C. Antibodies used:
rat anti-CD45 (clone IBL-5/25; 1:500, Chemicon, Teme-
luca, CA); goat anti-doublecortin (C-terminus; 1:200,
Santa Cruz Biotechnology, Santa Cruz California), rabbit
anti-BeAn (1:600, Miller Lab, Northwestern University),
mouse anti-PSA-NCAM (1:500, Chemicon), rabbit anti-
phosphohistone3 (1:500, Upstate Biotechnology). Sec-
tions were washed and blocked with 50 mM glycine in
phosphate buffered saline (PBS) to reduce autofluores-
cence of paraformaldehyde-fixed tissue. Sections were
washed, blocked in PBS containing 0.1% Triton X-100
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and 10% Donkey Serum, DS (Sigma), (PBS+), incubated
overnight at 4°C in primary antibodies, washed, incu-
bated one hr at RT in Cy2 (1:200) or Cy3 (1:500) conju-
gated anti-primary secondaries, and rinsed in phosphate
buffer (PB). Sections were mounted and slides were cover-
slipped with FluorSave mounting medium (Chemicon) in
PBS. Ommission of primary antibody was used as con-
trols in all immunohistochemistry experiments.

Microscopy, quantification, and data analysis

A comprehensive anterior to posterior set of brain sections
were examined at the following anatomical coordinates
[33]. Olfactory bulb (4.0 to 3.0 mm anterior to bregma),
anterior cortex (3.0 to 2.0 mm anterior to bregma), stria-
tum (1.7 to -0.5 mm from Bregma), hippocampus (-1.0 to
-2.5 mm posterior to bregma), cerebellum (-5.6 to -7.0
mm from bregma). In addition, we collected sections
from cervical, thoracic, and lumbar spinal cord. Immuno-
histochemistry was examined and recorded on a Leica
DMIRB microscope using Openlab software and on a
Zeiss Meta confocal microscope, and analyzed in 3-D with
Zeiss and Volocity Software. Images were composed in
Adobe Photoshop. Doublecortin SVZ neurogenesis quantifi-
cation. Doublecortin Cell Counts. Images of doublecortin
and DAPI labeled sections of the dl SVZ were taken at 63 x
on a Zeiss Meta confocal microscope with a single scan of
both channels. The images were saved and exported as tiff
images into Openlab Image software (Improvision). In
Openlab Dcx+ cells and DAPI+ cell nuclei in the dl SVZ
were counted. Dcx immunofluorescence surface area meas-
urements. We used these measurements to confirm Dcx+
cell counts. Images of doublecortin labeled sections were
taken at identical camera settings and positive Dcx
immunofluorescence intensity threshold levels pre-deter-
mined. We used these levels to calculate the percent of the
SVZ surface area occupied by positive Dcx immunofluo-
rescence in the dorsolateral SVZ (dl SVZ). Hippocampal
Dcx+ cell counts. All Dcx+ cells were counted in the sub-
granular zone of the dentate gyrus unilaterally. Emigrated
Dcx+ cell quantification. The large majority of cells that
emigrated in controls and after TMEV did not move more
then a few hundred microns from the SVZ. Therefore the
large majority of cells were within the distances sampled.
Doublecortin labeled striatal sections were viewed at 40x
on a Leica DMIRB upright microscope. Emigrated Dcx+
cells were counted unilaterally. With the SVZ to the left
margin of the field of view at 40x, Dcx+ cells in the stria-
tum were counted, with the SVZ to the right margin of the
field of view, septal Dcx+ cells were counted, with the SVZ
in the middle of the field showing the full extent of the CC
thickness, Dcx+ cells in the CC were counted, with the
ventral 3rd of the SVZ in the middle of the field, emigrated
Dcx+ cells in the ventral 3rd septum, striatum and sur-
rounding ventral SVZ were counted. Phosphohistone3 cell
counts. Images of phosphohistone3 labelled sections of
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the dorsolateral, medial septal and ventral-medial SVZ
and were taken at 40x on a Leica DMRIB microscope. The
images were saved and exported as tiff images into Voloc-
ity (Improvision). The number of phosphohistone H3+
cells were counted and averaged for 6 consecutive sections
per animal ranging from ~bregma 0.9 to 0.0. Only cells
that had bright, complete labelling in the nuclei were
included, cells that showed fragmented staining were
excluded. All measurements were taken by staggering con-
trols and treated mice to avoid quantification drift bias.
Satistics were performed in Microsoft Excel; Student's T-
tests (two tailed, equal variance) with p values < 0.05 were
considered to be significant.

