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Abstract
Background: During pathology of the nervous system, increased extracellular ATP acts both as a cytotoxic factor and 
pro-inflammatory mediator through P2X7 receptors. In animal models of amyotrophic lateral sclerosis (ALS), astrocytes 
expressing superoxide dismutase 1 (SOD1G93A) mutations display a neuroinflammatory phenotype and contribute to 
disease progression and motor neuron death. Here we studied the role of extracellular ATP acting through P2X7 

receptors as an initiator of a neurotoxic phenotype that leads to astrocyte-mediated motor neuron death in non-
transgenic and SOD1G93A astrocytes.

Methods: We evaluated motor neuron survival after co-culture with SOD1G93A or non-transgenic astrocytes pretreated 
with agents known to modulate ATP release or P2X7 receptor. We also characterized astrocyte proliferation and 
extracellular ATP degradation.

Results: Repeated stimulation by ATP or the P2X7-selective agonist BzATP caused astrocytes to become neurotoxic, 
inducing death of motor neurons. Involvement of P2X7 receptor was further confirmed by Brilliant blue G inhibition of 
ATP and BzATP effects. In SOD1G93A astrocyte cultures, pharmacological inhibition of P2X7 receptor or increased 
extracellular ATP degradation with the enzyme apyrase was sufficient to completely abolish their toxicity towards 
motor neurons. SOD1G93A astrocytes also displayed increased ATP-dependent proliferation and a basal increase in 
extracellular ATP degradation.

Conclusions: Here we found that P2X7 receptor activation in spinal cord astrocytes initiated a neurotoxic phenotype 
that leads to motor neuron death. Remarkably, the neurotoxic phenotype of SOD1G93A astrocytes depended upon 
basal activation the P2X7 receptor. Thus, pharmacological inhibition of P2X7 receptor might reduce neuroinflammation 
in ALS through astrocytes.

Background
Amyotrophic lateral sclerosis (ALS) is characterized by
the progressive degeneration of motor neurons in the spi-
nal cord, brainstem and motor cortex, leading to respira-
tory failure and death of affected patients within a few
years of diagnosis [1]. The discovery of mutations in the
gene encoding the antioxidant enzyme Cu/Zn superoxide
dismutase-1 (SOD1) in a subset of patients with familial
ALS has led to the development of transgenic animal
models expressing different SOD1 mutations [2]. These

animal models recapitulate the human disease, exhibiting
aberrant oxidative chemistry [3,4], neuroinflammation
[5], endoplasmic reticulum stress [6], glutamate excito-
toxicity [7], mitochondrial dysfunction [8] and protein
misfolding and aggregation [9]. However, the mecha-
nisms behind motor neuron death are unknown.

Accumulating evidence indicates that non-neuronal
cells contribute to motor neuron dysfunction and death
in ALS by the maintenance of a chronic inflammatory
response [10-12]. Activated microglia accumulate in the
spinal cord, producing inflammatory mediators and reac-
tive oxygen and nitrogen species [11]. Astrocytes, the
most abundant cells in the adult nervous system, also
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become reactive and display inflammatory features
[12,13]. Remarkably, astrocytes carrying SOD1 mutations
release soluble factors that selectively induce the death of
motor neurons [14-18]. Astrocytes carrying the
SOD1G93A mutation display mitochondrial dysfunction,
increased nitric oxide and superoxide production and
altered cytokine liberation profile [14,17,19-22]. Thus,
SOD1 mutation causes astrocytes to display a neurotoxic
phenotype dependent on autocrine/paracrine pro-
inflammatory signaling and increased oxidative and
nitrative stress [14,19,23].

In the central nervous system, extracellular adenosine-
5'-triphosphate (ATP) has physiological roles in neu-
rotransmission, glial communication, neurite outgrowth
and proliferation [24]. Extracellular ATP levels markedly
increase in the nervous system in response to ischemia,
trauma and inflammatory insults [25-28]. In these cases,
ATP is a potent immunomodulator regulating the activa-
tion, migration, phagocytosis and release of pro-inflam-
matory factors in immune and glial cells.

