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Abstract
Tumor necrosis factor alpha (TNF-α) was discovered more than a century ago, and its known roles have extended from 
within the immune system to include a neuro-inflammatory domain in the nervous system. Neuropathic pain is a 
recognized type of pathological pain where nociceptive responses persist beyond the resolution of damage to the 
nerve or its surrounding tissue. Very often, neuropathic pain is disproportionately enhanced in intensity (hyperalgesia) 
or altered in modality (hyperpathia or allodynia) in relation to the stimuli. At time of this writing, there is as yet no 
common consensus about the etiology of neuropathic pain - possible mechanisms can be categorized into peripheral 
sensitization and central sensitization of the nervous system in response to the nociceptive stimuli. Animal models of 
neuropathic pain based on various types of nerve injuries (peripheral versus spinal nerve, ligation versus chronic 
constrictive injury) have persistently implicated a pivotal role for TNF-α at both peripheral and central levels of 
sensitization. Despite a lack of success in clinical trials of anti-TNF-α therapy in alleviating the sciatic type of neuropathic 
pain, the intricate link of TNF-α with other neuro-inflammatory signaling systems (e.g., chemokines and p38 MAPK) has 
indeed inspired a systems approach perspective for future drug development in treating neuropathic pain.

Introduction
Despite intense research over the last 30 years, debate is
still ongoing regarding the nature of neuropathic pain,
including controversy as to whether such pain is periph-
eral or central in origin, and as to whether its etiology is
inflammatory or non-inflammatory. Increasing evidence
has provided better understanding of the roles of both
immune and pro-inflammatory mediators (e.g., the inter-
leukins, TNF-α, complement components, ATP and the
chemokines) in the mechanisms of both peripheral and
central neuropathic pain [1-4]. This review will concen-
trate on current knowledge and experimental models
regarding the role of TNF-α, among other cytokines, in
neuropathic pain; with an appraisal of available potential
therapeutic targets related to TNF-α and directions for
future developments in this area.

Neuropathic pain as an example of an inflammatory pain 
model
Neuropathic pain is characterized by disproportionate
hypersensitivity to stimuli (hyperalgesia), abnormal pins-
and-needles or electric-shock-like sensations (hyper-
pathia) and, finally, nociceptive responses to non-noxious

stimuli (allodynia). It is a pathological type of pain that
persists despite resolution of the inciting damage to the
nerve and the surrounding tissues. From a behavioral
standpoint, nociception is an adaptive tool for better sur-
vival, while neuropathic pain is considered maladaptive.
The prevalence of neuropathic pain ranges from 1% in
UK [5] to 1.5% in the US [6] to 17.9% in Canada [7]. Weir
Mitchell [8] is often credited with the first descriptive
account of neuropathic pain from nerve injuries seen in
the US Civil War, using terms that range from "burning",
"mustard red hot", "red-hot file rasping the skin" to "with
intensity ranging from most trivial burning to a state of
torture". Clinically, the top three most common types of
neuropathic pain are post-herpetic neuralgia, trigeminal
neuralgia and diabetic neuropathy [9]. Neuropathic pain
is among the most difficult types of chronic pain to treat,
which not only significantly impairs patients' quality of
life [10] but also adds to the burden of direct and indirect
medical cost for our society [10,11]. Conceptually, neuro-
pathic pain consequent to peripheral nerve injury results
from an increased excitability of the neurons as a result of
sensitization. The debate is still on-going as to whether
this sensitization occurs in the peripheral or central com-
partments of the nervous system, or both. Experimen-
tally, various animal models of peripheral neuropathic
pain have been developed: chronic constriction injury
(CCI) of the sciatic nerve with loose ligatures [12-15];

* Correspondence: leungl@queensu.ca
1 Centre for Neurosciences Studies, 18, Stuart Street, Queen's University, 
Kingston, Ontario K7L 3N6, Canada
Full list of author information is available at the end of the article
BioMed Central
© 2010 Leung and Cahill; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Com-
mons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original work is properly cited.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20398373
http://www.biomedcentral.com/


Leung and Cahill Journal of Neuroinflammation 2010, 7:27
http://www.jneuroinflammation.com/content/7/1/27

