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Post-traumatic hypoxia exacerbates neurological
deficit, neuroinflammation and cerebral metabolism
in rats with diffuse traumatic brain injury
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Abstract

Background: The combination of diffuse brain injury with a hypoxic insult is associated with poor outcomes in
patients with traumatic brain injury. In this study, we investigated the impact of post-traumatic hypoxia in
amplifying secondary brain damage using a rat model of diffuse traumatic axonal injury (TAI). Rats were examined
for behavioral and sensorimotor deficits, increased brain production of inflammatory cytokines, formation of
cerebral edema, changes in brain metabolism and enlargement of the lateral ventricles.

Methods: Adult male Sprague-Dawley rats were subjected to diffuse TAI using the Marmarou impact-acceleration
model. Subsequently, rats underwent a 30-minute period of hypoxic (12% O2/88% N2) or normoxic (22% O2/78% N2)
ventilation. Hypoxia-only and sham surgery groups (without TAI) received 30 minutes of hypoxic or normoxic
ventilation, respectively. The parameters examined included: 1) behavioural and sensorimotor deficit using the Rotarod,
beam walk and adhesive tape removal tests, and voluntary open field exploration behavior; 2) formation of cerebral
edema by the wet-dry tissue weight ratio method; 3) enlargement of the lateral ventricles; 4) production of
inflammatory cytokines; and 5) real-time brain metabolite changes as assessed by microdialysis technique.

Results: TAI rats showed significant deficits in sensorimotor function, and developed substantial edema and
ventricular enlargement when compared to shams. The additional hypoxic insult significantly exacerbated
behavioural deficits and the cortical production of the pro-inflammatory cytokines IL-6, IL-1b and TNF but did not
further enhance edema. TAI and particularly TAI+Hx rats experienced a substantial metabolic depression with
respect to glucose, lactate, and glutamate levels.

Conclusion: Altogether, aggravated behavioural deficits observed in rats with diffuse TAI combined with hypoxia
may be induced by enhanced neuroinflammation, and a prolonged period of metabolic dysfunction.

Keywords: Traumatic brain injury, traumatic axonal injury, hypoxia, neurological deficit, cytokine, brain edema, ven-
tricle, metabolism

Background
Traumatic brain injury (TBI) remains a major health
burden in both developed and developing countries. TBI
consists of two temporal pathological phases spanning
the initial traumatic impact and a multitude of second-
ary cascades, resulting in progressive tissue degeneration

and neurological impairment [1-3]. The pathological
consequences of TBI can be variable and largely depend
on the presentation of injury as either focal or diffuse,
or a combination of both. Diffuse brain injury may
result from rotational forces and/or acceleration/decel-
eration of the head during a traumatic impact, often
leading to diffuse axonal injury. Although difficult to
diagnose due to the absence of lesions or overt pathol-
ogy [4,5], diffuse axonal injury is a common presenta-
tion, accounting for up to 70% of all TBI cases [6]. The
pathology of diffuse axonal injury develops over a
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delayed time course, and is frequently aggravated by the
occurrence of subsequent insults, which are known to
worsen morbidity and mortality in TBI patients [7]. Epi-
demiological studies have revealed that up to 44% of
severe head trauma patients experience brain hypoxia,
which has been associated with adverse neurological
outcomes [8-13]. Hypoxia can be initiated by TBI-
induced cerebral hypoperfusion, apnoea and hypoventi-
lation mostly related to brainstem injury [14-16]. In
addition, systemic hypoxia can be caused by extracranial
injuries often co-existing with head trauma such as
obstructed airways, lung puncture and excessive blood
loss [9,17]. Despite these clinical observations, the exact
mechanisms leading to the exacerbation of brain
damage concomitant to posttraumatic hypoxia remain
to be elucidated.
One putative sequel of TBI in contributing to second-