Extracellular ATP effects are mediated by metabotropic
(P2Y) and ionotropic (P2X) receptors, both widely
expressed in the nervous system [24]. The P2X7 receptor
(P2X7r) is a ligand-gated cation channel that elicits a
robust increase in intracellular calcium [29]. Of all P2
receptors, P2X7r has the highest EC50 (>100 μM) for ATP.
The high extracellular concentrations of ATP needed to
activate P2X7r are most likely to arise under pathological
conditions. In the normal rodent brain, P2X7r expression
in astrocytes is generally low, but quickly upregulated in
response to brain injury or pro-inflammatory stimulation
in cell culture conditions [30-32]. In astrocytes, P2X7r
activation can potentiate pro-inflammatory signaling, as
it enhances IL-1β-induced activation of NF-κB and AP-1,
leading to increased production of nitric oxide as well as
increased production of the chemokines MCP-1 and IL-8
[33,34].

Inhibition of P2X7r and other P2X receptors is neuro-
protective in animal models of experimental autoimmune
encephalomyelitis and Alzheimer's and Huntington's dis-
ease [35-37]. In addition, P2X7r mediates motor neuron
death after traumatic spinal cord injury, and systemic
inhibition in vivo protects motor neurons and promotes
functional recovery [25,38]. In ALS patients as well as
SOD1G93A animals, increased immunoreactivity for
P2X7r has been found in spinal cord microglia [39,40].
Furthermore, SOD1G93A microglia in culture display an
increased sensitivity to ATP, and P2X7r activation drives a
pro-inflammatory activation that leads to decreased sur-
vival of neuronal cell lines [41].

Despite the recognized detrimental role of extracellular
ATP and P2X7r signaling during nervous system pathol-

ogy, little is known about its effects on astrocytes or its
possible role in ALS. We investigated whether ATP acting
through P2X7r could trigger a neurotoxic transformation
of astrocytes leading to motor neuron death. We also
explored whether ATP signaling in SOD1G93A astrocytes
is involved in the maintenance of their neurotoxic pheno-
type towards motor neurons.

Methods
Chemicals and reagents
Cell culture media and reagents, 5-bromo-2-deoxyuri-
dine (BrdU), primary antibody against BrdU and second-
ary antibodies were purchased from Invitrogen (Life
Technologies). The Malachite Green Phosphate Assay kit
was purchased from Cayman Chemical. All other
reagents were from Sigma.

Animals
Procedures using laboratory animals were in accordance
with the international guidelines for the use of live ani-
mals and were approved by the Institutional Animal Care
Organization of the School of Medicine, Universidad de
la República (Uruguay) and by the Oregon State Univer-
sity IACUC.

Primary astrocyte cultures
Astrocytes were prepared from spinal cords of 1 day old
rat pups as previously described [42]. Astrocytes were
plated at a density of 2 × 104 cells/cm2 and maintained in
Dulbecco's modified Eagle's medium supplemented with
10% fetal bovine serum, HEPES (3.6 g/L), penicillin (100
IU/mL) and streptomycin (100 μg/mL). Monolayers were
>98% pure as determined by GFAP immunoreactivity and
devoid of OX42-positive microglial cells. Transgenic
SOD1G93A and non-transgenic astrocytes were prepared
in parallel using littermate pups previously genotyped by
PCR.

Primary motor neuron cultures
Motor neurons were prepared from embryonic day 15 rat
spinal cords as previously described [42,43]. Briefly, the
dorsal horns of spinal cords were dissected and incubated
in 0.05% trypsin for 15 minutes at 37°C, followed by
mechanical dissociation. Motor neurons were then puri-
fied by centrifugation on an Optiprep cushion, followed
by isolation of p75NTR expressing motor neurons by
immunoaffinity selection with the IgG 192 monoclonal
antibody. For co-culture experiments, astrocyte monolay-
ers were washed twice with phosphate buffered saline
(PBS) after experimental treatments and then non-trans-
genic motor neurons were plated on top at a density of
350 cells/cm2. Co-cultures were maintained for 48 hours
in L15 medium supplemented with 0.63 mg/ml sodium
bicarbonate, 5 μg/ml insulin, 0.1 mg/ml conalbumin, 0.1
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mM putrescine, 30 nM sodium selenite, 20 nM proges-
terone, 20 mM glucose, 100 IU/ml penicillin, 100 μg/ml
streptomycin, and 2% horse serum [42,43]. Pure motor
neuron cultures were cultured for 48 hours on a polyorni-
thine-laminin substrate in Neurobasal media supple-
mented with 2% horse serum, 25 μM L-glutamate, 25 μM
2-mercaptoethanol, 500 μM L-glutamine, and 2% B-27
supplement [42,43]. Survival was maintained by the addi-
tion of GDNF (1 ng/ml).