Page 2 of 11
partial sciatic nerve injury with tight ligatures [15-17];
total sciatic nerve ligation [15,18]; sciatic nerve transac-
tion [19-21] and axotomy of lumbar roots entering the
sciatic nerve [22,23]. Despite the various degrees and
modes of nerve damage in these models, there is a com-
mon sequel--post-injury inflammatory changes leading
to mast cell degranulation [24], and recruitment of both
macrophages [25] and polymorphonuclear neutrophils
[26]. However, in CCI models thermal hyperalgesia still
occurs when ligatures are loosely placed around the sci-
atic nerve without actual mechanical damage [27]. This
finding supports the hypothesis that it is the inflamma-
tory microenvironment [28] and the release of mediators
[29], rather than the nerve injury per se, that is pivotal for
the development of neuropathic pain. Clatworthy et al.
[30] further demonstrated that suppression of the inflam-
matory response with dexamethasone reduces thermal
hyperalgesia, while enhancing the inflammatory response
using Freud's adjuvant was seen to aggravate the level of
pain hypersensitivity. His work set the stage for continu-
ing research on immune and pro-inflammatory media-
tors in neuropathic pain over the next two decades. An
updated list of such mediators, by no means exhaustive,
includes the eicosanoids [31-34], bradykinins [35,36],
serotonin [37-39], ATP/ADP [40-42], neurotrophins [43-
46], cytokines [47-52], chemokines [53,54], and reactive
oxygen species [21,55,56]. These mediators are not exclu-
sive to cells of immune/inflammatory origin, but are also
produced by Schwann cells [57-59] and spinal glial cells
[42,60-63], thereby potentially mediating the mechanisms
of neuropathic pain.

Cytokines in neuropathic pain
Cytokines are low molecular weight glycoproteins that
are secreted mainly, but not exclusively, by immunologi-
cal cells such as T-cells, macrophages and neutrophils.
Other cells that secrete cytokines include keratinocytes
and dendritic cells of the skin [64] and Schwann cells and
glial cells of the central nervous system [65,66]. They act
as intercellular mediators regulating the functions and
differentiation of neighboring cells and are produced in
response to disease, inflammation, or tissue damage.
Cytokine synthesis is prompt and their actions are often
localized with a relatively short half-life. This distin-
guishes them from hormones which are constantly pro-
duced with longer-lasting and more distant effects. The
first cytokine was discovered by Beeson in 1948 [67] as a
pyrogenic compound extracted from ploymorphonuclear
leucocytes, later known as IL-1β. Since then, many other
cytokines have been discovered, and these fall into five
main categories: interleukins, interferons, tumor necrosis
factors, growth factors and chemokines. Together, these
factors contribute to the pathogenesis of neuropathic

pain [47,68]. In particular, tumor necrosis factor alpha
(TNF-α) [69,70], interleukin-1 (IL-1) [47,71,72] and inter-
leukin-6 (IL-6) [49,73] have been associated with the
development of neuropathic pain in various animal mod-
els [74]. In this review, we shall limit our scope to TNF-α.