ary tissue damage is the activation of cellular and
humoral neuroinflammation. This response is charac-
terised by the accumulation of inflammatory cells in the
injured area, as well as the release of pro- and anti-
inflammatory cytokines, which may either promote the
repair of injured tissue, or cause additional damage [18].
The activation of inflammatory cascades in human and
rodent TBI have previously been reported [19-21]. In
severe TBI patients, ourselves and others have demon-
strated a robust longitudinal increase of multiple cyto-
kines and chemokines in cerebrospinal fluid (CSF)
[22-27]. More recently, these findings have been corro-
borated with the upregulation of TNF, IL-1b, IL-6, IFN-
g protein and gene expression in post-mortem human
brain tissue after acute TBI [28]. Animal models of
brain hypoxia or trauma can independently activate
acute expression of cytokines IL-1b, IL-6 and TNF
[29-31]. Furthermore, in models of focal TBI, additional
post-traumatic hypoxia was shown to worsen brain tis-
sue damage [32-34], cerebral edema [35], and exacerbate
sensorimotor, behavioural and cognitive impairment
[32,34,36-38]. The detrimental role of neuroinflamma-
tion can be elicited by its ability to induce the produc-
tion of excitotoxic substances including reactive oxygen
and nitrogen radicals [39-41] contributing to the devel-
opment of brain edema [42,43], blood brain barrier
(BBB) disruption [44,45], and apoptotic cell death
[43,46-49]. However, almost all the studies on post-TBI
hypoxia used focal brain injury models, while epidemio-
logical data on large patient populations reported that
the majority of TBI patients present with diffuse brain
injury leading to worse neurological outcome especially
if associated with hypoxia [6]. The few studies by us and
others examining the effect of post-traumatic hypoxia
after diffuse traumatic axonal injury (TAI; the experi-
mental counterpart of human diffuse axonal injury) have
demonstrated enhanced neurological deficits [34,38],

exacerbated edema and cerebral blood flow, and dimin-
ished vascular reactivity [50-54]. In a recent study using
the Marmarou rat model of diffuse TAI with additional
post-trauma systemic hypoxia, we demonstrated a
greater axonal damage in the corpus callosum and
brainstem co-localising with a robust macrophage infil-
tration and enhanced astrogliosis, when compared with
TAI animals without hypoxia [54-56]. Therefore, using
this model of TAI, we aimed to further investigate
whether post-traumatic hypoxia also aggravates beha-
vioural and sensorimotor function, cerebral edema,
enlargement of lateral ventricles, production of inflam-
matory cytokines in the brain, and impairment in cere-
bral energy metabolism.

Methods
Induction of trauma
Animal experiments were conducted in accordance with
the Code of Practice for the Care and Use of Animals
for Scientific Purposes (National Health and Medical
Research Council, Australia), and received approval
from the institutional Animal Ethics Committee. Adult
male Sprague-Dawley rats were housed under a 12-hour
light/dark cycle with food and water ad libitum. Rats
aged 12-16 weeks and weighing 350-375 g on the day of
surgery were subjected to TAI (n = 27), TAI followed
by a 30-min systemic hypoxia (TAI+Hx; n = 27),
hypoxia only (n = 27) or sham surgery (n = 27). Briefly,
rats were anaesthetized in a mixture of 5% isoflurane in
22% O2/78% N2, intubated, and mechanically ventilated
with a maintenance dose of 2-3% isoflurane in 22% O2/
78% N2. A steel disc (10 mm in diameter and 3 mm
thickness) was adhered to the skull between bregma and
lambda suture lines using dental acrylic. Animals were
briefly disconnected from the ventilator and moved onto
a foam mattress (Type E polyurethane foam, Foam2Size,
VA, USA) underneath a trauma device where a weight
of 450 g was allowed to fall freely though a vertical tube
from 2 m. Following the impact, animals were recon-
nected to the ventilator, and ventilated continuously for
a further 30 min using an appropriate concentration of
isoflurane (0.5-1%) in either hypoxic (12% O2/88% N2)
or normoxic (22% O2/78% N2) gas mixture. Consistent
with the literature [32,36] we have previously demon-
strated that such systemic hypoxic conditions result in
an sO2 of 47 ± 4.3% and pO2 of 48.5 ± 3.8 mmHg, and
cause a significant hypotensive episode, with mean arter-
ial blood pressure (MABP) dropping to 69.5 ± 29.5 mid-
way through the insult (i.e. 15 min). The reduction of
sO2, pO2, and MABP returned to sham values by 15
min following the conclusion of the hypoxic period [55].
Consistent with the original description of this model by
Foda et al. (1994) [40], the intubation and ventilation of
rats after injury resulted in a mortality rate of ~10%
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which was confirmed in our study. When the two
insults were combined, there was no significant increase
in mortality. Hypoxia-only and sham operated animals
were surgically prepared as described for TAI rats with
the exception of the traumatic impact, and ventilated
with hypoxic or normoxic gas, respectively. Rats were
housed in individual cages after surgery and placed on
heat pads (37°C) for 24 h to maintain normal body tem-
perature during the recovery period.

