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Abstract

Background: Clinical trials evaluating anti-CD20-mediated B-cell depletion in multiple sclerosis (MS) and
neuromyelitis optica (NMO) generated encouraging results. Our recent studies in the MS model experimental
autoimmune encephalomyelitis (EAE) attributed clinical benefit to extinction of activated B-cells, but cautioned that
depletion of naïve B-cells may be undesirable. We elucidated the regulatory role of un-activated B-cells in EAE and
investigated whether anti-CD20 may collaterally diminish regulatory B-cell properties in treatment of
neuroimmunological disorders.

Methods: Myelin oligodendrocyte glycoprotein (MOG) peptide-immunized C57Bl/6 mice were depleted of B-cells.
Functional consequences for regulatory T-cells (Treg) and cytokine production of CD11b+ antigen presenting cells
(APC) were assessed. Peripheral blood mononuclear cells from 22 patients receiving anti-CD20 and 23 untreated
neuroimmunological patients were evaluated for frequencies of B-cells, T-cells and monocytes; monocytic reactivity
was determined by TNF-production and expression of signalling lymphocytic activation molecule (SLAM).

Results: We observed that EAE-exacerbation upon depletion of un-activated B-cells closely correlated with an
enhanced production of pro-inflammatory TNF by CD11b+ APC. Paralleling this pre-clinical finding, anti-CD20
treatment of human neuroimmunological disorders increased the relative frequency of monocytes and
accentuated pro-inflammatory monocyte function; when reactivated ex vivo, a higher frequency of monocytes
from B-cell depleted patients produced TNF and expressed the activation marker SLAM.

Conclusions: These data suggest that in neuroimmunological disorders, pro-inflammatory APC activity is controlled
by a subset of B-cells which is eliminated concomitantly upon anti-CD20 treatment. While this observation does
not conflict with the general concept of B-cell depletion in human autoimmunity, it implies that its safety and
effectiveness may further advance by selectively targeting pathogenic B-cell function.

Keywords: multiple sclerosis, neuromyelitis optica, anti-CD20, B-cell regulation, monocytes, experimental autoim-
mune encephalomyelitis

Background
Accumulating evidence suggests that in the pathogenesis
of multiple sclerosis (MS) and neuromyelitis optica
(NMO), B-cells, plasma cells and self-reactive antibodies
play an essential pathogenic role. In MS, an oligoclonal
antibody response generated by a limited repertoire of
activated B-cells remains a hallmark diagnostic finding in
the cerebrospinal fluid (CSF)[1]. While target and

pathogenic relevance of this humoral response is still
under debate [2], autoantibodies against aquaporin-4
(AQP-4) allow to distinguish NMO from other central
nervous system (CNS) demyelinating conditions, pro-
mote development of NMO-like lesions in animal models
[3] and may correlate with progression of NMO itself [4].
Besides developing into plasma cells secreting self-reac-
tive antibodies, antigen-activated B-cells may directly
contribute to development of neuroimmunological dis-
ease by transporting, processing and presenting antigen
to self-reactive T-cells. As activated T-cells in return pro-
mote differentiation of B-cells and isotype switching of
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plasma cells, the interaction of auto-reactive B- and T-
cells may foster each other’s development in progression
of CNS autoimmune disease.
Based on these pathogenic B-cell properties, substantial

