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Brain microvascular pericytes are immunoactive
in culture: cytokine, chemokine, nitric oxide, and
LRP-1 expression in response to
lipopolysaccharide
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Abstract

Background: Brain microvascular pericytes are important constituents of the neurovascular unit. These cells are
physically the closest cells to the microvascular endothelial cells in brain capillaries. They significantly contribute to
the induction and maintenance of the barrier functions of the blood-brain barrier. However, very little is known
about their immune activities or their roles in neuroinflammation. Here, we focused on the immunological profile
of brain pericytes in culture in the quiescent and immune-challenged state by studying their production of
immune mediators such as nitric oxide (NO), cytokines, and chemokines. We also examined the effects of immune
challenge on pericyte expression of low density lipoprotein receptor-related protein-1 (LRP-1), a protein involved in
the processing of amyloid precursor protein and the brain-to-blood efflux of amyloid-b peptide.

Methods: Supernatants were collected from primary cultures of mouse brain pericytes. Release of nitric oxide (NO)
was measured by the Griess reaction and the level of S-nitrosylation of pericyte proteins measured with a modified
“biotin-switch” method. Specific mitogen-activated protein kinase (MAPK) pathway inhibitors were used to
determine involvement of these pathways on NO production. Cytokines and chemokines were analyzed by
multianalyte technology. The expression of both subunits of LRP-1 was analyzed by western blot.

Results: Lipopolysaccharide (LPS) induced release of NO by pericytes in a dose-dependent manner that was
mediated through MAPK pathways. Nitrative stress resulted in S-nitrosylation of cellular proteins. Eighteen of
twenty-three cytokines measured were released constitutively by pericytes or with stimulation by LPS, including
interleukin (IL)-12, IL-13, IL-9, IL-10, granulocyte-colony stimulating factor, granulocyte macrophage-colony
stimulating factor, eotaxin, chemokine (C-C motif) ligand (CCL)-3, and CCL-4. Pericyte expressions of both subunits
of LRP-1 were upregulated by LPS.

Conclusions: Our results show that cultured mouse brain microvascular pericytes secrete cytokines, chemokines,
and nitric oxide and respond to the innate immune system stimulator LPS. These immune properties of pericytes
are likely important in their communication within the neurovascular unit and provide a mechanism by which they
participate in neuroinflammatory processes in brain infections and neurodegenerative diseases.
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Background
The blood-brain barrier (BBB) is a selective barrier that is
created by the endothelial cells in cerebral microvessels.
Endothelial cells and supporting cells such as astrocytes,
pericytes, neurons, and perivascular microglia are orga-
nized together to form the “neurovascular unit” which is
essential for induction, function, and support of the BBB
[1]. In contrast to the considerable knowledge character-
izing the crosstalk among brain endothelial cells, astro-
cytes, and microglia within the neurovascular unit during
inflammation, very little is known about the role played
by the brain microvascular pericyte.
Among the cells of the neurovascular unit, brain

microvascular pericytes are physically the cells closest to
brain endothelial cells, wrapping around them, joined to
them by gap junctions, and interfacing with them by
peg-and-socket structures [2,3]. These cells are also
essential for the induction of the barrier properties of
the BBB and attrition of pericytes during the neovascu-
larization process [4] or aging [5] can lead to increased
vascular permeability. Furthermore, it has been
described that pericytes regulates BBB-specific gene
expression in endothelial cells and induces polarization
of astrocyte end-feets [6].
The exact contribution of pericytes to regulation of brain

blood capillary flow is still not adequately examined. Early
ultrastructural studies showed that cerebellar pericytes con-
tains microfilaments similar to actin- and myosin-contain-
ing muscle fibers [7,8]. Furthermore, it has been described
that at least some subpopulations of brain pericytes express
contractile proteins such as a-smooth muscle actin and
non-muscle myosin [9,10]. More recently, using the acute
brain tissue preparation, Peppiatt et al., showed dilatation
of cerebellar pericytes as an response to glutamate stimula-
tion [11]. Studies on cultured pericytes support contractile
role of these cells however the expression of contractile
proteins such as a-smooth muscle actin seems to be chan-
ged after cultivation [12].
Several in-vitro studies exist that demonstrated that