Figure |

http://www.jneuroinflammation.com/content/5/1/44

Results

TMEYV induces CD45+ cell activation in the forebrain
before the spinal cord

TMEV was injected in mice into the left cerebellar cortex
(Fig. 1A). After infections, mice were sacrificed at 14-24
days (preclinical, PC), 42-47 days (early onset, EO), and
90 days (Chronic, C) (Fig. 1B), based on behavioural cri-
teria as described in the Methods section. Inflammation
and hematopoietic cell activation was scored semi-quan-
titatively using a 4 point scale based upon cell morphol-
ogy, cell density, and brightness of CD45+
immunofluorescence (Fig. 1C,D). This was done prima-
rily to allow a within-study comparison of hematopoietic
cell activation across regions and time. 0: weakly labeled
CD45+ cells (CD45!ow) with highly ramified processes.

B
1 o
3 Preclinical
: Early Onset
t
i Chronic
o
n . 1 L
14-24 42-47 920
Days Post Injection

2

TMEV injections, timing of experimental groups, and scoring of CD45+ activation. A) Schematic showing injection
site in cerebellum, both sagittal and coronal views shown. Adapted from the atlas of Paxinos and Franklin [33]. B) Time line of
experimental regimen. C) Examples of representative CD45+ cell activation showing scores of 0 through 3 in the hippocam-
pus. Scale bar = 100 um. D) Cells in spinal cord grey matter showing range of morphology of CD45+ cells from non-activated
(0) to highly activated (3) with intermediate morphology in between. Scale bar = 10 um.
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CD45+ cells are evenly distributed throughout paren-
chyma. 1: CD45!ow microglia became CD45medium o
CD45high and changed from highly ramified to cells with
larger soma and shorter, thicker processes. A score of 1
was characterized by relatively few round CD45high cells
that were dispersed randomly. 2: intermittent focal areas
of high density CD45high, round cells. 3: multiple focal
and/or contiguous areas of high density CD45high, round
cells, with or without large, irregularly shaped cells. Each
stage showed a corresponding decrease of the previous
stage's morphology and relative CD45+ intensity (Fig.
1C,D).

CD45 activation in forebrain

Control mice contained an even distribution of CD45low
cells throughout the central nervous system (left-most
panels in Fig. 1C,D). Sham animals occasionally showed
unilateral "hot spots" of CD45 activation in the forebrain
which were associated with few amoeboid or round

Table I: CD45+ cell activation.

http://www.jneuroinflammation.com/content/5/1/44

CD45+ cells. This was rare and did not reach a score of 1;
naive animals showed minimal CD45 activation (Table
1). Most CD45+ cells in control mice had many branching
processes and exhibited CD45!°w expression [7]. The fore-
brain of preclinical TMEV mice showed cell activation
already 14 days after TMEV injections and this continued
through D24 (Fig. 2, Table 1). Bright CD45+ cell activa-
tion often surrounded blood vessels (Fig. 4A). Many
CD45+ cells were large, and irregularly shaped; they
appeared to be amoeboid. The preclinical group had the
greatest amount of activation in the forebrain compared
to early onset and chronic groups (Fig. 2, Table 1). This
was true throughout most of the forebrain; in the cerebral
cortex, striatum, amygdala, and thalamus (Fig. 2, Table 1).
The hippocampus, was an exception, showing the greatest
CD45+ cell activation in chronic sections (Table 1).