Microdialysis probe implantation
Following trauma, 5 rats from each of TAI, TAI+Hx,
hypoxia-only and sham groups were inserted with
microdialysis probes into the brain for measuring real-
time metabolite changes. If the microdialysis probe was
implanted soon after the completion of TAI, high sever-
ity of the injury together with the ongoing anesthesia
would result in a higher mortality rate. Therefore, we
allowed the animals to recover for a period of 4 h before
implantation of the microdialysis probe. Rats were then
anesthetized by isoflurane, intubated and mechanically
ventilated as described above. The head of the animal
was immobilized on a stereotactic frame with nose and
ear bars (David Kopf Instruments, California, USA). The
scalp was opened at the existing suture line, and a 1-
mm burr hole was drilled into the skull using a small
handheld drill at the coordinates of -4.52 mm to bregma
and -2 mm lateral to the midline on left hemisphere.
Care was taken not to damage the dura mater. Two
shallow holes were drilled posterior and anterior to the
burr hole, and screws were inserted to provide anchor
points for the microdialysis probe implantation. A guide
cannula for CMA12 microdialysis probe was adjusted to
3 mm in length, inserted into the brain and secured in
place by using dental cement (Dentsply, PA, USA) to
cover both the guide cannula and the anchor screws.
Once the dental cement solidified, the microdialysis
probe (CMA12, 100 kDa cutoff, CMA Microdialysis,
Solna, Sweden) was inserted into the guide tube to a
suitable length allowing the semi-permeable membrane
exposure outside of the guide tube for direct contact
with the brain tissue. The microdialysis probe was
immobilized by applying additional dental cement over
the probe and guide cannula. At surgery completion,
animals were allowed to recover in a microdialysis
experimental system (CAM 120, CMA Microdialysis)
which consists of a balanced arm with dual channel swi-
vel allowing free movement of the animal and continu-
ous collection of microdialysis samples. The
microdialysis probe was perfused at 1 μl/min using arti-
ficial cerebrospinal fluid (aCSF, CMA Microdialysis).
The effluent was collected as accumulative sample over
3 h (i.e. 180 μl/sample) using an automated refrigerated
microdialysis fraction collector (Harvard Apparatus,

MA, USA). Samples were transferred to -80°C freezer
every 12 h and stored until analysis. At the end of the
experimental period, animals were killed and brains
were perfusion fixed to identify the location of the
microdialysis probe in the cortex. Only the animals with
the probe tip in the designated location were included
for analysis.

Assessment of sensorimotor functions
Rats were treated in each group as described above and
used for assessment of sensorimotor deficit by the
Rotarod test, beam balancing and walking test, and
adhesive tape removal from forepaws test (n = 10 per
group). Animals were trained for these tasks every sec-
ond day starting 1 week before surgery. These sensori-
motor tests were performed daily after TAI for a week,
then on every second day until 14 days. The Rotarod
allows assessment of movement coordination and func-
tion including motor, sensory and balancing skills. Rats
were placed on a rotating cylinder made of 18 rods (1
mm diameter) (Ratek, VIC, Australia). The rotational
speed of the device was increased in increments of 3
rpm/5 sec, from 0 to 30 revolutions per minute (rpm).
The maximal speed at which the rat was unable to
match and failed to stay on the device was recorded.
Body balancing and walking was assessed using a beam-
walking test, in which rats were placed in the middle of
a 2-meter long, 2-cm wide beam suspended 60 cm
above the ground between 2 platforms. Rats were scored
as: [1] normal walking for at least 1 meter on the beam;
[2] crawling on the beam for at least 1 m with abdomen
touching the beam; [3] ability to stay on the beam but
failure to move; and [4] inability to balance on the
beam. Sensory and fine motor function was assessed by
the ability to remove adhesive tapes (5 × 10 mm; mask-
ing tape, Norton Tapes, NSW, Australia) placed on the
back of each forepaw. The number of tapes removed (0,
1 or 2) and the latency for each tape removal were
recorded within a 2-minute period.

Open field test
This test evaluates the animal’s normal exploratory
behavior. Rats were placed in an empty arena (70 × 70
× 60 cm, W×L×H) within an enclosed environment and
low lighting. The movement of the rats was recorded
for 5 min by a camera, and the distance walked was cal-
culated using a custom made automated movement-
tracking program (Dr Alan Zhang, Department of Elec-
trical Engineering, The University of Melbourne).