pericytes are multipotent cells. Pericytes isolated from
adult brains can differentiate into cells of neural lineage
[13]. Cultured brain pericytes express macrophage mar-
kers ED-2 and CD11b and to exhibit phagocytic activity,
thus expressing immune cell properties [14].
During pathological conditions such as sepsis, peri-

cytes detach from the basal lamina which leads to
increased cerebrovascular permeability. Activation of
pericytes through TLR-4 has been suggested to be
responsible for this process [15].
Here, we focused on the immunological profile of cul-

tured mouse brain pericytes in the quiescent and
immune-challenged state. We studied production of
immune mediators such as nitric oxide (NO), cytokines,
and chemokines. We also examined the effects of immune

activation on pericyte expression of low density lipopro-
tein receptor-related protein-1 (LRP-1), an immune-
modulated processor of amyloid precursor protein and a
brain-to-blood efflux pump for amyloid beta peptide.

Methods
Mouse brain pericytes culture
Primary mouse brain microvascular pericytes were pre-
pared according to Nakagawa et al [16]. Briefly, cultures of
mouse cerebrovascular pericytes were obtained by a pro-
longed, 2-week culture of isolated brain microvessel frag-
ments, containing pericytes and endothelial cells. Pericyte
survival and proliferation was favored by selective culture
conditions using uncoated dishes and DMEM F12 supple-
mented with 20% fetal calf serum (Sigma, USA), L-gluta-
mine (2 mM, GIBCO, USA) and gentamicin (Sigma,
USA). Culture medium was changed twice a week.

Cell stimulation
Mouse brain microvascular pericyte cultures (p2-p8)
were stimulated with lipopolysaccharide from Salmo-
nella typhimurium (L6511; Sigma, USA) for 4, 8, and 24
hours. For MAPK pathways study, SB203580 (p38
MAPK inhibitor, Tocris, USA), PD98059 (MAPKK/MEK
inhibitor, Tocris, USA), UO126 (MEK-1/MEK-2 inhibi-
tor, Tocris, USA), SP600126 (c-Jun N-Terminal kinase
inhibitor, Sigma, USA) and PTDC (NF-�B inhibitor,
Sigma, USA) were added to the pericytes cultivated in
96 well plates 1 h before cell stimulation with LPS.

Nitrite assay and detection of S-nitrosylated proteins
Nitrite, a downstream product of nitric oxide (NO), was
measured by the Griess reaction in culture supernatants
as an indicator of NO production. Briefly, 50 ul of cell
culture medium was incubated with 100 ul of Griess
reagent A (1% sulfanilamide, 5% phosphoric acid; Sigma,
USA) for 5 min, followed by addition of 100 ul of Griess
reagent B (0.1% N-(1-naphtyl) ethylenediamine; Sigma,
USA) for 5 min. The absorbance was determined at 540
nm using a microplate reader.
Assessment of S-nitrosylation was done by a modification

of the “biotin-switch” method. Cells were washed in PBS
and lysed in lysis buffer contain NEM (N-ethylmaleimide)
to block free thiol groups. S-nitrosothiols were then
reduced, biotinylated and visualized after SDS-PAGE/wes-
tern blot using a streptavidin-based detection system (Cay-
man Chemical Company, USA). Membranes were
digitalized with a LAS4000 CCD imaging system (GE
Healthcare, USA) and analyzed by ImageQuant TL
software.

Measurement of cytokines and chemokines
Concentrations of cytokines and chemokines secreted
into the culture media were measured by a commercial
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magnetic bead based Multiplex ELISA kit (Bioplex,
Biorad, USA) according to the manufacturer’s protocol.