Tumor necrosis factor alpha (TNF-α): a neuropathic pain-
related cytokine
In 1891, the success story of William Coley in using
supernatant extract of heat-killed mixtures of Streptococ-
cus pyogenes and Serratia marcescens bacteria to treat
tumors may in fact be the first discovery of tumor necro-
sis factor [75]. It was not until 1975 that an endotoxin-like
substance was described in activated macrophages with
tumor-regression activity and was given the name of
tumor necrosis factor alpha, TNF-α [76]. TNF-α belongs
to a superfamily of ligand/receptor proteins called the
tumor necrosis factor/tumor necrosis factor receptor
superfamily proteins (TNF/TNFR SFP). TNF-α possess a
trimeric symmetry with a structural motif called the TNF
homology domain (THD), which is shared with all other
members of the TNF proteins. This THD binds to the
cysteine-rich domains (CRDs) of the TNF receptors
(TNFRs), and variations of these CRDs lead to heteroge-
neity of the TNFRs [77]. TNFRs are either constitutively
expressed (TNFR1, p55-R) or inducible (TNFR2, p75-R)
[78]. In the context of neuropathic pain, using the stan-
dard model of chronic constriction injury (CCI) of sciatic
nerve in rats, TNF-α has been detected at the injury site
and shows temporal up-regulation [79-81]; here TNF-α is
located mainly in macrophages [82] and Schwann cells
[70,83] by immuno-reactive staining. Similarly, there is
local up-regulation of both TNFR1 and TNFR2 as injured
neurons undergo Wallerian degeneration, albeit at differ-
ential rates [84]. Similar results are found in humans,
where nerve biopsies from patients with painful neuropa-
thy show higher levels of TNF-α expression, especially in
Schwann cells [85]. Intra-sciatic injection of TNF-α in
rats reproduces pain hypersensitivity that is similar to
that of neuropathic pain in humans [69,86], and this is
reversible with neutralizing antibodies to TNFR [86], in
particular TNFR1 [50]. TNF-α enhances the tetrodo-
toxin-resistant (TTX-R) Na+ current in cultured DRG
cells from wild-type but not from TNFR1-knockout mice,
and such current is abolished by a p38-MAPK inhibitor;
implying that TNF acts via TNFR1 and activates TTX-R
Na+ channels via the p38 MAPK system [87]. Further
studies using TNFR1/TNFR2 knock-out mice have sug-
gested a neurotoxic role for TNFR1 versus a neuroprotec-
tive role of TNFR2 [88]. However, there is still debate
regarding the relative roles of TNFR1 and TNFR2 in
chronic pain: in mice with tumor-induced thermal hyper-
algesia, deletion of the TNFR2 gene reduces the painful
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response hence signifying a role for TNFR2 [89]; whilst in
rats with spinal root injury, TNFR1 elicits excitatory
responses in DRG of adjacent uninjured roots and
TNFR2 excites DRG neurons from injured roots [90]. In
the inflammatory models of carrageenan-induced and
zymosan-induced pleurisy in rat models, TNF-α has been
found to have a lead role in activating a cascade of other
cytokines, notably IL-1β, IL-6 and IL-8 [91]. A similar
local cascade has been demonstrated in a model of neu-
ropathic pain following nerve injury [83].

The role of TNF-α in peripheral mechanisms of neuropathic 
pain
TNF-α plays a role in the peripheral mediation of neuro-
pathic pain. Clinically, HIV therapy and chemotherapy
produce peripheral neuropathy with massive release of
TNF-α in serum [92] and TNF-α used as a clinical anti-
cancer treatment leads to peripheral neuropathy [93].
Traditional CCI of sciatic nerve in rats results in raised
levels of TNF immunoreactivity in dorsal root ganglia
(DRG) of both injured and uninjured ipsilateral adjacent
afferents [94], as well as of contralateral uninjured coun-
terparts [95], which can only be partly explained by retro-
grade axonal transport [96]. There is also a corresponding
up-regulation of TNFR1 and TNFR2 in both nerve and
DRG [97], with a temporal pattern of increased TNF
mRNA expression, first in sciatic nerve, and then in DRG
[98]. When nucleus pulposus extract of coccxygeal inter-
vertebral disc is applied to lumbar DRG of rats, neuro-
pathic pain is induced but is abolished by co-application
of TNRF1, implying a direct role of TNF as a local media-
tor [99]. Exogenous TNF-α injected into DRG of CCI
roots is transported both anterograde to the site of injury
and retrograde into the dorsal horn [100], precipitating
allodynia in both the ligated and adjacent uninjured
nerves [101]. TNF-α is known to lead to apoptosis via
TNFR1 [102,103] and the caspase signaling pathway
[103]. Caspase inhibitors can attenuate peripheral neu-
ropathy experimentally induced by HIV therapy or che-
motherapy in rats [104]. A recent study compared crush
injury of L5 spinal nerve (distal to DRG) with L5 nerve
roots (proximal to DRG) in rats and found that distal
crush injury resulted in more neuronal apoptosis and
enhanced TNF-α expression and caspase levels, correlat-
ing with higher neuropathic pain [105], lending more
support to a TNF-α-apoptosis-caspase signaling para-
digm for peripheral neuropathic pain. In addition to
enhancing TTX-R Na+ channels in nociceptive DRG neu-
rons [87], TNF-α can also increase membrane K+ ion con-
ductance in a non-voltage-gated fashion [106] leading to
overall neuronal hyper-excitability and hence leading to
neuropathic pain.