Shams Preclinical Early Onset Chronic
Olfactory Bulb 0.7 +0.1 1.6 £0.5 1.0+0 1.5£0.3
Anterior cortex 04 £0.1 22+06 1.7£0.3 1.3+0.3
Meninges 09 0.1 22106 1.7+0.3 1.5+£03
74 02+0.1 2305 07+0.3 05+0.5
Striatum 0.9 +0.1 24+04 1.3+03 1.0+0
Septum 02+0.1 23+05 07+0.3 03+03
Hippocampus 0.1 £ 0.1 1.8 £ 0.6 20+ 1.0 26+04
Choroid Plexus 08+0.2 28+02 20+06 09 0.1
3rd Ventricle 0.6 £0.2 26+02 20+ 1.0 20+ 04
Fimbria/dorsal fornix 0.6 £0.2 22+06 1.3£0.9 20+07
Amygdala 0 12+£07 03+03 0
Thalamus 0 12+0.7 0303 08+0.3
Cerebellum 0 14+04 1.3£0.7 300
Cervical Spinal Cord 0 20+04 20+ 1.0 300
Thoracic Spinal Cord 0 2205 20 1.0 25+03
Lumbar Spinal Cord 0 2406 1.7£0.3 25+03

CD45 activation semi-quantitative scoring summary from olfactory bulb through lumbar spinal cord using a 0-3 scoring system with a score of 3

being the greatest activation. See Fig. | for representative images.
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Figure 2

Schematic of brain regions showing typical areas of CD45+ cell activation. Shown are qualitative averages of inten-
sity and location of CD45+ cell activation. Pink represents levels 0—1 (low activation), and red, levels 2-3 (high activation).
Note the preclinical group shows greater activation compared to early onset and chronic groups, except in the cerebellum
where activation is greatest in the chronic group. Anterior — posterior distances are given as distances from bregma. Gr =
granular layer of olfactory bulb, RMS = rostral migratory stream, Ctx = cerebral cortex, Str = striatum, SVZ = subventricular

zone, CC = corpus callosum, Hipp = hippocampus. Modified from Paxinos and Franklin [33].

CD45 activation in cerebellum and spinal cord

The preclinical to chronic gradation was reversed in the
cerebellum and brainstem, with chronic mice showing the
greatest activation (Fig. 2, Table 1). The primary sites of
high activation were the deep cerebellar, vestibular, and
reticular nuclei. In addition, CD45+ cell activation was
apparent adjacent to the fourth ventricle and in the cere-
bellar commissure. Surprisingly, very little activation was
seen in the cerebellar cortex, the site of viral injection.

Similar to the cerebellum, the spinal cord generally fol-
lowed a preclinical to chronic increase in CD45+ cell acti-
vation (Fig. 3, Table 1). The greatest activation in cervical
and thoracic sections was at the latest time point. Lumbar
spinal cord showed similar levels of CD45+ cell activation
at all time points. The spinal cord CD45+ cell activation
was also characterized by a distinct shift from grey matter
to white matter (Fig. 3, Fig. 4E,F). This pattern of activa-
tion occurred at all rostrocaudal positions. In preclinical
mice, only grey matter contained activated CD45+ cells.

At the early onset time points CD45+ cells were found in
both grey and white matter. CD45+ cell activation was
predominantly located in the white matter in chronic
mice. The majority of activation was in the ventral half of
the spinal cord. The cervical spinal cord was the only
region to show any activation immediately surrounding
the ventricle (Fig. 3).

Myeloid dendritic cells have been implicated in antigen
presentation in the EAE model of MS [34]. In addition the
CD11c-GFP transgene is expressed at relatively high levels
in neurogenic zones of the intact brain [35]. Therefore we
examined the expression of the dendritic cell marker
CD11c and compared it to CD45. CD11c+ dendritic cells
were seen only in areas of CD45high activation in both
brain and spinal cord (Fig. 4). Gross examination of
CD11c+ cells as a subset of CD45+ cells indicated varying
ratios ranging from approximately 10% to 90% of CD45+
cells. Few CD11c+ cells were evident in the pre-clinical
spinal cord with CD45 activation in gray matter (Fig. 4E);
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Lumbar

%3

Schematic showing areas of typical CD45+ cell activation in the spinal cord. Varying levels of activation are shown in
preclinical, early onset, and chronic groups. Pink represents levels 0—| and red, levels 2-3. Grey matter is indicated by grey
shading. Spinal cord images are traces of actual early onset cervical, thoracic and lumbar spinal cord images.

however many CD11c+ cells were seen in the white matter
of the chronic spinal cord, paralleling CD45high activation
(Fig. 4F).