Immunocytochemistry
Pericytes grown on glass cover slips (12 mm diameter)
were washed in PBS and fixed with 4% PFA for 10 min
at 4°C. Cells were permeabilized with 0.2% TRITON-
X100, blocked with 5% BSA, and then incubated with
anti-a smooth muscle actin antibody (Abcam, USA),
anti-CD13 antibody (Abcam, USA), Griffonia simplicifo-
lia lectin-FITC (Sigma, USA), anti-factor VIII antibody
(Sigma, USA) and anti-GFAP antibody (Abcam, USA)
followed by incubation with corresponding ALEXA
Fluor-488 or Alexa Fluor-546 conjugated secondary
antibody (Invitrogen-Molecular Probes, USA). Finally,
slides were mounted in fluorescence mounting media
and photographed with a Nikon ECLIPSE E800 fluores-
cence microscope.

Western blotting
For LRP-1, pericyte extracts were run on a 3-8% Tris-
acetate gel (non-reducing conditions), transferred onto
nitrocellulose membranes (Invitrogen, USA), and probed
first with a LRP-1 primary antibody that recognizes the
large subunit (Sigma, USA) and then with a LRP-1 pri-
mary antibody that recognizes the small subunit (Epi-
tomics, 2703-1). SYPRO Ruby (Invitrogen, USA)
staining of membranes was used to verify uniformity of
protein loading [17]. Incubation with primary antibodies
was followed by horseradish peroxidase-conjugated sec-
ondary antibody (Santa Cruz, USA). As positive and
negative controls, respectively, MEF-1 (SV40 trans-
formed mouse embryo fibroblasts, ATCC, USA) and
PEA-13 (mouse embryo fibroblasts, ATCC, USA) cell
lysates were loaded onto the gel. The enhanced chemilu-
minescence western blot was digitalized with a LAS4000
CCD imaging system (GE Healthcare, USA) and ana-
lyzed by ImageQuant TL software.

Data analysis
Values are presented as means ± SEM. More than two
means were compared by one-way ANOVA followed by
Tukey’s multiple comparison test (Prism 5.0 software,
GraphPad, inc, San Diego, CA). Differences at P < 0.05
were accepted as statistically significant.

Results
Characterization of purity of primary mouse brain
pericyte cultures
Purity of isolated primary mouse brain pericytes was
analyzed by immunocytochemical staining of cultures.
We evaluated the presence of contaminating astrocytes,
microglia and endothelial cells. More than 95% of cells
in cultures was positive for the pericyte markers a-

smooth muscle actin [14,18] (Figure 1A) and CD13
(aminopeptidase N) [19-22] (Figure 1B). Results demon-
strated that there was no contamination of our primary
pericyte cultures either with astrocytes (Figure 1C),
microglia (Figure 1D) or endothelial cells (Figure 1E).

LPS induces nitric oxide production via MAPK pathways
in mouse brain pericytes
Activation of immune cells is accompanied by produc-
tion of different immune mediators. Thus, we studied
the effect of LPS on production of nitric oxide (NO)
and various cytokines and chemokines by cultured pri-
mary brain pericytes. Pericytes were treated for 4, 8 and
24 h with different concentrations of the LPS and nitrite
(a downstream product of NO) concentration in cell
culture media was measured. LPS at concentrations of
0.1 and 1 μg/ml after 8 and 24 h significantly induced
NO release (for example, 24 h results: controls: 0.5 ±
0.15 uM at 24 h; 0.1 ug/ml LPS: 4.3 ± 0.77 uM; 1 ug/ml
LPS: 6.4 ± 0.98 uM; n = 8/group). There was no change
in NO production at 4 h. (Figure 2A) Production of
reactive nitrogen species led to increased S-nitrosylation
of pericyte proteins (2.4× in 0.1 ug/ml LPS vs CTRL, n
= 3) (Figure 2B).
To identify the signal transduction pathway responsible

for production of reactive nitrogen species, we tested sev-
eral MAPK inhibitors and the NF-�B inhibitor PDTC for
their ability to reduce NO production by pericytes. Pre-
incubation of cells with SB203580 (at 20 uM; p38 MAPK
inhibitor), PD98059 (at 5 and 50 uM; MAPKK/MEK inhi-
bitor), UO126 (at 5 and 20 uM; MEK-1/MEK-2 inhibi-
tor), SP600126 (at 50 uM; c-Jun N-Terminal kinase
inhibitor) and PTDC (at 5 uM) significantly inhibited
production of NO by cultured brain pericytes (Figure 3).
These results indicated involvement of the MAPK signal-
ing pathway in LPS-induced NO production.