Brain edema measurement
Rats with TAI, TAI+Hx, hypoxia or sham surgery were
generated for assessment of brain edema. The wet-dry
weight method was used for determining the water
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content of the brain at 2, 24, 48, 72, and 96 h after
treatment (n = 6 per timepoint per group). Briefly, the
left hemisphere was separated from the rest of brain tis-
sue, weighed on a precision microbalance (Ohaus
Adventurer Analytical Balance Bradford, MA, USA), and
dried in an oven at 100°C for 24 h. The dry tissue was
weighed again, and cortical water content was calculated
as ([wet tissue weight - dry tissue weight]/wet tissue
weight) × 100.

Measurement of ventricle size
A cohort of rats for each experimental group was trea-
ted as described above and killed at 1 or 7 days after
injury (n = 6 per group per timepoint). Brains were per-
fusion fixed using 4% paraformaldehyde and embedded
in paraffin wax. Brain tissue blocks were cut into 10 μm
sections at the level of +1 mm relative to the bregma
and collected onto glass slides. Sections were dewaxed,
rehydrated, stained using hemotoxylin and eosin, and
visualized under a light microscope (Olympus BX50).
Multiple photographs were taken under 200× magnifica-
tion to cover the entire sections. Image analysis software
(ImageJ, NIH, USA) was used to align images taken
from the same brain section to reconstruct a full section
view. The whole brain area and the area of the ventricle
were measured using ImageJ, with the area of the ventri-
cle expressed as the percentage of total brain area.

Cytokine measurements
The right hemisphere from each animal of edema study
was dissected, the cortex isolated, and stored at -80°C
until use. The cortex was homogenised in an extraction
solution containing Tris-HCl (50 mmol/L, pH 7.2),
NaCl (150 mmol/L), 1% Triton X-100, and 1 μg/mL
protease inhibitor cocktail (Complete tablet; Roche
Diagnostics, Basel, Switzerland) and agitated for 90 min
at 4°C. Tissue homogenates were centrifuged at 2000
rpm for 10 min, and the supernatants stored at -80°C
until use. The concentration of 6 cytokines (IL-1b, IL-2,
IL-4, IL-6, IL-10, TNF) in the brain cortex homogenates
was determined by multiplex assay as previously used in
our group [57] (Bio-Rad Laboratories, Hercules, CA,
USA). Briefly, colored beads conjugated with cytokine
antibodies were loaded into wells of 96-well filter plate.
Following washing, the standards, quality controls and
samples were added into the wells and incubated over-
night at 4°C on a shaking platform. The wells were
washed by filtration, and subsequently a solution with a
mixture of biotinylated antibodies against each cytokine
was added and incubated for 1 h at room temperature.
Following the removal of excessive detection antibodies,
streptavidin-phycoerythrin was added. Cytokine concen-
tration was measured using multiplex assay reader (Bio-
Rad Laboratories) and calculated against the standard

curve. Total protein concentration was determined in
each sample using the Bradford Assay (Bio-Rad
Laboratories).

Analysis of microdialysis samples
The microdialysis samples (180 μl/sample, n = 5 per
group) were freeze dried and suspended in small volume
of ddH2O to increase the concentration of solutes. The
samples were then analysed for glucose, lactate and glu-
tamate using conventional enzymatic techniques per-
formed in the ISCUS Analyser (CMA Microdialysis).
Due to a substantial time delay between sample collec-
tion and analysis, pyruvate was not measured as it is
known to be unstable after storage time of more than 3
months (CMA Microdialysis). The concentrations of
glucose, lactate and glutamate in each sample were cal-
culated to the original concentration according to the
sample volume before and after the freeze-drying
procedure.

Data analysis
Sensorimotor function assessment, cytokine concentra-
tion, brain metabolites and brain edema results were
analysed using two-way repeated measures ANOVA.
The open field test and ventricular size measurement
were analysed by 1-way ANOVA. Data were presented
as mean ± standard error of the mean. Data were con-
sidered as significant where p < 0.05.

Results
Neurological outcome
The impact of post-TAI hypoxia on neurological dys-
function was explored using a number of sensorimotor
tests over a period of 2 weeks in TAI, TAI+Hx, hypoxia
alone and sham operated animal groups.