TMEYV causes CD45+ cell activation in the SVZ

In examining CD45+ cell activation, we noted that the
specific location varied from mouse to mouse, and from
section to section. In contrast, CD45+ activation was very
consistent in the SVZ and immediately surrounding
regions (Figs. 5, 6). Unlike other brain regions that nor-
mally exhibit CD45!ow |evels, SVZ cells seem to be consti-
tutively "semi-activated": they have ramified processes
and express CD45 at medium (and occasionaly high) lev-

els [7] (Fig. 5C,G). At preclinical TMEV stages, most
CD45+ SVZ cells became activated; they were round and
CD45high (Fig. 5B,D,H). CD45high cells in and around the
SVZ were frequently associated with blood vessels that
had perivascular cuffs of activation. SVZ CD45high cells
were seen the length of the lateral ventricles, and were
prominent in the ventral SVZ (Fig. 2, Fig. 5B, Fig. 6) an
area that exhibits a high degree of neurogenesis [36].
Though CD45+ cell activation in the SVZ was present at
all time points, the preclinical group had greatest activa-
tion and the chronic group the least (Fig. 5D-F, Fig. 6).
Interestingly, CD45+ cell activation was also consistently
high in the rostral migratory stream as it courses through
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hipp, EO

cereb, Chronic

Lumb. Sp. Cord, PC

Lumb. Sp. Cord, Chronic

Figure 4

Comparison of dendritic cell CDI I c immunolabelling with CD45 expression. A) Relatively few CD45+ cells are
CD| Ict+ (arrowheads) in the SVZ. Bv = blood vessel. B, C) A much larger proportion of CD45+ cells are CD| I c+ in the hip-
pocampus and cerebellum. D) Cytoplasmic versus membrane labelling of CD | Ic and CD45, respectively. E) No CD1 | c+ cells
in the lumbar spinal cord of a preclinical mouse, even in areas of CD45 activation. White outlines of the approximate border
between grey and white matter were facilitated by the non-specific background staining in the gray matter (orange). F)

CD| I c+ dendritic cells were a subset of CD45+ cells in lumbar spinal cord white matter of chronic mice.
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B Preclinical

Figure 5 (see legend on next page)
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Figure 5 (see previous page)

CD45 immunohistochemistry shows hematopoietic cell activation in the subventricular zone. A) CD45 expres-
sion is barely detectable at low magnifications in control mice. B) Example of CD45 immunohistochemistry in a preclinical
mouse. CD45+ cell activation was sporadic throughout the forebrain, but was consistent in the SVZ and septum. svz = subven-
tricular zone, spt = septum. C) Sham mouse showing ramified microglia typical in all control animals. D) Preclinical mouse
showing round, activated CD45high microglia. E, F) are early onset and chronic experimental sections. Early onset section
shows a mixed population of ramified, intermediate morphology and round microglia. Ramified and intermediate morphologies
of microglia predominate in the chronic SVZ. Scale bar C-F = 50 um. SVZ in C-F outlined based on high density of cells in the
SVZ detected with DAPI nuclear staining. G) Higher magnification of ramified microglia in a sham animal. H) Higher magnifica-
tion from an experimental animal. Scale bar G, H =20 mm. |, J) CD45 cell activation in the hippocampus is restricted to the CA
regions and excluded from the dentate gyrus.

J

\ SVZ |

Preclinical \ AN

\

Early Onset
\ '/str (
\ 4Pty
Chronic \ Aeen _
Bregma 1.10mm Bregma 0.62mm Bregma 0.02mm
Figure 6

Schematic of typical CD45 activation at three anterior to posterior sections through the SVZ in preclinical,
early onset and chronic groups. A unilateral view is shown although the activation was bilateral. The SVZ is indicated in
green. Anterior posterior distances from bregma are indicated.
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the anterior cerebral cortex into the olfactory bulb (Fig. 2).
Similar to the SVZ, this was characterized by round
CD45high cells and was most prominent in preclinical
mice.