LPS stimulates cytokine and chemokine release by
primary mouse brain pericytes
Pericytes spontaneously released several interleukins
(IL), including IL-9, IL-10, IL-12(p70), IL-13, and IL-17.
Levels of IL-1 alpha, IL-3, and IL-12(p40) were not
detectable. Other cytokines and chemokines that were
detected were tumor necrosis factor-alpha, interferon-
gamma, granulocyte-colony stimulating factor, granulo-
cyte macrophage-colony stimulating factor, eotaxin,
CCL-3 and CCL-4. To further characterize pericyte
immune capacity, we determined the effect of LPS on
the release of cytokines and chemokines. The results
(Figure 4) showed that stimulation of primary mouse
brain pericyte cultures with 0.1 and 1 ug/ml LPS
resulted in significant release of pro-inflammatory cyto-
kines such as IL-1a, TNF-a, IL-3, IL-9 and IL-13 (4 h, 8
h and 24 h) and anti-inflammatory cytokines such as IL-
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10 (4 h, 8 h, 24 h). Additionally, LPS-stimulated peri-
cytes significantly increased their secretion of IL12 het-
erodimer (p70) and of its p40 subunit. Moreover,
activated pericytes produced more chemokines such as
G-CSF, eotaxin, CCL-3, CCL-4 (4 h, 8 h and 24 h) and
MCP-1, KC, CCL-5 (4 h, 8 h, 24 h; data not shown) in
comparison to unstimulated control cells. Of the
detected cytokines, only the increase in IL-17 was not

significant. There was no detectable constitutive or LPS-
induced production of IL-1b, IL-2, IL-4 and IL-5 by
brain pericytes.

LPS induces up-regulation of LRP-1 expression in brain
pericytes
Neuroinflammation plays an important role in neuro-
degeneration. Here, we analyzed the effect of LPS on

Figure 1 Determination of the purity of the pericyte culture. A primary culture of pericytes isolated from mouse brain microvessels was
labeled with anti-a smooth muscle actin antibody (pericyte marker; red) (Panel A), anti-CD13 antibody (pericyte marker; green) (Panel B), anti-
GFAP antibody (astrocytes marker; green) (Panel C), Griffonia simplicifolia lectin (microglial marker; green) (Panel D) or anti-factor VIII antibody
(endothelial cell marker; green) (Panel E) and counterstained with nuclear stain DAPI (blue). Visual observation of immunostained cells in pericyte
cultures demonstrates that they primarily consist of a a-smooth muscle actin/CD13 positive pericytes. No contamination with microglia,
astrocytes or endothelial cells was detected. Scale bar: 40 μm.

Figure 2 Release of nitric oxide and nitrosative stress in primary brain pericytes after LPS stimulation. Brain pericytes were stimulated for
4, 8, and 24 h with LPS (0.1 and 1 ug/ml), media collected, and analyzed for NO production by the Griess reaction. LPS (0.1 ug/ml and 1 μg/ml)
induced a significant NO release from cells after 8 and 24 hours (A). Nitrative stress was accompanied by massive S-nitrosylation of cellular
proteins (B). Values of nitrite accumulation from treated cells represent the mean ± SEM of two independent experiments conducted in
tetraplicates. *P < 0.05, **P < 0.01, ***P < 0.001 vs. untreated cells.
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expression of LRP-1 in pericytes. Stimulation of cells
with LPS (1 ug/ml) for 24 hours significantly increased
expression of both subunits of LRP-1 protein (Figure
5A representative WB and quantification Figure 5B).
The MEF1 (LRP-1 wild type) and PEA13 (LRP-1
knockout) cells were used as positive and negative
controls respectively for LRP-1 antibodies.