The role of TNF-α and glia in central mechanisms of 
neuropathic pain
In late 1990s, TNF-α was proposed to be one pro-inflam-
matory cytokine with a pivotal role in the "immune-to-
brain" pathway of communication for pain, and in models
of sickness response in general [51,107]. In classic CCI
models in rats, increased levels of TNF-α are found in
hippocampus [108,109], locus coeruleus [109,110] and
red nucleus [111] of brain. Recent data have suggested
that TNF-α mediates central mechanisms of neuropathic
pain through glial systems. In the central nervous system,
glial cells outnumber neurons by as much as 50-fold, and
include three relevant types: astrocytes, oligodendrocytes
and microglia. Oligodendrocytes not only provide the
myelin sheaths that insulate the neurons, they also con-
tribute to the actual expansion of neuronal caliber and
reorganization of neurofilaments [112]. Astrocytes are
the most abundant glial cells and possess the most diverse
functions: they can modulate synaptic functions by form-
ing a tripartite synapse with pre-synaptic, post-synaptic
and extra-synaptic astrocytic contacts with up to 10,000
other neurons [113,114] using glutamate and adenosine
as neurotransmitters [115]. It has been suggested that spi-
nal astrocytes may play a role in sensitization of chronic
pain via activation of the p38-MAPK system [116,117],
and may even synapse with microglia, with pre-synaptic
neuronal processes and with post-synaptic neuronal
structures to form a tetrapartite configuration [118].
Astrocytes also regulate maturation of neurons and syn-
patogenesis, hence playing a pivotal role in modulation of
neural plasticity [119]. Microglia constitute 15-20% of the
total glial population and serve as an immune invigilator
for the central nervous system. They originate from tme-
sodermal precursor cells of hemopoietic lineage. In
response to nerve injury and inflammation, microglia
transform into macrophage-like cells [120] that express
major histocompatibility complex antigens and secrete
pro-inflammatory cytokines, including TNF-α, IL-1 and
IL-6 [121,122]; CCL2 and CX3CL1 [53,123], and ATP,
which mediate their effects via the p38-mitogen-activated
protein kinase (p38-MAPK) system [41,124,125].

Back in 1991, it was shown that classic CCI leads to
hypertrophy of astroglia in the dorsal horn of spinal cord
as reflected by increased immunostaining of glial fibril-
lary acidic protein [126]. Since then, other subcutaneous
and intraperitoneal inflammatory pain models [127] have
also been shown to induce glial activation. In newborn
rats, where microglia are immature, intrathecal lipopoly-
saccharide (LPS) fails to evoke the allodynia response that
is invariably seen in adult rats [62], suggesting a necessary
role for functional microglia in the pathogenesis of neu-
ropathic pain. Along with various other mediators, TNF-
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α has been shown to be present on the surfaces of astro-
cytes by immunofluorescence staining, where TNF-α
auto-stimulates its own production via G-protein cou-
pled receptor (CXCR4) and TNF-α converting enzyme.
The result is a cascade of events leading typically to pro-
duction of IL-1, IL-6, nitric oxide and ATP [121,128], all
of which contribute to enhanced neuronal activity leading
to pathological pain. Wei et al [129] demonstrated
increased levels of TNF-α and IL-1β in the rostral ventro-
medial medulla (RVM) of rats after CCI of the infraor-
bital nerve, with a corresponding enhancement of
phosphorylation of the NR1 subunit of NMDA receptors,
which is thought to be coupled to the receptors for both
TNF-α and IL-1β. Injection of TNF-α and IL-1β into
RVM increases NR1 phosphorylation of NMDA recep-
tors and produces hyperalgesia, which is reversed by an
NMDA antagonist. Wei's work sparked off research into
NMDA receptors as a possible target for treating neuro-
pathic pain; unfortunately, progress has been discouraged
by the ubiquitous expression of NMDA receptors in the
human central nervous system, which renders NMDA
receptor blockade for analgesia an impossible task with-
out concomitant alterations in cognition, memory and
learning.