TAI+Hx rats show greater deficits on the Rotarod
compared to TAI
The Rotarod test involves examining complex body
movement and coordination, which showed severe
impairment in rats following TAI and TAI+Hx when
compared with shams. The maximal speed TAI rats
were able to maintain on the Rotarod was significantly
decreased at day 1 post-TAI (9.5 ± 1.6 rpm) as com-
pared with shams (24.9 ± 1.3 rpm) (p < 0.05). Over time
TAI rats showed a gradual improvement in motor func-
tion, however the maximal speed recorded on the
Rotarod between day 2 and 6 post-injury (13.9 ± 1.8
and 19.3 ± 1.4 rpm, respectively) remained significantly
lower than sham control rats (average 25.83 ± 0.59 rpm)
(Figure 1A). Although the motor function in TAI rats
improved steadily, from 6 days onwards they failed to
recover further, showing a plateau speed on Rotarod
until 14 days. When compared to TAI-only rats, the
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TAI+Hx group had substantially greater motor deficits
on the Rotarod, as indicated by a significant lower maxi-
mal walking speed at day 2 (9.2 ± 1.5 vs 13.9 ± 1.8
rpm), day 5 (12.1 ± 1.8 vs 17.5 ± 1.5 rpm) and day 6
(13.2 ± 1.8 vs 19.3 ± 1.4 rpm) after injury (p < 0.05)
(Figure 1A). These TAI+Hx rats also performed signifi-
cantly worse on the Rotarod as compared to sham at 8
days (17.13 ± 1.81 vs 25 ± 1.55 rpm), demonstrating
that this deficit was prolonged as well as enhanced in
rats subjected to the combination of TAI and Hx.

Ability to balance and walk on a narrow beam is
impaired after TAI and TAI+Hx
The beam walk is a sensitive test to determine the
ability of injured rats to balance and walk on a narrow

beam. TAI and TAI+Hx induced severe impairment on
the beam walking test, whereby rats of both groups
were unable to balance or stay on the beam at 1 day
post-injury (Figure 1B). The deficit scores of beam
walking were significantly elevated in both TAI and
TAI+Hx groups, particularly during the first 5 days.
When compared to sham, TAI only rats displayed a
motor impairment which resolved after 5 days. On the
contrary, TAI+Hx rats had a significantly greater defi-
cit in walking and balancing compared to sham con-
trols which persisted up to 8 days after injury. Overall,
there was no significant difference in beam walking
test between TAI and TAI+Hx groups, with both
groups returning to sham function by 10 days post
TAI or TAI+Hx.
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Figure 1 Sensorimotor function is aggravated following traumatic axonal injury combined with 30 min hypoxia. Graphics show changes
observed over 14 days for the 3 tests employed: (A) Rotarod, (B) beam walking and (C) adhesive tape removal from the front paws. Animals
were trained for these tasks for 7 days before trauma, and then tested daily for 6 days after surgery and on every second day until 14 days. $
indicates significant decrease in motor function on the Rotarod, and increase in beam walking deficit score and latency of adhesive tape
removal between TAI and sham animals, while # indicates significant difference in these tests between TAI+Hx and sham animals. Numbers in
(A) represent the p-values indicating significant differences between TAI and TAI+Hx at days 2, 5 and 6; and close to significant at day 1. The
results indicate that TAI+Hx rats require a longer period for neurological recovery towards sham levels, with significant differences between TAI
and TAI+Hx rats in the Rotarod test during the first 6 days post-injury. Although a similar deficit on the tape removal test was observed in TAI
and TAI+Hx groups versus sham in the first 5 days, TAI+Hx rats exhibited prolonged impairment over sham controls at 6 and 12 days. Data
shown as mean ± SEM, n = 10 per group per time point. Data was analysed by 2-way ANOVA repeated measures with Bonferroni post hoc test,
with a p-value of < 0.05 considered significant.
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TAI+Hx rats have prolonged deficits in the adhesive tape
removal task
Both TAI and TAI+Hx rats took significantly longer to
sense, and subsequently remove the adhesive tapes
adhered on the back of forepaws (Figure 1C). In TAI
rats significant differences to sham function were
detected until day 5. The additional hypoxic insult post-
TAI caused further significant differences in latency of
adhesive tape removal on days 6 and 12 as compared
with TAI-only rats (latency 1.12 ± 0.27 vs 0.88 ± 0.21
min (day 6), 1.23 ± 0.26 vs 0.74 ± 0.22 min (day 12)).
Sham and hypoxia alone (not shown) rats did not

change their performance on the Rotarod, beam walking
and adhesive tape removal tests over the duration of
testing period.