CD45 cell activation also consistently occurred in regions
close to the SVZ; the dorsal septum and striatum. Similar
to the rest of the forebrain, this occurred most promi-
nently in preclinical mice, but was also apparent in early
onset and chronic mice (Fig. 2, Fig. 5B, Fig. 6). The corpus
callosum, immediately dorsal to the SVZ, also contained
activated CD45+ cells however, to a lesser extent than grey
matter areas (Fig. 5B). We next examined whether consist-
ent CD45+ cell activation occurred in the other neuro-
genic region of the forebrain, the dentate gyrus of the
hippocampus. The majority of activity was in the dorsal
hippocampus subjacent to the lateral ventricle, sand-
wiched between it and the corpus callosum (Fig. 2, 51,]).
CD45+ cell activation was evident in the CAl, CA2,
pyramidal and oriens layers of the hippocampus, however
it was notably absent from the dentate gyrus (Fig. 2, 5L]).
Nearby, CD45high cell activation was observed in the dor-
sal fimbria and consistently in the 3t ventricle (Fig. 2,
Table 1).

TMEV infects macrophages but has recently been pro-
posed to target polysialic acids [26,37]. The SVZ is the
forebrain region with the highest concentration of polysi-
alylated neural cell adhesion molecule (PSA-NCAM),
which is specifically expressed by SVZ neuroblasts
[38,39]. Thus, we queried whether TMEV infects macro-
phages and SVZ neuroblasts, and thereby concentrates the
viral load in periventricular regions. Immunohistochem-
istry against the BeAn strain of virus revealed that the virus
was found in and around the SVZ in regions of high CD45
activation (Fig. 7A). We immunostained for BeAn and
CD45 as well as doublecortin (Dcx), a marker of SVZ neu-
roblasts [36,40]. Virus was associated with both CD45+
cells (not shown) and SVZ neuroblasts (Fig. 7A-C). Fig.
7D, a Z-stack of high magnification confocal microscopy
optical sections shows close association between BeAn
immunoreactivity and a Dcx+ neuroblast in the SVZ.

Cuprizone induced demyelination does not induce CD45
activation in the SVZ

We next asked whether the massive CD45 cell activation
in the SVZ was general to demyelinating injuries. Cupri-
zone, a copper chelating agent induces demyelination in
a variety of CNS regions including immediately above the
SVZ, in the corpus callosum [41,42]. As expected based on
known patterns of demyelination after cuprizone [43],
CD45+ cells in the corpus callosum were highly activated
after cuprizone (Fig. 8A,B), however, CD45 expression
and cell numbers in the SVZ and periventricular striatum
remained at control levels (Fig. 8C,D). This result suggests

http://www.jneuroinflammation.com/content/5/1/44

that the TMEV induced activation in the SVZ and periven-
tricular regions is not a general response to demyelina-
tion.

SVZ neuroblasts and emigration after TMEYV infection

We next examined if SVZ CD45+ cell activation after
TMEYV infection was associated with changes in neuroblast
numbers or with SVZ emigration. Striatal and hippocam-
pal sections were labeled with anti-doublecortin (Dcx)
antibodies. Dcx is a microtubule associated protein
expressed by SVZ neuroblasts and is accepted as an effec-
tive read-out for SVZ neurogenesis and emigration
[36,40,44,45]. In control mice, Dcx+ neuroblasts are
organized in tight arrays of cells [46,47] (Fig. 9A). In
infected mice, SVZ neuroblast cell-cell contacts were dis-
rupted (Fig. 9B,C) and their membranes exhibited a loss
in integrity leading to an amorphous morphology in
some cells. This was especially apparent in sections that
had the highest amount of CD45+ cell activation. Similar
results were found with another major marker of SVZ neu-
roblasts; polysialylated neural cell adhesion molecule
(PSA-NCAM) [38,39]. Compared to sham mice, which
had contiguous arrays of PSA-NCAM+ chains, preclinical
mice had significant gaps in between these chains (Fig.
9H,1). Although our results at the light microscopic level
suggest loosening of neuroblast-neuroblast contacts, ulti-
mate determination of this finding would require analysis
at the electron microscope level.