interest has developed for testing anti-CD20 antibodies
(rituximab, ocrelizumab, ofatumumab) in MS and NMO.
These antibodies deplete immature and mature B-cells,
but spare CD20-negative plasma cells. The retrospective
analysis of 25 NMO patients receiving rituximab demon-
strated a reduction in attack frequency with subsequent
clinical stabilization [5]. While one study suggested that
clinical benefit may relate to a decline in anti-AQP-4
antibody titers [4], it is unclear whether depletion of
CD20+ AQP4-specific plasma cell precursors provides
the sole and entire basis for therapeutic benefit of anti-
CD20 in NMO [6]. Clinical trials testing anti-CD20 ritux-
imab in MS generated encouraging results as well. In
relapsing-remitting MS, treatment with rituximab or its
humanized successor ocrelizumab led to a rapid decline
in newly developing inflammatory CNS lesions [7,8]; in
treatment of primary progressive MS, rituximab reduced
lesion formation in a subgroup of younger patients with
active CNS inflammation [9]. Immunological analyses
revealed that anti-CD20 B-cell depletion diminished pro-
liferation and pro-inflammatory differentiation of periph-
eral T-cells [10]; further, rituximab-treatment was
associated with a reduced number of B-cells, but also of
T-cells within the CSF of patients with relapsing-remit-
ting (RR)-MS [11]. Together, these findings highlight
abrogation of B-cell-mediated T-cell activation as an
important mechanism for the prompt effect of anti-CD20
treatment in CNS demyelinating disorders.
Notwithstanding these encouraging results, not all CD20

+ B-cells may actively contribute to progression of autoim-
mune disease. Animal models of human autoimmunity
suggest that through provision of anti-inflammatory IL-10,
naïve B-cells in contrast regulate autoimmune responses
[12] and control pro-inflammatory differentiation of other
antigen presenting cells (APC) [13]. Accumulating evi-
dence suggests that equivalent regulatory B-cell properties
exist in humans [14]. In a recent report, Iwata and collea-
gues described a subset of regulatory IL-10 producing B-
cells in various autoimmune conditions, including MS
with an overall frequency and IL-10 production compar-
able to healthy individuals [15]. Functionally, these regula-
tory B-cells inhibited TNF-release of monocytes isolated
from the identical patient, further fueling the concept that
regulatory B-cell subsets control pro-inflammatory activity
of other APC populations.
Our recent study testing anti-CD20 treatment in an

animal model of MS, revealed that B-cell depletion exa-
cerbated experimental autoimmune encephalomyelitis
(EAE) induced by the short T-cell determinant myelin-
oligodendrocyte glycoprotein (MOG) peptide (p)35-55, a

setting in which B-cells are not required or involved in a
pathogenic manner [16]. One aim of our current investi-
gation was thus to elucidate the immunological mechan-
isms for deterioration of EAE in this setting. We
demonstrate that EAE-exacerbation upon depletion of
un-activated B-cells closely correlates with an enhanced
production of pro-inflammatory TNF by CD11b+ APC.
In light of these preclinical findings and the newly estab-
lished role of B-cell subsets in regulation of human auto-
immunity, we further investigated whether anti-CD20
treatment may collaterally abolish B-cell regulatory prop-
erties in human neuroimmunological disorders. Parallel-
ing our findings in EAE, we report that anti-CD20
treatment of MS and NMO is associated with an accent-
uation of pro-inflammatory monocyte function, provid-
ing the first evidence that besides abrogation of
pathogenic B-cell function, anti-CD20 diminishes B-cell
regulation of myeloid APC.

Methods
Subjects and specimens
This study was approved by the local ethics committee of
the Technische Universität München. After informed con-
sent, subjects were enrolled in four groups: rituximab-trea-
ted patients with neuroimmunological disorders, untreated
patients with neuroimmunological disorders, rituximab-
treated B-cell lymphoma patients and untreated patients
with other non-inflammatory disorders (table 1 and addi-
tional file 1). Patients had not received corticosteroids
within 3 months or any immunosuppressive, immunomo-
dulatory or chemo- therapy within 6 months prior to
enrollment.

FACS staining of leucocyte subpopulations and monocytic
activation
PBMCs were stained for CD19, CD4, CD14, CD25,
CD127, SLAM/CD150 (all BD Bioscience) or CD8a
(eBioscience). FACS staining was analyzed on a Cyan
ADP9C using software Summit 4.3 (Beckmann Coulter).
PBMCs were stimulated with lipopolysaccharid (LPS) and
SLAM-expression of CD14+ monocytes was evaluated 24
hours thereafter. Frequency of CD14+ monocytes expres-
sing SLAM was determined as shown in additional file 2.