Voluntary walking in an open field is compromised after
TAI+Hx
The ability of voluntary movement was determined by
calculating the distance traveled during the first 5 min
after the rats were placed in a testing chamber. In the
sham group, rats traveled between 12.3 ± 2.8 m and

20.8 ± 3.4 m either before sham operation or at days 3,
6 and 14 days post-surgery (Figure 2A). Hypoxia alone
did not alter the distance traveled, which was main-
tained at sham levels with no differences before or after
the insult (data not shown). In comparison to the above
sensorimotor function testing, TAI alone did not reduce
the voluntary walking distance at 3, 6 or 14 days post-
TAI over the pre-TAI levels (Figure 2B). However, an
additional hypoxic insult after TAI significantly
decreased the mobility of rats to 55.2% of the pre-TAI
+Hx level at day 3 post-injury (8.4 ± 2.6 m vs 15.1 ± 1.3
m, respectively; p < 0.05) (Figure 2C). By day 6, the dis-
tance of voluntary movement in TAI+Hx rats was
slightly increased (13.8 ± 2.2 m; p = 0.06) and was fully
restored to pre-TAI+Hx level at day 14 (17.7 ± 2.8 m)
after injury.

Brain water content is elevated after TAI and TAI+Hx
Cerebral edema is a common pathophysiological conse-
quence in this model of TAI [35,58,59]. Using the wet-
dry ratio method, we showed that brain water contents
in hypoxia-only and sham animals were within the
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Figure 2 Spontaneous movement is only reduced after traumatic axonal injury with additional hypoxia. Distance travelled (metres) was
measured for 5 min as indicative of voluntary mobility in a novel open space. Diagrams depict: (A) Sham, (B) TAI, and (C) TAI+Hx. * indicates
significant differences between testing at the pre-injury (Pre) or post-injury at days 3, 6 and 14. Distance travelled is shown as mean ± SEM, n =
10 per group per time point. Note the significant reduction in walking distance in TAI+Hx rats at 3 and 6 days as compared to TAI and sham
rats. Data was analysed by 1-way ANOVA with Bonferroni post hoc test, with a p-value of < 0.05 considered significant.
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normal ranges reported in the literature [60] and
remained unchanged over time (not shown). In contrast,
whilst the brain water content of TAI and TAI+Hx rats
was similar to shams at 2 h post injury, by 24 h, it
increased significantly in TAI rats when compared with
sham (79.27 ± 0.14% vs 78.81 ± 0.14%, respectively; p <
0.05; Figure 3) and increased to near significance
between TAI+Hx and sham (79.27 ± 0.22% vs 78.81 ±
0.14%, respectively; p = 0.1147). The brain water content
remained elevated in both trauma groups for 48 h after
injury, and then decreased to sham levels by 72 h. Over-
all, brain water content was similar in TAI and TAI+Hx
groups at all time points examined.

The lateral ventricles are enlarged after TAI and TAI+Hx
We measured the changes in lateral ventricle at +1.0
mm to bregma in concurrence with Paxinos and Wat-
son rat brain atlas [61]. Ventricular size was unchanged
at all timepoints in animals that underwent sham sur-
gery or hypoxia alone (data not shown). The ventricles
of TAI animals were significantly enlarged 1 day post-
injury when compared to sham (2.55 ± 0.49% vs 0.65 ±
0.23%, p < 0.01; Figure 4A, B, C). Post-TAI hypoxia
resulted in a further, non significant increase in the size
of the ventricles at 1 day (3.50 ± 0.57%; Figure 4D)
when compared with TAI only rats (2.55 ± 0.49%). This
size was 5.4-fold larger than sham (3.50 ± 0.57% vs 0.65
± 0.23%; p < 0.001) (Figure 4A). By 7 days, although the

ventricular size was reduced as compared to day 1, they
were still larger than sham control rats being 2.43 ±
0.54% in TAI and 2.04 ± 0.45% in TAI+Hx animals.