TNF-α, neural plasticity and neuropathic pain
Originally identified in hippocampus as a substrate for
memory storage and learning, the synaptic mechanisms
of long term potentiation (LTP) in glutamergic neurons
[130] have since been demonstrated as well in other parts
of the central nervous system; in particular, in the dorsal
horn of the spinal cord, where they may lead to abnormal
nociception and neuropathic pain [131,132]. Normal
nociceptive signals are conveyed by both Aδ and C-fibers;
of which the latter make synapses with second-order neu-
rons in the spinal dorsal horn. The LTP phenomenon has
been well characterised in C-fibers of rat dorsal horn with
tetanic stimulation [133,134] and also with acute nerve
injury [135]. High-frequency stimulation leads to an LTP
pattern of cutaneous allodynia and hyperalgesia in
humans [136] with a typical early LTP time course [137].
As the signalling mechanism of LTP unfolds, TNF-α is
found to play an important role. Endogenous glial TNF-α
can modulate synaptic plasticity by increasing the expres-
sion of AMPA receptors in cultured rat hippocampal
slices [138] for homeostatic regulation of synaptic
strength in an activity-dependent fashion [139]. However,
TNF-α given at non-physiological levels often inhibits
LTP in similar models of cultured rat hippocampus
[140,141]. As regards to C-fibers in the spinal dorsal
horn, exogenous TNF-α produces LTP in C-fiber evoked
field potentials only in the presence of nerve injury, and
this LTP is blocked by inhibitors of NF-kappa B, JNK and
p38-MAPK [142]. In the absence of nerve injury, TNF-α

can neutralise the action of src-family kinase inhibitors
by restoring LTP in C-fiber evoked potentials as normally
induced by high-frequency stimulation (HFS).

TNF-α, ATP and p38-MAPK
Since the 1950s, release of ATP has been detected from
nerve endings [143,144] and a role for ATP in nociception
was implicated when it was shown to induce pain in
human blister bases [145]. ATP excites cutaneous afferent
neurons of animal models in a fashion similar to that of
other neurotransmitters like 5-HT and acetylcholine
[146], and can act proximally to excite DRG neurons
[147]. Around the same time, Burnstock and his col-
leagues [148,149] first characterized purinergic receptors
into P1 (sensitive to adenosine, ADO), P2X, and P2Y
receptors (sensitive to ATP and ADP). Molecular cloning
studies have identified four sub-types of P1 (A1, A2A,
A2B, and A3), seven sub-types of P2X (P2X1 to P2X7) and
8 sub-types of P2Y receptors (P2Y1, P2Y2, P2Y4, P2Y6,
P2Y11, P2Y12, P2Y13, P2Y14) [150]. Each subtype has a dif-
ferent distribution in neuronal and glial cells, interacting
with each other in an intricate manner. In terms of signal-
ing functions, P1 and P2Y receptors are G-protein cou-
pled receptors, while P2X receptors are ligand-gated ion
channels [151]. Within the context of neuropathic pain,
P2X3, P2X4 and P2X7 receptors are thought to play a role;
and in particular, P2X3 may act via the TTX-R voltage-
gated sodium channel Nav 1.9 [152].