Dcx immunofluorescence, Dcx+ cell numbers, and DAPI+
nuclei in the SVZ were quantified (Methods) but were not
changed significantly in preclinical and early onset mice.
We examined proliferation directly in the SVZ with immu-
nohistochemistry for the G2/M cell cycle marker
phosphohistone3 (PH3) [48] and found that numbers of
PH3+ cells in the SVZ were not different between controls
and TMEV infected preclinical and early onset mice.
Though the number of Dcx+ cells, and the percent surface
area occupied by Dcx immunfluorescence in the SVZ
decreased at late time points, the intensity of Dcx immun-
ofluorescence did not change appreciably at any time
point. Interestingly, the number of Dcx+ cells was signifi-
cantly decreased in chronic mice (38 + 5vs. 23 + 5, p =
0.009), although the total number of cells (DAPI+)
remained similar. This suggests that the number of Dcx+
cells decreased at late time points rather then simply the
level of Dcx expression decreasing. Similar results were
obtained with PSA-NCAM, with the intensity of immun-
ofluorescence remaining similar but the surface area occu-
pied by PSA-NCAM+ cells decreasing in the SVZ. In the
hippocampal dentate gyrus (DG), there was no significant
difference in Dcx+ cell counts between control and exper-
imental animals at the first two time points. However,
similar to the SVZ, there was also a statistically significant
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Figure 7
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TMEV colabels with Dcx+ and CD45+ cells in the SVZ and periventricular regions. A) Dorsal SVZ labelled with
anti-BeAn immunohistochemistry in preclinical sections. Note viral immunolabelling (arrows) in SVZ (outlined based on DAPI
staining) and in surrounding parenchyma (arrowheads). Some viral particles were seen in Dcx+ cells. B) Dex immunolabelling in
same section. C) Merge of BeAn and Dcx immunolabelling. D) 3-dimensional view of BeAn immunolabeling. Arrow shows

BeAn immunopositive profile closely associated with a Dex+ cell.

loss of DG Dcx+ cells in chronic experimental animals (24
£3vs.10 + 2, p=0.0007).

Small numbers of Dcx+ cells constitutively emigrate dor-
sally into the corpus callosum and ventrally into the
nucleus accumbens and striatum [36]. Increased numbers
of Dcx+ SVZ neuroblasts emigrate after a variety of insults
such as stroke [13] and traumatic brain injury [49]. How-
ever it was not known if neuroblasts also emigrate into
ectopic areas after TMEV infection. We found that Dcx+
cells emigrating as individuals, or in clusters of cells, were

increased in mice at the time of the highest CD45+ cell
activation in the SVZ (Fig. 9D-G). Preclinical experimen-
tal animals showed increased emigration into the septum,
striatum, and accumbens (Fig. 9D-G; Fig. 10). In contrast,
the number of Dcx+ cells in the corpus callosum were not
increased (Fig. 9D; Fig. 10). By the early onset time point,
numbers of emigrated cells returned to normal (Fig. 9A-
C; Fig. 10). Unexpectedly, the numbers of ventrally emi-
grating cells was slightly decreased in chronic mice (Fig.
9C; Fig. 10), matching the loss of Dcx+ cell numbers in the
SVZ at that time point. These results suggests that TMEV
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controls
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cuprizone

Figure 8

Cuprizone demyelination does not cause CD45 activation in the SVZ. A, B) CD45 expression is minimal in control
corpus callosum (cc) but is massively activated after cuprizone. C, D) In contrast to the corpus callosum, CD45 expression
remains remarkably constant in the SVZ and striatum (str) after cuprizone. Scale bar = 50 microns

causes SVZ neuroblasts to emigrate into grey matter at pre-
clinical stages of the disease.