Astrocyte treatments
All astrocyte treatments were performed in DMEM 2%
FBS for 48 hours unless otherwise stated. Stock solutions
were prepared as 100× and added directly to the well after
media change. Inhibitors were added 1 hour prior to sub-
sequent treatment. As noted in Figure 1A, to determine
the time-dependency of ATP exposure, media was
replenished every 48 hours and 100 μM ATP was added.
Thus, astrocytes treated for one day received a single
ATP addition while astrocytes treated for three and five
days correspondingly received 2 and 3 ATP additions.

Production of conditioned media and treatment of pure 
motor neuron cultures
To produce conditioned media, astrocytes were treated
with ATP 3 times during the course of 5 days. Twenty-
four hours after the last treatment, monolayers were
washed 3 times with PBS and then incubated for 48 hours
with Neurobasal media supplemented with 2% horse
serum. Conditioned media was centrifuged to remove
debris, aliquoted and stored at -80°C until use. Pure
motor neuron cultures were exposed to astrocyte condi-
tioned media 3 hours after plating by replacing 50% of
their complete media with conditioned media. GDNF
was then added to a final concentration of 1 ng/ml.

Motor neuron survival assessment
Motor neuron survival was assessed after 48 hours by
counting all cells displaying intact neurites longer than 4
cells in diameter [42]. Counts were performed over an
area of 0.9 cm2 in 24-well plates. In pure cultures, motor
neurons were counted under phase contrast. In co-cul-
tures cells were fixed, immunostained for p75NTR (Figure
1A) and counted [42]. In primary motor neuron cultures,
the range of motor neuron death is generally limited to a
subpopulation of 40 to 50% [44].

GFAP immunofluorescence
Astrocytes grown on coverslips were fixed with ice-cold
4% paraformaldehyde in PBS for 15 minutes. Cultures
were permeabilized with 0.1% Triton X-100 in PBS for 15
min and blocked for 1 hour with 10% goat serum, 2%
bovine serum albumin, and 0.1% Triton X-100 in PBS.
Anti-GFAP monoclonal antibody diluted in blocking
solution (1:400) was incubated overnight at 4°C. After

washing, cultures were incubated for 1 hour at room tem-
perature with Alexa Fluor 488-conjugated goat anti-
mouse antibody (1:500). Nuclei were stained with DAPI
(1 μg/mL).

Assessment of astrocyte proliferation
Confluent astrocyte monolayers were treated with apy-
rase for 48 hours in DMEM 2% FBS. At the end of the
first 24 hours, BrdU (10 μg/mL) was added. BrdU immu-
nofluorescence was performed as described for GFAP
with the addition of a DNA denaturalization step with 1
M hydrochloric acid (30 min at room temperature) after
permeabilization. Percentage of BrdU nuclei was calcu-
lated as the number of coincident BrdU and DAPI stained
nuclei over the total number of DAPI-stained nuclei.

Determination of ATP degradation by phosphate 
measurement
To determine extracellular ATP hydrolysis, extracellular
phosphate production was measured with the Malachite
Green Phosphate Assay kit. After the treatment, astro-
cyte cultures in 24 well plates were washed 3 times with a
phosphate free buffer (2 mM CaCl2, 120 mM NaCl, 5 mM
KCl, 10 mM glucose, 20 mM Hepes, pH 7.4) and incu-
bated in 500 μl with 3 mM ATP as described [45]. After
10 minutes, an aliquot of each well was removed and
phosphate was immediately measured following the man-
ufacturer's instructions.

Statistics
Each experiment was repeated at least three times and
data are reported as mean ± SEM. Statistical analysis was
performed by one-way analysis of variance, followed by a
Student-Newman-Keuls test. Differences were declared
statistically significant if p < 0.05. Statistics were per-
formed using SigmaStat (Jandel Scientific, San Rafael,
CA, USA).