Analysis of TNF-producing monocytes
Magnetically activated cell sorting (MACS)-separated
monocytes (positive selection using CD14 antibodies,
Miltenyi Biotec; purity >90%) were plated in TNF capture
antibody-precoated Multi-Screen Filter Plates (Millipore)
in triplicates (3,000 cells/well) and stimulated with LPS
for 18 hours. Plates were washed and incubated succes-
sively with TNF detection antibody, streptavidin-alkaline
phosphatase and BCIP/NBT substrate. Plates were ana-
lyzed with an automated imaging system and software
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(AID EliSpot reader and software, Autoimmun
Diagnostika).

Mice, EAE induction and depletion of B-cells and
regulatory T-cells
All murine experiments were carried out as approved by
the government of Upper Bavaria (protocol number 55.2-
1-54-2531-67-09). C57BL/6 female mice were immunized
with 100 μg MOG p35-55 (Auspep, Australia) in Complete
Freund’s Adjuvant (CFA) followed by 200 ng of pertussis
toxin (PTX) i.p. at the day of immunization and 2 days
thereafter. Mice were assessed for signs of EAE as
described previously [16]. Mice received weekly i.p. injec-
tions of 200μg of murine anti-CD20 or isotype-control
starting 21 days prior to immunization (provided by Gen-
entech, South San Francisco, USA) and 500μg of anti-
mouse CD25 antibody (BioXcell, West Lebanon, USA) or
isotype control 5 and 3 days prior to EAE induction. In
unimmunized mice, anti-CD25 antibodies are commonly
used to deplete regulatory T cells as they represent the
majority of CD25+ cells in naïve mice. Results are represen-
tative of 3 separate experiments.

Detection of TNF produced by murine monocytes
12 days after immunization, MACS-purified splenic mono-
cytes (positive selection using CD11b antibodies, Miltenyi
Biotec; purity >90%) were stimulated with the indicated
concentrations of LPS. After 24 hours, supernatants were

collected and analyzed for murine TNF by ELISA (R&D
Systems). Plates were read at 450 nm wavelength by a
Tecan Genios plate reader and analyzed using Magellan6
software.

Statistical analysis
As frequency of regulatory T-cells followed a skewed dis-
tribution, the Mann-Whitney U-Test was used for com-
parisons. Frequency of monocytes was distributed
normally and analyzed by t-Test. Variability of monocytic
SLAM expression was compared using the Siegel-Tukey
test, capable to deal with non-normal data. Variability of
TNF-producing monocytes in anti-CD20 treated vs.
untreated patients was compared using the F-Test based
on a normal distribution of values. All statistical tests
were two-sided and conducted in an explorative manner
on a 5% level of significance. Descriptive statistics for
continuous, normally distributed data are given by the
mean, its standard error (SEM) or the range (min. -
max.). Skewed data is presented by the median as well as
20% and 80% percentiles. Categorical data is summarized
by absolute and relative frequencies.

Results and Discussion
In our previous study, anti-CD20-mediated depletion of
un-activated B-cells exacerbated MOG p35-55-induced
EAE which was associated with a reduced frequency of reg-
ulatory T-cells (Treg) and a pronounced pro-inflammatory

Table 1 Characteristics of patients with neuroimmunological disorders and analysis of peripheral blood mononuclear
cells

Neuroimmunological patients a-CD20 control p-values

number of subjects 22 23

gender female 18 18

male 4 5

age [years] mean (min. - max.) 45 (18-69) 42 (17-69)

a-CD20 treatment duration [months] mean (min. - max.) 15 (2-47) n.a.