Discussion
In this work, we focused on the characterization of the
immunological properties of mouse brain pericytes
under inflammatory conditions induced by LPS. We
have used primary mouse brain pericytes as a model cell
culture for our studies. These cells were isolated by
modifications of the method for isolation of microcapil-
laries from mouse brains. However, such isolation pro-
cedures potentially can lead to cultures that are
contaminated with adjacent cell types such as astrocytes,
endothelial cells, and juxtavascular microglia; further-
more, the presence of these contaminating cells can lead
to erroneous results [23,24]. Staining with markers for
microglia, astrocytes and endothelial cells that are not
expressed by pericytes [18], showed that our cultures
were free of these cell types.
Nitric oxide (NO) is a signaling molecule and immune

mediator that is released from glial and endothelial cells

with activation. Microglia and astrocytes are common
sources of NO in the brain during CNS inflammatory
processes [25]. Production of large amounts of NO by
iNOS-2 can lead to generalized nitrosative stress in cells
and to posttranslational modification of protein residues
by S-nitrosylation. S-nitrosylation mediates many of the
biological effects of NO. This posttranslational modifica-
tion causes specific physiological or pathophysiological
activities by modifying protein thiols [26]. S-nitrosylated
of peptides or proteins are involved in many human dis-
eases such as type II diabetes, Alzheimer’s disease, and
Parkinson’s disease [27]. Our results demonstrated that
LPS strongly induces production of nitric oxide and
nitrosative stress in brain pericytes. Furthermore, we
found increased S-nitrosylation of pericyte proteins. It
will be important to further analyze and study those
pericyte proteins which are affected by increased S-
nitrosylation of their thiol residues.
Mitogen-activated protein kinase (MAPK) signal trans-

duction pathways belong to the most prevalent mechan-
isms of eukaryotic cells that respond to extracellular
stimuli [28]. We used several MAPK pathway inhibitors
to analyze the involvement of these pathways in the
release of nitric oxide by brain pericytes in response to
LPS. Our results clearly showed that production of NO
was blocked by pre-incubation of pericytes with these
drugs. These results agree with those obtained from
lung microvascular pericytes [29] and indicate that simi-
lar mechanisms are involved in activation of brain
microvascular pericytes by LPS.
Another interesting finding of our study is related to

the production of important signaling molecules, cyto-
kines and chemokines by pericytes. Of 23 cytokines
and chemokines that we studied, 18 were secreted by
brain pericytes constitutively or in response to LPS sti-
mulation. LPS is derived from the bacterial coat of
gram negative bacteria and is a strong stimulant of the
innate immune system. Among the several cytokines
and chemokines whose production was increased by
LPS, IL-12, IL-13, and IL-9 are of particular interest
with regard to pericyte communication within the neu-
rovascular unit. IL-12 plays a critical role in the early
inflammatory response to infection. An increased pro-
duction of IL-12 is involved in the pathogenesis of a
number of autoimmune inflammatory diseases (multi-
ple sclerosis, arthritis, insulin dependent diabetes)
[30-32]. IL-12 consists of two subunits (p40 and p35)
which are linked together by a disulfide bond to give
heterodimeric p70 molecule [33]. We showed that
brain pericytes release substantial amounts of both the
heterodimeric p70 molecule and p40 subunits after
LPS stimulation. Release of the p40 subunit was higher
than release of the heterodimeric p70 molecule itself.
Interestingly, the p40 subunit of IL12 can link together

