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Abstract
Background: Gadopentate dimeglumine (Gd-DTPA) enhanced magnetic resonance imaging (MRI)
is widely applied for the visualization of blood brain barrier (BBB) breakdown in multiple sclerosis
and its animal model, experimental autoimmune encephalomyelitis (EAE). Recently, the potential
of magnetic nanoparticles to detect macrophage infiltration by MRI was demonstrated. We here
investigated a new class of very small superparamagnetic iron oxide particles (VSOP) as novel
contrast medium in murine adoptive-transfer EAE.

Methods: EAE was induced in 17 mice via transfer of proteolipid protein specific T cells. MR
images were obtained before and after application of Gd-DTPA and VSOP on a 7 Tesla rodent MR
scanner. The enhancement pattern of the two contrast agents was compared, and correlated to
histology, including Prussian Blue staining for VSOP detection and immunofluorescent staining
against IBA-1 to identify macrophages/microglia.

Results: Both contrast media depicted BBB breakdown in 42 lesions, although differing in plaques
appearances and shapes. Furthermore, 13 lesions could be exclusively visualized by VSOP. In the
subsequent histological analysis, VSOP was localized to microglia/macrophages, and also diffusely
dispersed within the extracellular matrix.

Conclusion: VSOP showed a higher sensitivity in detecting BBB alterations compared to Gd-
DTPA enhanced MRI, providing complementary information of macrophage/microglia activity in
inflammatory plaques that has not been visualized by conventional means.

Background
A fundamental pathologic feature of multiple sclerosis
(MS) is the formation of multifocal plaques in the central
nervous system (CNS), accompanied by a disruption of
the blood brain barrier (BBB). Gadopentate dimeglumine

(Gd-DTPA) does not cross an intact BBB and can thus be
used to detect BBB leakage in acute inflammatory lesions
by Gd-DTPA enhanced MRI [1]. Recently, iron-oxide
based magnetic nanoparticles have evolved as a new class
of MRI contrast agents [2-6], bearing the potential to
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detect macrophage infiltrates into the CNS independently
from BBB breakdown [7,8]. Macrophages play a pivotal
role in the pathophysiology of MS, since they invade the
CNS early during disease and act as effector cells in the
inflammatory cascade, leading to persistent structural and
functional tissue damage [9,10]. Dextran-coated magnetic
nanoparticles have been applied in various animal mod-
els to visualize the migration of macrophages by MRI
[2,7,8,11-15]. Two recent studies showed that the applica-
tion of magnetic nanoparticles in MS patients resulted in
a pattern that was distinct from BBB leakage visualized on
Gd-DTPA enhanced images [16,17].

In this study, we investigated the capacity of novel, very
small superparamagnetic iron oxide particles (VSOP) to
detect neuroinflammatory foci in murine experimental
autoimmune encephalomyelitis (EAE), an animal model
of MS. VSOP are substantially smaller than conventional
magnetic nanoparticles due to an electrostatically stabi-
lized citrate coating [6], and therefore can also be used to
detect BBB breakdown [18,19]. On the other hand, VSOP
are very efficiently phagocytized [20] and were success-
fully applied for in vivo tracking of mononuclear cells in
the past [21]. We analyzed the distribution pattern and
kinetics of VSOP enhancement in adoptive-transfer EAE
in comparison to conventional Gd-DTPA enhanced MRI
and compared these findings with histopathological alter-
ations.

Materials and methods
Adoptive-transfer EAE
Female SJL/J mice, six to eight weeks old, were purchased
from Charles River (Sulzfeld, Germany). Animals were
housed in sawdust-lined cages in a climate-controlled
room and received standard rodent feed and water ad libi-
tum. All experiments were approved by the local animal
welfare committee and conformed to the European Com-
munities Council Directive (86/609/EEC). For adoptive-
transfer EAE, naïve donor mice were immunized with an
emulsion containing 250 μg PLP (murine proteolipid
peptide p139-151; purity > 95%, Pepceuticals, Leicester,
UK) in equal volumes of phosphate buffered saline (PBS)
and Complete Freund's Adjuvant (CFA, Difco Laborato-
ries, Detroit, USA), and 4 mg/ml Mycobacterium tuberculo-
sis H37Ra (Difco Laboratories, Detroit, USA), as
previously described [22]. Ten days after immunization,
cells were extracted from draining lymph nodes and res-
timulated with 12.5 μg PLP/ml in cell culture medium
(RPMI 1640 supplemented with 2 mM L-glutamine, 100
U/ml penicillin, 100 μg/ml streptomycin and 10% fetal
calf serum) for four days at 37°C. For adoptive transfer, 8–
12 × 106 T-cell blasts in 100 μl PBS were injected intraperi-
toneally into 17 syngenic recipients.