Discussion

We showed that in TMEV-induced inflammation, CD45+
cell activation within the forebrain is most consistently
found in the SVZ and periventricular regions. Interest-
ingly, neuroblast emigration from the SVZ increased at the
same time as CD45+ cell activation. At later time points,
when SVZ inflammation had subsided, neurogenesis
decreased. We also showed that the forebrain is affected

before the cerebellum and spinal cord. In contrast to the
spinal cord, where extensive CD45+ cell infiltration was
observed in white matter tracts, forebrain white matter
was relatively spared at all time points.

A wide variety of preclinical models of injury and disease
increase neurogenesis and induce neuroblast emigration
from the SVZ [1,12,13,49]. We showed that TMEV
induced SVZ neuroblasts to emigrate, to our knowledge,
the first example of neuronal emigration from the SVZ in
a model of brain inflammation. Since maximal emigra-
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SVZ neuroblasts after TMEYV infection. A) Dcx+ neuroblasts in control SVZ are bundled in tight clusters of chains, seen

here in cross-section. B, C) Cell-cell contacts dissipate (asterisks) in the preclinical SVZ. Scale bar in C = 100 um. D-G) exam-
ples of chains of Dcx+ cells (D, F, G) and individual Dcx+ cells emigrating from the SVZ in preclinical mice. Scale bars = 20 um.
H-1) PSA-NCAM immunohistochemistry in the dorsolateral SVZ reveals contiguous chains of cells in sham controls and loss of

PSA-NCAM+ cells in preclinical mice after TMEV.

tion occurred at the same time as maximal CD45+ cell
activation in the forebrain, it is very likely that CD45+
activated cells secrete molecules contributing to SVZ neu-
roblast emigration. Future mechanistic studies may iden-
tify molecular interactions between CD45+ cells and SVZ

neuroblasts and thereby lead to molecular approaches
designed to augment neural repair.

Although neuroblast emigration was augmented at early
time points after TMEV inoculation, the number of neu-
roblasts was unchanged. Other studies have shown that

Page 14 of 18

(page number not for citation purposes)



Journal of Neuroinflammation 2008, 5:44

>

Neuroblast emigration into striatum

w
= *
g 14 Shams
<
L ]
10
a ' [ ] ™ev
-
o %
2 4
E 2
2 o -
> X O
) .\c;b Qc.,e- o(\\
s J &
e’ 3 C
3 &
< &
C Neuroblast emigration from ventral SVZ
2 *
3
S 20
5 T
8 15
S 10
3
E ° *
Z 9 i‘ &
Y X O
.\c;‘b 5 0(\\
& o 3
S S &
@ )
Q e®
Figure 10

http://www.jneuroinflammation.com/content/5/1/44

oy}

Neuroblast emigration into septum

2 38 *
g 7 x
5 e |
g 5
B -
b 3
L i
E 11 S—
ER | [ —
A 0 QO
.\0@' (\‘.92; 0(\\
W o b
o oy O
§ &
Q &
D Neuroblast emigration into corpus callosum
w 14
T I
;: 10
g 8 1] o 1
S s
1=
2
E 2
. 0
N X, X<
‘G’b ‘-90 0'0\
& o s
@ N .
Q ®

Quantification of SVZ neuroblast numbers in the SVZ and emigration from the SVZ. * p < 0.05, ** p < 0.01.

inflammation rapidly reduces adult neurogenesis [5,6],
however we did not observe decreases in Dcx+ neurob-
lasts during the time of maximal inflammation.
Decreased numbers of Dcx+ neuroblasts were only found
in "chronic mice", well after major inflammation had sub-
sided. Surprisingly, Dcx+ cell numbers decreased in both
the SVZ and dentate gyrus, even though only the former
exhibited focal inflammation. Our results suggest that
even though SVZ neuroblasts emigrate relatively soon
after TMEV inoculation, any autologous repair may be
attenuated by delayed decreases in neurogenesis.