disorder MS/CIS 8 22

NMO 11 1

Myasthenia gravis 2 0

autoimmune neuropathy 1 0

CD19+ of all PBMCs [mean % +/- SEM] 0.2 (+/-0.1) 7.9 (+/-1.1) <0.0001

CD4+ of all PBMCs “ 37.7 (+/-2.5) 35.9 (+/-1.5) 0.420

CD8+ of all PBMCs “ 16.8 (+/-1.8) 15.5 (+/-1.1) 0.768

CD14+ of all PBMCs “ 22.3 (+/-2.5) 16.4 (+/-1.4) 0.159

CD4+ of all CD4+/CD8+ “ 69.2 (+/-2.2) 69.8 (+/-1.9) 0.803

CD4+ of all CD4+/CD8+/CD14+ “ 48.6 (+/-2.9) 53.2 (+/-2.0) 0.271

CD8+ of all CD4+/CD8+/CD14+ “ 21.3 (+/-2.0) 22.9 (+/-1.5) 0.370

CD14+ of all CD4+/CD8+/CD14+ “ 30.0 (+/-3.7) 23.9 (+/-2.1) 0.163

CD25+ CD127- of all CD4+ [median % with 20/80% percentile] 6.8 (5.5-8.4) 5.2 (4.3-6.8) 0.022

Anti-CD20-treated and untreated (control) patients were age- and sex-matched. Frequencies of leucocyte subpopulations are indicated as percentage of all
peripheral blood mononuclear cells (PBMCs), and as percentage of CD4+, CD4+/CD8+ or CD14+CD4+/CD8+ PBMCs to “normalize” for treatment-related absence of
B-cells. MS = multiple sclerosis; CIS = clinically isolated syndrome; NMO = neuromyelitis optica.
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differentiation of myeloid CD11b+ APC. In order to dissect
the relative responsibility of either effect for clinical dete-
rioration, we utilized an anti-CD25 Treg-depleting anti-
body to neutralize for alterations in Treg frequency. Prior
to disease induction, mice were injected with anti-CD25,
anti-CD20 or a combination of both antibodies. As
expected, anti-CD20-mediated B-cell depletion exacerbated
disease severity (Figure 1a+b). Depletion of Treg alone only
modestly worsened disease, whereas Treg-depleted mice
substantially deteriorated when B-cells were depleted in
addition to Treg. These findings indicate that clinical
exacerbation of MOG peptide-induced EAE upon B-cell
depletion is not explained by a treatment-related reduction
in Treg frequency and confirm that regulatory B- and T-
cells control CNS autoimmune disease independent of
each other [17].
We investigated next whether alternatively, elimination

of B-cell-mediated regulation of APC activity may account
for anti-CD20-associated worsening of peptide-induced
EAE. CD11b+ APC were isolated from all four groups of
mice and evaluated for production of the pro-inflamma-
tory hallmark cytokine TNF. As indicated in Figure 1c, in
all mice depleted of B-cells, remaining CD11b+ cells pro-
duced increased levels of pro-inflammatory TNF. This
effect was further accelerated when mice were in addition
depleted of Treg, resulting in a close correlation between
the relative increase in monocytic TNF release and the
extent of clinical deterioration. In our previous study, ele-
vated TNF production by CD11b+ cells resulted in an
enhanced ability of these APC to generate encephalito-
genic Th1 and Th17 cells [16]. TNF was further shown to
direct migration of these cells within the CNS, facilitating
early initiation of CNS autoimmune disease [18]. Collec-
tively, these findings support the conclusion that in EAE,
naive B-cells regulate CD11b+ APC and highlight an
enhanced pro-inflammatory APC function as explanation
for exacerbation of CNS autoimmune disease upon deple-
tion of naïve B-cells.
Based on these pre-clinical findings, we investigated the