Figure 3 Involvement of MAPK pathways in nitric oxide
production by pericytes after LPS stimulation. Brain pericytes
were stimulated for 4, 8, and 24 h with LPS (0.1 and 1 ug/ml). MAPK
pathway inhibitors were added to the culture medium 1 h before
LPS treatment. Media was collected and analyzed for NO production
by Griess reaction. Addition of MAPK pathways inhibitors significantly
reduced NO production by LPS treated pericytes. Values represent
the mean ± SEM of two independent experiments conducted in
tetraplicates. *P < 0.05, ***P < 0.001 vs. untreated cells.
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and this homodimeric form has been shown to
increase expression of leukocyte chemoattractant factor
(IL-16) in microglia [34].
IL-9 is another pleiotropic cytokine whose production

was markedly increased after LPS stimulation of brain
pericytes. IL-9 is mainly produced by T lymphocytes
and mediates allergic inflammation in tissues such as
the lung and intestine [35]. In the CNS, the IL-9 recep-
tor complex is present on astrocytes and IL-9 stimulated

astrocytes express CCL-20 chemokine which promotes
infiltration of Th17 cells into the CNS [36].
IL-13 is known as an anti-inflammatory cytokine that

is produced by microglia but not astrocytes or neurons
after direct injection of LPS into the cortex. Neurons
are required for IL-13 production by microglia and pro-
duction of IL-13 by microglia leads to the death of acti-
vated microglia and enhancement of neuronal survival
[37]. In our study, IL-13 production by brain pericytes

Figure 4 Release of cytokines and chemokines from primary brain pericytes constitutively and after LPS stimulation. Brain pericytes
were stimulated for 4, 8, and 24 h with LPS (0.1 and 1 ug/ml). Media was collected and cytokine and chemokine concentrations were
determined via commercial magnetic bead immunoassay. Addition of LPS at 0.1 ug/ml concentration induced significant changes in production
of several pro-inflammatory cytokines and chemokines from brain pericytes. Values of cytokine production represent the mean ± SEM of two
independent experiments conducted in triplicates *P < 0.05, **P < 0.01, ***P < 0.001 vs. untreated cells.
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was elevated after LPS treatment; this shows that peri-
cytes are a source of IL-13 as well.
Additionally, compared to published results from LPS

treated mouse microglia [38], production of IL1-a and
TNF-alpha, a two typical proinflammatory cytokines, by
brain pericytes was low. This shows that although peri-
cytes and microglia both respond to LPS, the profile of
cytokines released is different.
Recently an interesting study comparing the gene pro-

file expression of different cell components of neurovas-
cular unit in adult or during the development was
published. The study revealed several important genes
that are involved in pericyte-endothelial signaling such
as transforming growth factor beta superfamily members
bmp5 and nodal [39]. It would be interesting to perform
such study with immune-challenged neurovascular unit
as well.
Neurodegenerative processes are closely associated

with neuroinflammation [40]. In Alzheimer’s disease,
increased production and impaired transport lead to
accumulation of toxic amyloid beta peptide deposits
along the vascular system in patients affected by this
disease. LRP-1 at the brain endothelial cell is an impor-
tant transporter for the brain-to-blood efflux of amyloid
beta peptide [41] and in neurons is important in the
processing of amyloid precursor protein [42,43]. It has
been shown previously that human brain pericytes
express LRP-1 and that the expression is increased after
incubation of cells with amyloid beta peptide [44]. It is
likely that pericyte LRP-1 contributes to the uptake and
processing of amyloid beta peptide and amyloid precur-
sor protein. Interestingly, accumulation of amyloid beta
peptide within the pericyte bodies have been previously

described for early onset familial [45,46] and for spora-
dic Alzheimer’s disease [47]. In line with these observa-
tions, we analyzed the expression of LRP-1 in brain
pericytes during brain inflammation. We demonstrated
that the expression of both subunits of LRP-1 is
increased in brain pericytes under inflammatory
conditions.

Conclusions
In conclusion, our results as presented here show that
cultured mouse brain pericytes secreting NO, cytokines,
and chemokines and responding to LPS stimulation. We
also showed that pericytes in-vitro express LRP-1, an
important regulator of the levels of amyloid beta peptide
in the brain, and that expression is influenced by LPS.
These immunoactive properties of cultured pericytes
suggest mechanisms by which they can act as an integral
part of the neurovascular unit during brain inflamma-
tory processes such as brain infections and neurodegen-
erative processes.
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