Results
ATP caused non-transgenic astrocytes to induce motor 
neuron death
Exposure to extracellular ATP caused a neurotoxic acti-
vation of spinal cord astrocytes, which lead to death of
co-cultured motor neurons in a time dependent-manner.
Because ATP is quickly hydrolyzed in the extracellular
media and to mimic pathological conditions with persis-
tent ATP stimuli, we treated astrocytes repeatedly as
shown in diagram in Figure 1B. Before plating motor neu-
rons on top, astrocyte monolayers were thoroughly
washed to remove any traces of the treatment. After 2
days of co-culture, motor neuron survival was assessed.
Astrocytes exposed to a single addition of ATP 24 hours
before co-culture showed no significant toxicity to motor
neurons (Figure 1B). However, astrocytes exposed to two
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additions of ATP (3 and 1 days before co-culture)
decreased motor neuron survival by 27 ± 17%, and astro-
cytes treated with three ATP additions (5, 3 and 1 days
before co-culture) decreased motor neuron survival by 36
± 1.4% (Figure 1B). In addition, conditioned media from
these astrocytes applied to purified motor neuron cul-
tures plated on a laminin substrate induced a 20%
decrease in survival (Figure 1C), suggesting ATP leads to

the release of a diffusible factor from astrocytes able to
induce motor neuron death. Immunocytochemical analy-
sis of these astrocytes evidenced morphological changes
associated with activation, displaying long and thin pro-
cesses with intense GFAP immunoreactivity as compared
to the typical polygonal shape of resting astrocytes (Fig-
ure 1D).

Figure 1 ATP induced a neurotoxic phenotype in non-transgenic astrocytes. (A) Motor neuron stained for p75NTR cultured on the top of an as-
trocyte monolayer (B) Motor neuron survival in coculture with astrocytes pretreated with ATP (100 μM, top graph) as described in the diagram (bot-
tom). Astrocytes treated for 5, 3 or 1 day(s) received 3, 2 or 1 ATP addition(s) correspondingly. (C) Survival of motor neurons in pure cultures exposed 
to conditioned media from control or ATP-pretreated astrocytes (100 μM, 5 days, 3 additions). (D) GFAP immunofluorescence of control and ATP-treat-
ed astrocytes (100 μM, 5 days, 3 additions) (E) Motor neuron survival in co-culture with astrocytes pretreated with ATP and apyrase (5 U/ml), ADP, AMP 
or Adenosine (ADO, 0.1 μM, 5 days) on motor neuron survival. Data are expressed as percentage of control, mean ± SEM from at least three indepen-
dent experiments. *p < 0.05, significantly different from untreated control.
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To confirm that the effects seen on astrocytes were
caused by ATP and not its degradation products ADP,
AMP or adenosine (ADO), we treated astrocytes with
ATP in combination with the enzyme apyrase (5 U/mL),
which rapidly degrades ATP to AMP and phosphate. In
this condition, the death of co-cultured motor neurons
was completely prevented. Moreover, motor neuron sur-
vival increased above controls to 134 ± 8% (Figure 1E).
Pretreatment of astrocytes directly with the products of
ATP degradation ADP, AMP or adenosine (ADO) (0.1
μM added 3 times over five days as was done with ATP)
caused an equivalent increase in astrocytic trophic sup-
port to motor neurons (Figure 1E).

P2X7r activation causes astrocytes to promote motor 

neuron death
To investigate the role of P2X7r as an initiator of astro-
cyte-mediated motor neuron death, we used the prefer-
ential P2X7r agonist 2',3'-O-(4-benzoylbenzoyl)ATP
(BzATP). Figure 2A shows that a 48-hour treatment of
astrocytes with BzATP (10 μM) resulted in death of 30 ±
3% of co-cultured motor neurons. The effects of ATP and
BzATP were prevented by the P2X7r antagonist BBG (1
μM), suggesting that P2X7r activation was required to
induce the astrocyte neurotoxic phenotype (Figure 2A).

We then investigated whether the P2X7r-induced phe-
notypic change in astrocytes could be prevented by
agents known to modulate oxidative and nitrative stress.
BzATP-treated astrocytes were no longer toxic to motor
neurons when the astrocytes were treated with the nitric
oxide synthase inhibitor L-NAME (nitro-L-arginine

methyl ester, 1 mM), the superoxide scavenger MnTBAP
(Manganese (III) tetrakis (4-benzoic acid) porphyrin, 100
μM) and urate (200 μM) (Figure 2B). Urate efficiently
scavenges peroxynitrite-derived free radicals and thereby
inhibits tyrosine nitration of proteins [46,47].