immunological consequences of anti-CD20 treatment in
human neuroimmunological disorders. Peripheral blood
mononuclear cells (PBMCs) were isolated from 22 rituxi-
mab-treated patients with MS, NMO, myasthenia gravis
or autoimmune neuropathy and compared to PBMCs
from 23 age- and sex-matched untreated patients (see
table 1). All rituximab-treated subjects showed a virtually
complete depletion of peripheral CD19+ B-cells whereas
PBMCs from control patients contained a mean frequency
of 7.9 ± 1.1% B-cells (table 1). All other leucocyte subpo-
pulations were compared as percentages of CD4+, CD4
+/CD8+ or CD14+/CD4+/CD8+ PBMCs in order to “nor-
malize” for treatment-related absence of B-cells. While the
overall frequency of CD4+ and CD8+ cells remained
unchanged, anti-CD20 treatment raised the relative

frequency of CD4+CD25+CD127- Treg within all CD4+ T-
cells cells (6.8, 5.5-8.4 20/80% percentile, vs. 5.2, 4.3-6.8
20/80% percentile; table 1+Figure 2; p = 0.022). This novel
finding needs to be supported by future evaluation of
absolute numbers and functional capacity of Treg upon
anti-CD20 treatment; nonetheless, several clinical trials in
other autoimmune diseases also provided evidence that
anti-CD20 may augment frequency and/or function of
Treg [18-21]. Together, these observations could indicate
that restitution of a disease-intrinsically impaired regula-
tory T-cell function may be an additional mechanism by
which anti-CD20 mediates broad clinical benefit in human
autoimmune disease.
The main purpose of this translational approach was to

investigate whether anti-CD20 treatment of human neu-
roimmunological disorders may concomitantly abrogate
B-cell regulation of other APC. As shown in table 1 and
Figure 3a, PBMCs from B-cell-depleted patients showed a
trend towards an increase in the frequency of CD14+

monocytes (30.0 ± 3.7% vs. 23.9% ± 2.1%; p = 0.163). In
order to compare pro-inflammatory monocyte reactivity,
we evaluated LPS-induced release of TNF and expression
of signaling lymphocytic activation molecule (SLAM), an
activation marker which physiologically serves as a co-sti-
mulatory molecule promoting development of pro-inflam-
matory T-cells [22]. As shown in Figure 3b, a higher
frequency of monocytes from B-cell-depleted patients
released TNF (e.g. 281.5 ± 34.8 vs. 222.0 ± 17.2 per 3000
monocytes at 250 pg/ml LPS). Compared to control
patients, samples from B-cell-depleted patients were dis-
tributed over a wide range of values, which is reflected by a
significantly greater variability of monocytic TNF produc-
tion (p < 0.05 at 250 and 500 pg/ml LPS). Correspondingly,
the group of anti-CD20-treated patients contained a higher
number of samples in which monocytes expressed activa-
tion-induced SLAM at a high frequency, again resulting in
a greater variability of monocytic SLAM expression in B-
cell-depleted patients (Figure 3c; p = 0.034 at 250 pg/ml
LPS). Ongoing studies aim to elaborate whether individual
patients longitudinally experience an increase in monocytic
activation and/or frequency of Treg upon therapeutic B
cell depletion. Importantly, within the group of anti-CD20-
treated neuroimmunological patients monocytic expression
of TNF and SLAM did not correlate with the underlying
disorder (e.g. MS vs. NMO), age or treatment duration
(data not shown). In contrast, unleashing of pro-inflamma-
tory APC activity upon depletion of B-cells appeared to
relate to the stimulating milieu of underlying chronic
inflammation: compared to age- and sex-matched non-
inflammatory controls, PBMCs from anti-CD20-treated B-
cell lymphoma patients contained a higher frequency of
Treg (additional file 3), but showed no enhanced monocy-
tic TNF release or SLAM expression (additional file 3).
Taken together, these findings indicate that control of APC
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activity is a counterbalancing B-cell property in immunolo-
gical disorders, which is eliminated by anti-CD20
treatment.
While the majority of patients with neuroimmunological