Mice were weighed daily and scored for EAE [22]: 0, unaf-
fected; 1, tail weakness or impaired righting on attempt to

roll over; 2, paraparesis; 3, paraplegia; 4, paraplegia with
forelimb weakness or complete paralysis; score > 4, to be
sacrificed. Mice with a score of 4 received an intraperito-
neal injection of 200 μl glucose (5%) daily.

MRI analysis
Cerebral MRI was performed on a 7 Tesla rodent MRI
scanner (Pharmascan 70/16AS, Bruker BioSpin, Ettlingen,
Germany), applying a 20 mm RF-Quadrature-Volume
head coil. Animals received anesthesia via facemask
induced with 3% and maintained with 1.5 – 2.0% isoflu-
rane (Forene, Abbot, Wiesbaden, Germany) delivered in
100% O2 under constant ventilation control (Bio Trig Sys-
tem, Bruker BioSpin, Ettlingen, Germany). Mice were
placed on a heated circulating water blanket to keep up
body temperature at 37°C.

Axial and coronal T1-weighted (MSME; TE 10.5 ms, TR
322 ms, 0.5 mm slice thickness, matrix 256 × 256, field of
view (FOV) 2.8 cm, eight averages, 40 coronal slices, scan
time 22 minutes, and 20 axial slices, scan time 16 min),
fat-suppressed turbo spin echo T2-weighted (RARE; TE1
14.5 ms, TE2 65.5 ms, TR 4500 ms, 0.5 mm slice thick-
ness, Matrix 256 × 256, FOV 2.8 cm, eight averages, 40
coronal slices, scan time 28 minutes, and 20 axial slices,
scan time 28 minutes) and T2*-weighted (GEFI; TE 5.6
ms, TR 1200 ms, flip angle 35°, 0.5 mm slice thickness,
Matrix 256 × 256, FOV 2.8 cm, four averages, 40 coronal
slices, scan time 20 minutes, and 20 axial slices, scan time
13 minutes) images were acquired before and after intra-
venous (i.v.) administration of the respective contrast
agent. Identical slice positions were used for all sequences
applied: coronal slices were aligned to the olfactory bulb/
frontal lobe fissure and covered the entire brain up to the
cervical spinal cord. Axial slices were positioned parallel
to a plane through the most frontal tip of the olfactory
bulb and the most rostral cerebellar part. MRI data were
analyzed using the MEDx3.4.3 software package (Medical
Numerics, Virginia, USA) on a LINUX workstation.

Mice were investigated daily for the development of BBB
breakdown beginning on the fifth day post T cell transfer
with MRI immediately after injection of 0.2 mmol/kg
bodyweight Gd-DTPA (Magnevist, Bayer-Schering
Pharma AG, Berlin, Germany) into the tail vein. If paren-
chymal contrast enhancement was detected, animals
received 0.2 mmol/kg bodyweight VSOP (VSOP C-184,
Ferropharm, Teltow, Germany) and MR investigations
were repeated after 24 h. Three animals with rapid onset
received primarily VSOP and no Gd-DTPA.

Histology
For subsequent histological analysis, mice were lethally
anaesthetized (Xylazinhydrochlorid, Rompun 2%, Bayer,
Leverkusen, Germany, and Ketamin, CuraMED Pharma,
Karlsruhe, Germany) and intracardially perfused with 0.1
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M PBS and fixed in 4% paraformaldehyde (PFA) in 0.1 M
PBS. Brain and spinal cord were removed and postfixed in
4% PFA. The tissue was then dehydrated in 30% sucrose
for cryoprotection and stored at -80°C. Axial cryosections
(Jung cryostat 2800 Frigocut-E, Cambridge Instruments,
Nussloch, Germany) of the entire brain were stained
either by standard hematoxylin and eosin (H&E) proce-
dure to detect cellular inflammation or by Prussian Blue
staining according to Perl's method [23] to detect VSOP.