Inhibition of ATP signaling in SOD1G93A astrocytes prevents 
astrocyte-mediated motor neuron death and cell 
proliferation
Consistent with previous reports [14], spinal cord astro-
cytes from SOD1G93A rats induced death of 37 ± 8% of co-
cultured motor neurons. Remarkably, pre-incubation of
SOD1G93A astrocytes with apyrase to degrade endoge-
nous extracellular ATP for 48 hours before co-culture
completely prevented motor neuron death (Figure 3A).
Pretreatment with the P2X7r inhibitor BBG also restored
motor neuron survival to non-transgenic levels (Figure
3A). This suggests that P2X7r could be basally activated
in SOD1G93A astrocytes in an autocrine/paracrine man-
ner, resulting in neurotoxicity to motor neurons.

Because purinergic signaling plays a key role in modu-
lating astrocyte proliferation in pathological conditions
[48,49], we assessed whether increased ATP signaling was
involved in the proliferation of SOD1G93A astrocytes. Cul-
tured SOD1G93A astrocytes showed a 4- to 5-fold
increased proliferation rate as compared with non-trans-
genic astrocytes (Figure 3B). Proliferation in SOD1G93A

astrocytes was decreased in half by apyrase to the same
level as apyrase-treated non-transgenic astrocytes (Figure
3B). The small increase in proliferation of non-transgenic
astrocytes caused by apyrase could be caused by genera-

Figure 2 P2X7r activation triggered astrocyte-mediated neurotoxicity by inducing oxidative stress. (A) Motor neuron survival in co-culture 
with astrocytes pre-treated with ATP (100 μM, 5 days) or BzATP (10 μM, 48 hours) and the P2X7r inhibitor BBG (1 μM). (B) Motor neuron survival in co-
culture with astrocytes pre-treated with NAME (1 mM), MnTBAP (0.1 mM) or urate (0.2 mM) and BzATP before co-culture. Data are expressed as the 
percentage of control, mean ± SEM from at least three independent experiments. *p < 0.05, significantly different from untreated control.
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tion of adenosine, which has been shown to stimulate
proliferation of astrocytes [49,50].

The increase in ATP signaling observed in SOD1G93A

astrocytes did not result from decreased extracellular
degradation. On the contrary, ATP hydrolysis was 11%
greater in SOD1G93A astrocytes (Figure 3C). Similarly,
stimulation with LPS or BzATP induced a comparable
increase in ATP degradation in non-transgenic astro-
cytes. In SOD1G93A astrocytes, these agents did not
induce further ATP degradation.

Discussion
Extracellular ATP has become increasingly recognized to
have a major role in neurodegenerative processes, but its
role in astrocyte-mediated neuronal death has not been
explored. Here, we found that spinal cord astrocytes
assume a neurotoxic phenotype in response to extracellu-
lar ATP, leading to the induction of motor neuron death
in co-cultures. Furthermore, evidence indicates that
endogenous ATP stimulates SOD1G93A astrocytes in basal
conditions and contributes to the maintenance of their
neurotoxic phenotype.

Figure 3 SOD1G93A astrocytes exhibit ATP-dependent neurotoxicity, proliferation, and increased ATP degradation. (A) Motor neuron survival 
in co-culture with SOD1G93A astrocytes pre-treated for 48 hours with the P2X7r inhibitor BBG (1 μM) or the ATP-hydrolyzing enzyme apyrase (5 U/ml) 

(B) Effect of apyrase treatment on SOD1G93A astrocyte proliferation in culture. (C) Degradation of exogenously added ATP by SOD1G93A or non-trans-
genic astrocytes astrocytes. Data are expressed as percentage of non-transgenic control, mean ± SEM from at least three independent experiments. 
Data are expressed as percentage of non-transgenic control, mean ± SEM from at least three independent experiments. *p < 0.05, significantly differ-
ent from non-transgenic control.
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Non-transgenic astrocytes required multiple stimuli
with ATP over several days to induce the neurotoxic phe-
notype, while a single stimulus with the P2X7r-selective
agonist BzATP was sufficient to activate astrocytes to
induce the same extent of motor neuron death. BzATP is
most potent as an agonist for P2X7r, but it is also a weaker
agonist of P2X1r and P2X3r [51-53]. The involvement of
P2X7r was further implicated in the activation of astro-
cyte neurotoxicity by the antagonist BBG, as it com-
pletely inhibited the action of ATP and BzATP. BBG is a
selective antagonist for both P2X7r and P2X5r. [51-53].
Thus, P2X7r appears to be the most likely receptor
responsible for inducing the neurotoxic phenotype in
astrocytes.