One of the most novel and unpredictable findings of our
study was that although forebrain activation of CD45+
cells was stochastic from section to section, and from
mouse to mouse, it was remarkably consistent in the SVZ.
Our results suggest that this is not a general response to
demyelination since cuprizone induced demyelination
did not activate CD45 expression in the SVZ. We favor two
main possible mechanisms for our finding after TMEV
infection: viral SVZ macrophage tropism or viral spread

through the ventricular system. CD45+ cells are constitu-
tively semi-activated in the SVZ [7] and CD45+ cells were
consistently activated in the SVZ and in the RMS. Since
TMEV preferentially infects activated microglia [50,51],
the relatively high levels of constitutive macrophage acti-
vation in the SVZ [7] may predispose them to infection.
Another interpretation of our study is that the ventricular
system is a conduit for viral spread. CD45 activation was
high in the preclinical group near the ventricular system:
lateral ventricle, 3t ventricle, periventricular hippocam-
pus, and 4thventricle. Immunodetectable virus was associ-
ated with SVZ neuroblasts and Theiler's virus exhibits
tropism for sialic acid residues [26], thus it also possible
that PSA-NCAM+ neuroblasts may be preferentially
infected.

We found vigorous CD45+ cell activation throughout the
forebrain already at two weeks after viral induction, sug-
gesting that it commenced earlier. Microglial activation
can occur quite rapidly, within hours to days after insults.
By the time clinical symptomatology appeared in TMEV
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mice, CD45+ cell activation in the forebrain had dimin-
ished. In contrast to the forebrain, the major CD45+ cell
activation in the cerebellum occurred three months after
TMEV infection, which is surprising since TMEV was
injected into the cerebellum. Similar to the cerebellum,
the major spinal cord response was in the chronic group.
Based on our results with this model, subtle forebrain
inflammation mediated symptomatology may precede
the severe spinal cord mediated motor defects in MS.

Whereas the large majority of newborn cells in the adult
SVZ are young neurons, a few oligodendrocytes are also
generated constitutively [12,52]. EAE induces increased
numbers of oligodendrocyte genesis and emigration out
of the SVZ [28,29,53]. Interestingly postmortem human
studies suggest that SVZ cells, probably glioblasts, emi-
grate into adjacent regions in MS [54]. The effects of pre-
clinical models of MS on neurogenesis and neuroblast
emigration were less clear, especially with regards to
TMEV. This was important to address since, in addition to
glial loss, a significant amount of neuronal loss occurs in
MS [19]. Our results show that even though neurons are
lost in MS, neurogenic regions of the brain do not increase
the production of newborn neurons. This is unlike multi-
ple other models of neuronal loss such as stroke which
generally increase neurogenesis [1,13].

An interesting clinical observation is that MS is frequently
associated with periventricular lesions; "Dawson's fin-
gers" [31]. As seen with MRI, these lesions extend from the
ependyma into the corpus callosum and other brain
regions [32]. The lesions course along subventricular zone
(subependymal) blood vessels, suggesting they are routes
of entry for destructive immune cells. As in Dawson's fin-
gers, CD45+ cell activation was frequently associated with
SVZ blood vessels and it may be that these were infiltrat-
ing macrophages. Recent studies have documented
increased cell density and proliferation in the SVZ of MS
patients [54]. These observations are compatible with the
massive CD45+ cell activation we consistently observed
around the lateral ventricles. High numbers of CD45+
inflammatory cells concentrate in the circumventricular
organs, during EAE [55] and MS cerebral hemisphere
lesions are primarily perivascular [56,57]. Regardless of
the mechanism, an increasing body of evidence suggests
that periventricular regions, including the neurogenic
SVZ, are particularly affected in preclinical models and
human MS.

List of abbreviations

CC: corpus callosum; C: chronic; DAPI: 4',6-diamidino-2-
phenylindole; EAE: experimental allergic encephalomy-
elitis; EO: early onset; LV: lateral ventricle; MS: multiple
sclerosis; PBS: phosphate buffered saline; PC: preclinical;
RMS: rostral migratory stream; SGZ: subgranuar zone;
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SVZ: subventricular zone; TMEV: Theiler's murine enceph-
alomyelitis virus.
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