For further characterisation of microglia/macrophages,
tissue sections were incubated with rabbit anti-IBA-1 anti-
bodies (1:1000, Wako Chemicals, Neuss, Germany) in
PBS overnight at 4°C after preincubation in 10% normal
goat serum (CALTAG, Invitrogen, Karlsruhe, Germany) to
block non-specific binding, and then with a secondary
antibody (anti-rabbit Cy2, Amersham, Munich, Ger-
many) for 1 h at room temperature. Slices were counter-
stained with Hoechst-33258 (Molecular Probes, Leiden,
the Netherlands) to visualize cell nuclei and with rhod-
amine phalloidin (Molecular Probes, Leiden, the Nether-
lands) to identify vascular structures. Finally, all slices
were washed three times in PBS and cover-sealed with flu-
orescence mounting medium (DAKO Deutschland
GmbH, Germany). Selected sections were examined by
epifluorescence microscopy and digitally photographed
(Olympus BX-51, Hamburg, Germany). Images were
assembled using Adobe Photoshop (Adobe Systems, San
Jose, CA, USA).

Results
Clinical EAE course
All mice developed EAE, presenting first clinical symp-
toms 7 – 14 (mean 9.9) days after the transfer of encepha-
litogenic T cells, most commonly initiated by an impaired
tail motility and a delayed righting reflex after the animal
was rolled on its back. The disease severity progressed to
peak EAE scores between 1 and 4 (mean 2.5 ± 1.1) within
several days, as illustrated in figure 1. Two animals were
followed up longitudinally for three weeks until complete
recovery.

VSOP enhanced MRI visualized inflammatory foci beyond 
BBB breakdown depicted by Gd-DTPA
Contrast enhanced MRI visualized 55 inflammatory
plaques, most commonly in the brain stem and the periv-
entricular area, but also disseminated throughout the
remaining CNS (table 1). Areas of BBB breakdown
appeared hyperintense on T1-weighted images after Gd-
DTPA application or, respectively, hypointense on T2*-
weighted images after VSOP enhancement (figure 2). The
majority of the in vivo detected plaques were enhanced by
both contrast agents (38 lesions), nevertheless, the
enhancement pattern of Gd-DTPA and VSOP differed
within the individual lesion, as demonstrated in figure 2

(arrow heads). In general, Gd-DTPA enhanced lesions
appeared more diffusely, gradually fading towards their
edges, whereas VSOP hypointensities presented concise
hypointense spots with clear margins towards the sur-
rounding tissue.

Of note, 13 out of 55 inflammatory foci were exclusively
visualized by VSOP, but could not be detected on Gd-
DTPA enhanced T1-weighted images (table 1). Although
these lesions did not show the conventional BBB break-
down characteristic defined by Gd-DTPA enhancement,
they did not principally differ in terms of temporal or spa-
tial MRI appearance in this study. Various examples are
presented in figure 2 (small arrows). Vice versa, every Gd-
DTPA enhancing lesions also clearly delineated by VSOP.

Histological correlation
Each Gd-DTPA or VSOP enhancing MRI lesion showed
tissue pathology also on the corresponding histological
slices. Perivascular and perimeningeal cell infiltrations
were clearly demarked in H&E stainings (figure 3A). On
Prussian Blue stained slices, iron depositions could be co-
localized to these areas (figure 3B). VSOP was visualized
within cellular compartments, suggesting their incorpora-
tion into cytoplasmatic vesicles (figure 3C). Furthermore,
we detected extracellular magnetic nanoparticles accumu-
lating diffusely within the brain parenchyma (figure 3D).
Immunofluoresence stainings identified IBA-1 positive
microglia/macrophages within perivascular lesions,
which could be co-localized by their morphology to those
cells exhibiting intravesicular VSOP on Prussian blue
stainings (figure 3E,F).

Clinical disease courseFigure 1
Clinical disease course. Clinical disease course in 17 mice 
after transfer (day 0) of proteolipid protein specific encepha-
litogenic T cells. Mean experimental autoimmune encephalo-
myelitis (EAE) scores and standard deviations are presented. 
Two animals were followed up until complete recovery (data 
for extended observation phase not shown).
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Kinetics and characterization of VSOP contrast
VSOP were strongly prominent in the blood pool as well
as in areas of BBB breakdown within the first 6 h after
application (figure 4). Figure 4 as an example depicts the
typical signal void of inflammatory lesions 4–8 h post
VSOP application in the diencephalon (A) and the cere-
bellum (B, C). In these early time points, regions with uni-
form Gd-DTPA enhancement did not appear accordingly
evenly hypointense on co-localized T2*-weighted images
after VSOP application, but these lesions were depicted
clear-cut and more widespread in comparison (figure 4A,
B). At later time points, i.e. after 18–24 h, parenchymal
VSOP enhancement became most pronounced, when the
non-specific blood pool contrast had completely van-
ished, and gradually ceased thereafter. Remarkably, some
hypointense spots were still detectable 20 days after the
initial application, despite complete clinical recovery of
the animals at this time point (figure 5).