We have previously shown that oxidative stress induced
by superoxide and nitric oxide forming peroxynitrite in
non-transgenic astrocytes leads to a neurotoxic pheno-
type [19,42]. Here we found that oxidative stress induced
by BzATP stimulation mediated the transition of non-
transgenic astrocytes to a neurotoxic phenotype, as NOS
inhibitors as well as superoxide and peroxynitrite scaven-
gers prevented their neurotoxicity towards motor neu-
rons. In a similar way, Skaper et al showed that P2X7r
activation in microglia stimulated peroxynitrite produc-
tion and led to death of co-cultured neurons [54]. Thus,
amplification of oxidative stress by P2X7r signaling in
microglia and astrocytes could lead to the generation of
an adverse environment for vulnerable neurons during
neurodegenerative processes.

Because SOD1G93A astrocytes in culture display a neu-
rotoxic phenotype that is maintained by chronic oxidative
stress and autocrine pro-inflammatory signaling
[14,17,19,20,22], we investigated whether they also pre-
sented alterations in extracellular ATP signaling. Indeed,
our results indicate that SOD1G93A astrocytes display
basally augmented extracellular ATP signaling as evi-
denced by an ATP-dependent neurotoxic phenotype,
increased ATP-dependent proliferation, and increased
extracellular ATP metabolism. Thus, ATP emerges as an
extracellular factor that could chronically maintain the
SOD1G93A astrocyte aberrant phenotype in an autocrine/
paracrine manner.

We found that SOD1G93A astrocytes degraded ATP
faster than non-transgenic astrocytes, ruling out that
their basal alteration in ATP signaling could be caused by
a decrease in its extracellular degradation, thereby allow-
ing ATP to accumulate near receptors. An increase in
ATP degradation could also be induced in non-transgenic
astrocytes exposed to BzATP or LPS. We have previously
shown that LPS induces a neurotoxic phenotype in astro-
cytes, leading to motor neuron death [42]. Increased ATP
degradation and/or ectonucleotidase upregulation has

been previously described in neural tissue after cortical
stab wound and acute ischemia [55,56]. This phenome-
non might reflect a cellular attempt to prevent over-acti-
vation of purinergic receptors during increases in
extracellular ATP, thus promoting the return of extracel-
lular ATP signaling to homeostasis.

Degradation of ATP by ectonucleotidases cannot only
terminate deleterious ATP signaling, but also initiates
ADP and adenosine signaling through P2Y and P1 recep-
tors. To our surprise, in non-transgenic astrocytes, ATP
degraded with apyrase, ADP, AMP, or adenosine led to
~35% more motor neuron attachment and survival com-
pared to untreated controls. Because survival is deter-
mined 48 hours after plating of the motor neurons freshly
isolated from spinal cords, any treatment that increases
attachment of motor neurons will result in an increase of
motor neuron survival above the untreated control.
These results illustrate how the astrocyte phenotype can
be modulated from toxic to highly trophic by changing
the balance between ATP, ADP and adenosine signaling
through P2X, P2Y or adenosine receptors.

In animal models of ALS, proliferative activated astro-
cytes interact with microglia to accelerate disease pro-
gression [57]. Remarkably, we found that modulating
ATP signaling in SOD1G93A astrocytes with apyrase or
BBG blocked their neurotoxic phenotype, completely
preventing astrocyte-mediated death of motor neurons.
A role for ATP and P2X7r in the SOD1G93A model was
recently proposed by D'Ambrosi et al [41], who showed
that SOD1G93A microglia are sensitized to BzATP activa-
tion. A combination of aberrant ATP signaling in astro-
cytes and microglia could generate a positive feedback
loop driving a sustained inflammatory response in the
spinal cord. The results presented here and the findings
in SOD1G93A microglia [41] suggest that P2X7r inhibition
in ALS could slow disease progression by decreasing
astrocyte and microglial activation.

Taken together, the present work supports the idea that
extracellular ATP acting through P2X7r causes astrocytes
to develop a neurotoxic phenotype. In SOD1G93A astro-
cytes evidence suggests that P2X7r is basally activated
and contribute to their toxicity towards motor neurons.
Thus, modulation of astrocyte P2X7r during disease
could lead to decreased oxidative stress and inflamma-
tory signaling and in turn the switch to a more trophic
phenotype towards neurons. A better understanding of
ATP and P2X7r signaling in astrocytes could contribute
to the development of novel protective therapies in ALS
and other neurodegenerative diseases where astrocytes
are involved.
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