Earlier studies using nerve injury models in rats
revealed either an increase [153] or decrease [154] of
P2X3 immuno-reactivity of the DRG neurons, depending
on the type of nerve injury. When expression of P2X3
receptors in DRG is reduced using anti-sense oligonucle-
otides [155] or siRNA [156], development of mechanical
hyperalgesia is mitigated after classic CCI. Furthermore,
administration of anti-sense oligonucleotides to knock
down P2X3 receptors can reverse established neuropathic
pain that re-emerges after cessation of the anti-sense
treatment [157], suggesting a dynamic modulatory role of
P2X3 receptors. Following a similar approach, Tsuda et al
[158] demonstrated an increase in P2X4 receptor expres-
sion after chronic nerve injury, and showed that both
pharmacological blockade and anti-sense oligonucleotide
treatment abrogates the development of mechanical allo-
dynia. Later studies have suggested that P2X4 receptor
stimulation leads to secretion of brain-derived neu-
rotrophic factor (BDNF) in spinal microglia, and that this
BDNF is involved in mediating neuropathic pain
[40,159,160], possibly via activation of the p38-MAPK
system [161]. P2X7 receptors are associated with TNF-α
production in microglia through the p38-MAPK system
[162,163], as an inhibitor of MAPK system will suppress
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production of TNF-α mRNA and an inhibitor of p38 will
prevent nucleocytoplamic transport of TNF-α mRNA
[162]. Independent of ATP, the p38-MAPK system seems
to be essential for the action of TNF-α via TTX-R Na+

channels [87]. As an entity itself, microglial p38-MAPK
has been implicated in the pathogenesis of neuropathic
pain in studies using various in vivo models of peripheral
nerve [164,165] and spinal cord injury [166,167]. For
example, spinal nerve ligation in rats leads to allodynia
with concomitant rises in TNF-α and p38 phosphoryla-
tion; treatment with inhibitors of either TNF-α or p38
results in reduction of allodynia and, finally, TNF-α
blockade can in turn suppress p38 activation [168]. Stud-
ies using HSV-mediated gene transfer in nerve injury ani-
mal models have shown induced expression of soluble
p55 TNFR (sTNFR2) in DRG neurons, resulting in
decreased phosphorylation of p38 and reduced allodynia,
again suggesting a causal link between TNF-α and the
p38-MAPK system.

TNF-α as potential drug target for chronic pain--the 
possibilities
Due to the unique trimeric structure shared between the
TNF ligand and the TNF receptor (both belonging to the
TNF/TNFR SPF), the transmembrane portion of TNF
molecule (mTNF), besides being a ligand, is capable of
acting as a receptor for a soluble form of TNF (sTNF) in a
"reverse-signaling" manner [169], which then inhibits
phosphorylation of p38 and hence expression of TNF
protein. This unique phenomenon makes it possible to
use gene therapy with a herpes simplex virus vector car-
rying a p55 sTNFR gene to transfect DRG neurons of rats
[170]. As a result, over-expressed p55 sTNFR (sTNFR2)
binds to the mTNF of DRG and down-regulates overall
production of TNF by reverse signaling, significantly
reducing the allodynia and hyperalgesia responses to CCI
[170,171]. Following a similar logic, a fusion protein
(ELP-sTNFR2) has been developed wherein a soluble
form of TNFR2 (sTNFR2) is conjugated to a temperature-
sensitive elastin-like polypeptide (ELP), which can be
thermally triggered to form a deposit around the peri-
neural site of injection [172]. This fusion protein has been
reported to be able to mitigate levels of TNF-α in DRG of
injured nerve in rat models [173]. Indeed, many studies
have demonstrated that local or spinal administration of
agents that antagonize TNF-α will attenuate pain behav-
iors in neuropathic animal models [174-177]. Mechanical
allodynia in the rat model of central neuropathic pain due
to T13 spinal cord hemisection is attenuated by immedi-
ate, but not delayed, intrathecal administration of etaner-
cept (a fusion protein blocker of TNF-α) at 1-4 weeks
post spinal cord injury [178]. Propentofylline is a meth-
ylxanthine that inhibits lipopolysaccharide (LPS)-
induced release of both TNF-α and IL-1β in a dose-