disorders clearly benefit from anti-CD20 treatment [5,7,8],

few cases have been reported in which autoimmune dis-
ease progression appeared to be promoted. In a patient
with anti-MAG polyneuropathy disability worsened within
weeks following anti-CD20 treatment [23]; in a small
study with individuals with anti-MAG polyneuropathy,
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8 patients clinically stabilized or improved while one
patient markedly deteriorated upon B-cell depletion [24].
In another report, a patient with myasthenia gravis devel-
oped ulcerative colitis while on anti-CD20 treatment [25].
A patient with anti-MAG polyneuropathy and secondary-
progressive MS showed an improvement of polyneuropa-
thy symptoms, but experienced 2 persistently disabling
MS relapses [26]; another patient with NMO severely pro-
gressed while on anti-CD20 therapy [27]. In light of our
new findings, and having in mind that monocytic TNF
and SLAM expression strongly varied among anti-CD20-
treated patients with only few individuals displaying sub-
stantially elevated levels, it will be crucial to investigate
whether such assumed occasional promotion of autoim-
munity may correlate with an enhanced pro-inflammatory
APC activity upon anti-CD20 treatment.

Conclusions
In conclusion, we herein provide novel evidence that
besides abrogation of pathogenic B-cell function, anti-
CD20 treatment eliminates preexisting B-cell regula-
tion in human autoimmunity. In treatment of NMO
and MS, this observation in conjunction with our EAE
findings could indicate that individual patients with
minor counter-balancing pathogenic B-cell involve-
ment may not benefit or even deteriorate upon pan-B-
cell depletion via CD20. Whereas our study does not
conflict with the projected general potential of B-cell
depletion in treatment of autoimmune disorders, it
cautions that its indication should be assessed indivi-
dually and supports further development of this thera-
peutic approach to selectively target pathogenic B-cell
function.
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Additional material

Additional file 1: Characteristics of patients with B-cell lymphoma
or various non-inflammatory neurological disorders and analysis of
peripheral blood mononuclear cells. Anti-CD20 treated B-cell
lymphoma and untreated non-inflammatory (control) patients were age-
and sex-matched. Frequencies of leucocyte subpopulations are indicated
as percentage of all peripheral blood mononuclear cells (PBMCs) and as

percentage of CD4+, CD4+/CD8+ or CD14+CD4+/CD8+ PBMCs to
“normalize” for treatment-related absence of B-cells.

Additional file 2: Activation-induced monocytic expression of
signalling lymphocytic activation molecule (SLAM). PBMCs were
stimulated with increasing concentrations of LPS. Expression of SLAM
was evaluated by FACS (gated on CD14+ monocytes); non-stimulated
PBMCs served as base value and gates were set accordingly.
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Additional file 3: In treatment of B-cell lymphoma, anti-CD20-
mediated B-cell depletion is associated with an increased frequency
of regulatory T-cells but not with an enhanced pro-inflammatory
activity of monocytes. Peripheral blood mononuclear cells (PBMCs)
were isolated from anti-CD20-treated patients with B-cell lymphoma or
untreated control patients with non-inflammatory neurological disorders
(see additional file 1). a) The frequency of regulatory T-cells is indicated
as percentage of CD4+CD25+CD127- within all CD4+ T-cells (black lines
represent the median within each group; * = p < 0.001). b) The
frequency of monocytes is indicated as the percentage of CD14+ cells
within the pool of PBMCs expressing CD4+/CD8+/CD14+ (black lines
represent the mean of each group; p = 0.194). c) MACS-separated
monocytes were stimulated with the indicated concentrations of LPS;
secretion of TNF was evaluated by ELISPOT. Shown is the number of
TNF-producing cells/3,000 monocytes (black lines represent the mean of
each group). d) PBMCs were stimulated with the indicated
concentrations of LPS and monocytic expression of signalling lymphocytic
activation molecule (SLAM) was evaluated by FACS. Indicated is the
percentage of SLAM+ cells within all CD14+ monocytes (black lines
represent the median of each group).
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