T2*-weighted sequences were most sensitive for the detec-
tion of magnetic nanoparticles, as illustrated in figure 6.
None of the lesions could be differentiated prior to con-
trast agent administration in any of the investigated MRI
sequences (T1-, T2-, T2*- or proton-density-weighted
MRI), nor were lesions detectable in healthy control mice.

Discussion
In this study we investigated the capability of novel elec-
trostatically stabilized magnetic nanoparticles, VSOP, to
detect neuroinflammatory foci in murine adoptive trans-
fer EAE, a disease model of MS. Although MRI revolution-
ized the diagnosis and management of MS patients [24],
a persistent mismatch between clinical and MRI findings
has remained [25,26]. Conventional MRI depicted hyper-
intense lesions on T2-weighted MRI as relatively unspe-
cific traces of the disease and showed evidence of acutely
disrupted BBB indicated by Gd-DTPA leakage into the
parenchyma [27]. Both conventional imaging techniques
correlated only weakly or moderately to disability and

Comparison of contrast enhancing lesionsFigure 2
Comparison of contrast enhancing lesions. Compari-
son of coronal T1-weighted images immediately after Gd-
DTPA administration versus T2*-weighted images 24 h after 
VSOP application. The majority of the lesions enhanced both, 
Gd-DTPA and VSOP, although shape differences within indi-
vidual lesions were apparent (arrow heads). Furthermore, 
several plaques enhanced exclusively VSOP, but not Gd-
DTPA (small arrows).

Table 1: Distribution and number of contrast enhancing lesions (CEL).

Brain region Exclusively VSOP enhancement Gd-DTPA and VSOP enhancement Total number of CEL

Brain stem +++ +++++++++ 12
Periventricular ++ ++++++++++ 12
Midbrain +++++++++ 9
Cerebellum ++ ++++++ 8
Olfactory bulb +++ +++++ 8
Cortex +++ +++ 6

13 42 55

Data are given from 14 mice after Gd-DTPA and VSOP administration, respectively. Three mice received VSOP only and are not included in the 
table. Each + refers to an individual animal.
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clinical outcome of our patients [28]. Experimental con-
trast agents such as Gadofluorine M revealed blood brain
barrier breakdown with higher sensitivity than conven-
tional Gd-DTPA, but have not been applied to humans
[18,29]. A new class of MRI contrast agents based on
superparamagnetic iron oxide cores was recently devel-
oped and originally employed to visualize labeled cells
[5,30-32]. In EAE, macrophages could be detected in vivo
within inflammatory lesions after phagocytosis of mag-
netic nanoparticles [8,12,15,18,33]. Our finding of intra-
cellular iron oxide, verified by Prussian Blue stained
histology, is in line with these reports. Recent studies
applying larger dextran-coated magnetic nanoparticles

report their detection on MRI after a time delay of 24 h,
presumably depending on the invasion of macrophages
rather than on magnetic nanoparticles passively diffusing
through the disrupted BBB barrier [4,8,12].

However, the extremely small VSOP investigated in this
study became immediately visible after application as
prominent T2*-hypointensity. Generally, VSOP detected
lesions were in good spatial agreement to those areas that
enhanced after Gd-DTPA application on T1-weighted
MRI. Nevertheless, VSOP caused very distinct hypointense
spots, whereas Gd-DTPA enhanced lesions appeared less
clear cut on T1-weighted images. Most intriguingly, a sub-
set of 13 out of 55 lesions became visible exclusively after
VSOP injection, remaining unenhanced after concomi-
tant Gd-DTPA application. In our study, these "VSOP-
only" lesions did neither principally differ in space nor in
time from those inflammatory plaques that simultane-

Histological findingsFigure 3
Histological findings. EAE-typical perivascular cell infiltra-
tions were identified on Hematoxylin & Eosin stained slices 
(A). After Prussian Blue staining, VSOP was detected on cor-
responding sites (B). Two different distribution patterns of 
magnetic nanoparticles became evident: The incorporation of 
VSOP into cytoplasmatic vesicles within phagocytic cells 
(arrows in C), and a diffuse accumulation in the brain paren-
chyma (ellipse in D). IBA-1 positive macrophages/microglia 
were identified by immunofluorescent staining within perivas-
cular plaques, colocalizing with Prussian Blue positive cells 
(arrows in E, and in higher magnification in F; green: anti-IBA-
1, macrophages/microglia; blue: Hoechst 33258, cell nuclei; 
red: rhodamin phalloidin, vascular structures).