dependent manner in glial cultures [179] and abates allo-
dynia in rat spinal nerve transection models by modulat-
ing glial activation [180,181]. Propentofylline was initially
evaluated for treating dementia [182], but was eventually
withdrawn from further clinical studies due to patent
issues [183], and its efficacy in animal neuropathic pain
models has yet to be tested in humans. Thalidomide,
once banned in 1963 due to its teratogenicity, is now
regaining favor in neuropathic pain research due to its
ability to cross the BBB and its inhibitory effects on TNF-
α (in vitro and in-vivo) and on IL-1/IL-6 (in-vitro only)
[184,185]. In the rat model of CCI, systemic thalidomide
reduces the hyperalgesia response coincident with reduc-
tions in TNF-α levels, unchanged levels of IL-1/IL-6 and
increased levels of IL-10 [186,187]. Clinically, there have
been sporadic reports of success in using thalidomide to
treat complex regional pain syndromes [188]. However,
the balance of thalidomide's efficacy versus safety in
treating in chronic and neuropathic pain needs further
clinical study [189], especially in view of its paradoxical
neurotoxicity [189,190]. Methotrexate is a well-known
drug for treating cancer that is derived from glutamic
acid. It is capable of crossing the BBB [191] and has anti-
rheumatoid and anti-inflammatory actions through its
inhibition of production of TNF-α via adenosine nucle-
otides [192,193] and its ability to antagonize the actions
of IL-1 [194]. Intrathecal administration of methotrexate
reduces classic CCI-induced allodynia in rats [195] but its
value in treating neuropathic pain is severely offset by its
propensity per se to induce astrocytic proliferation [196]
and hence neurotoxicity [197,198].

The role of TNF-α in chronic pain seems irrefutable in
view of abundant data from various neuropathic animal
models, and with the actual isolation of TNF-α from neu-
ropathic nerves [85] and perineural fat from radiculo-
pathic nerve roots [199] in humans. An initial pilot study
using subcutaneous etanercept to treat patients admitted
to the hospital with acute severe sciatica showed
improved pain scores [200]. Similarly, an open-label study
with infliximab (an antibody to TNF-α) revealed promis-
ing results [201]. Subsequent randomized controlled tri-
als failed to support the benefits of systemic anti-TNF-α
treatment [202-205], but a recent report did show posi-
tive benefits of epidurally administered etanercept in the
treatment of sciatica [206]. To date we are unaware of any
randomized controlled clinical trials of infliximab or
etanercept in treating other types of neuropathic pain.
AV411(ibudilast), a trial drug that was originally devel-
oped as a non-selective phosphodiesterase inhibitor for
treating bronchial asthma, has been studied in phase I
and phase 2a clinical trials in the US and in Australia for
treatment of diabetic neuropathic pain [207], based on
findings that AV411 also suppresses glial cell activation
and reduces the production of pro-inflammatory cytok-
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ines (IL-1β, TNF-α, IL-6) in rat neuropathic pain model
[208].

Perspective on future studies
TNF-α is undoubtedly a titan in the research of neuro-
pathic pain, and is by no means the only one in the arena.
It is a pivotal member of the cytokine mediator system
that is intrinsic to the pathogenesis of neuropathic pain
both at peripheral and central levels (See Fig 1). Together
with other mediators like interleukins, nerve growth fac-

tors, chemokines and interferons, it forms a network that
interacts with downstream signaling mechanisms like the
NMDA, ATP and MAPK systems. We now know that
removing TNF-α from the picture will not abolish neuro-
pathic pain as has already been demonstrated by the fail-
ure of TNF-α antagonists in clinical trials for sciatica
[202-205]. Emerging data have guided research towards a
collective role for glia-derived mediators and their cou-
pled signaling pathways in the modulation of neuropathic
pain [122,127,209,210]. The paradigm is shifting from a

Figure 1 The roles of TNF-α as recognized at different levels of the nervous system in neuropathic pain induced by nerve injury: (1) at site 
of nerve injury; (2) at dorsal root ganglion; (3) at dorsal horn of the spinal cord; and (4) at the brain and higher centres.
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single compound towards a system as a potential target
for novel drug development for treating neuropathic pain
[211-214]. Examples include the chemokine system [215],
the MAPK system[216], and the glial system as a whole
[217].
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domain; mTNF: Transmembrane portion of TNF; sTNF: Soluble form of TNF;
TNF-α: Tumor necrosis factor alpha; TNFR: Tumor necrosis factor receptor;
sTNFR2: Soluble p55 TNF receptor; TNFR SFR: Tumor necrosis factor receptor
super family receptor; TTX-R: Tetrodotoxin resistant.
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