Early VSOP enhancementFigure 4
Early VSOP enhancement. In regions of blood brain bar-
rier breakdown visualized by Gd-DTPA (A1, B1, C1), paren-
chymal VSOP leakage was detectable within the initial 6 h 
post application (A2, B2). Lesions became clearly distinguish-
able from the vasculature only after the blood pool contrast 
resolved. In C2, 4 h post application, intravascular VSOP is 
still visible. Eight hours after application, neuroinflammatory 
foci remain hypointense, where as intravascular signal 
decrease vanished (C3). Ellipses highlight contrast enhancing 
lesions.
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ously enhanced both contrast agents, or on corresponding
histology. Prussian-blue positive magnetic nanoparticles
were present in vesicles within cells that were identified as
macrophages/microglia on immunofluorescent stainings,
and also as a diffuse extracellular accumulation within the
connective tissue in vicinity to inflammatory plaques.
Thus, VSOP enhanced MRI was capable of visualizing
both, BBB disruption at high sensitivity as well as macro-
phage infiltration into neuroinflammatory lesions.

The occurrence of extracellular VSOP deposits in histology
detected in regions without Gd-DTPA enhancement
appears inscrutable at first sight. Two different underlying
mechanisms have to be considered. First, BBB breakdown
might be present but very subtle in these regions. Para-
magnetic nanoparticles such as VSOP are characterized by

a strong susceptibility effect in T2*-weighted imaging,
possibly providing an augmented sensitivity for BBB alter-
ations compared to Gd-DTPA. Secondly, presuming BBB
integrity, VSOP might also accumulate in inflammatory
foci due to a locally enhanced activity of transendothelial
transport mechanisms during inflammation [34,35].
Nanoparticles were shown to facilitate drug delivery
across the BBB [36]. Transport of transferrin into the CNS
occurs via receptor-mediated transcytosis [37]. Which par-
ticular pathways might channel VSOP across an intact
BBB remains to be determined.

Magnetic nanoparticles have already been applied in sev-
eral human trials of cerebral ischemia [38,39] and in brain
tumours [40]. In MS, two studies on magnetic nanoparti-
cles were reported so far: In a prospective trial of Dousset
et al. comprising ten MS patients with relapsing-remitting
disease course, two patients presented enhancing lesions
exclusively after administration of magnetic nanoparticles
[17]. A very recent study by Vellinga et al. reported a mis-
match of 144 out of 188 lesions in 14 patients, that could
be visualized by dextran-coated magnetic nanoparticles
(USPIO) enhanced MRI, but not by Gd-DTPA. Vice versa,
of 59 Gd-DTPA positive lesions, 15 were USPIO negative
in the same study [16]. Despite these encouraging initial
experimental human trials, the exact specificity and sensi-
tivity of different magnetic nanoparticles applied remains
to be elucidated, since they obviously depict different
aspects of pathology, as indicated by the data presented in
this study.

VSOP has been investigated as a blood pool contrast agent
in MR-angiography of the coronary arteries in a clinical
phase 1B study, and was well tolerated [41]. Therefore, a
future application also in MS seems feasible.

Conclusion
Here, we demonstrated that VSOP, due to their small size
and special surface characteristics, uniquely combine the

Time course of VSOP enhancementFigure 5
Time course of VSOP enhancement. In a longitudinal follow-up, T2*-hypointense lesions (arrows) were depicted at 24 h, 
7 days and 20 days post VSOP application. Some hypointense plaques remained visible after 20 days.

VSOP contrast in different MR sequencesFigure 6
VSOP contrast in different MR sequences. Prominent 
contrast-enhancing periventricular lesions are depicted 24 h 
after VSOP injection on coregistered coronal T2*-, T2-, T1- 
and proton-density-weighted images (ellipse). T2*-weighted 
MRI was most sensitive in detecting magnetic nanoparticles. 
On T1-weighted images, very high VSOP concentrations 
became visible as hypointense spots at 7 Tesla.
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advantages of an improved detection of occult BBB altera-
tions, adding the capability of visualizing subtle macro-
phage infiltration into active neuroinflammatory plaques.
Moreover, VSOP differ from other magnetic nanoparticles
in their capability to exclusively image subtle BBB disrup-
tions. Several lesions could be detected that enhanced
solely VSOP, indicating the sensitivity for additional neu-
roinflammatory processes so far missed by conventional
contrast media. Thus, novel magnetic nanoparticles may
contribute to resolve the clinico-radiological paradox in
future human trials.
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