The production of cytokines is enhanced following TAI
+Hx
The neuroinflammatory response was determined by mea-
suring changes in cytokine production in the homogenised
cortex over 4 days (Figure 5). In these experiments six cyto-
kines were measured: IL-6, IL-1b, TNF, IL-2, IL-4 and IL-
10. However, relevant differences were only detected in
three of them, IL-6, IL-1b and TNF. For the other cyto-
kines including the pro-inflammatory IL-2 and anti-inflam-
matory IL-4 and IL-10, no changes were detected in either
the TAI or TAI+Hx groups, with values remaining com-
parable to those of sham animals over time (Figure 5D-F).
Hypoxia alone did not induce any changes in brain cyto-
kine concentration at any time points (data not shown).

IL-6
In comparison to the cytokines measured in these experi-
ments, IL-6 presented the highest concentration in the
injured cortex. By 2-way ANOVA, the overall increase of
IL-6 (all time points within the group analysed together)
was significantly more elevated in TAI+Hx brains when
compared to either the sham or TAI groups (p < 0.05, Fig-
ure 5A), while no changes were observed between sham
and TAI animals. Using post hoc analysis, we demonstrated
that hypoxia following TAI significantly increased the con-
centration of IL-6 in the brain at 24 h (12.67 ± 1.95 pg/mg
protein) and 48 h (11.30 ± 1.86 pg/mg protein) when com-
pared with sham animals (6.71 ± 1.17 pg/mg protein, p <
0.05). In addition, TAI+Hx rats had significantly higher IL-
6 levels than TAI rats at 24 h post-injury (12.67 ± 1.95 pg/
mg protein vs 8.26 ± 0.65 pg/mg protein; p < 0.05).

IL-1b
In contrast to IL-6, the elevation of IL-1b occurred ear-
lier and transiently after TAI (Figure 5B). In the TAI
group, a significant increase was observed 2 h post
injury (2.40 ± 0.15 pg/mg protein) as compared with
sham (1.76 ± 0.68 pg/mg protein; p < 0.05). In the TAI
+Hx group, a more striking significant increase was
observed at both 2 h (3.10 ± 0.56 pg/mg protein) and
24 h (2.44 ± 0.21 pg/mg protein) as compared with
sham (p < 0.05). A significant difference was also found
between TAI and TAI+Hx at 24 h post injury (1.81 ±
0.15 pg/mg protein vs 2.44 ± 0.21 pg/mg protein; p <
0.05). The concentration of IL-1b in both injury groups
returned to sham levels at 48 h post-injury.

TNF
No increase in TNF was detected at any timepoint
examined in the TAI group. Instead, similarly to IL-1b,
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Figure 3 Increase in brain edema does not differ in traumatic
axonal injury rats with or without hypoxia. Brain water content
was determined at 2, 24, 48, 72 and 96 h post-injury, and calculated
as percentage of dry and wet ratio in the brain of sham (S), TAI
alone, and TAI with hypoxia (TAI+Hx) animals. * indicates significant
difference between groups. Both TAI and TAI+Hx showed similar
increases in brain water content, and no differences were found
between these groups. Data shown as mean ± SEM, n = 6 per
group per time point. Data was analysed by 1-way ANOVA with
Bonferroni post hoc test, with a p-value < 0.05 considered
significant.
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the concentration of TNF in the brain of TAI+Hx rats
was significantly increased at 2 h when compared with
sham controls (2.67 ± 0.26 pg/mg protein vs 1.29 ± 0.26
pg/mg protein; p < 0.05). In TAI+Hx group TNF rapidly
returned close to the sham level at 24 h (Figure 5C).

Changes in metabolism after TAI and TAI+Hx
TBI is known to result in a reduction of oxidative meta-
bolism [62]. We expected post-TAI hypoxia to aggravate
the metabolic disarray caused by diffuse axonal injury
and employed the microdialysis technique to monitor
changes of various metabolites over 4 days. Due to the
detection of significant alterations in brain metabolites
following the implantation of microdialysis probe in
uninjured sham animals as reported by others [63], we
chose to discard samples over the first 20 h following
probe implantation to reduce the artifact from the nee-
dle injury. In this study we were only present data of
glucose, lactate and glutamate from the microdialysates,

since pyruvate is known to become unstable after pro-
longed storage time (CMA Microdialysis).

Depression of glucose metabolism is prolonged after TAI
+Hx
Overall a significant hypoglycemia was observed in both
TAI and TAI+Hx groups when compared with sham (p
< 0.0001, Figure 6A). At 21 h post injury the concentra-
tion of glucose in TAI rats was similar to sham (0.09 ±
0.06 mmol/L vs 0.09 ± 0.04 mmol/L) and remained
similar until 33 h, after which time a substantial
decrease was observed, with glucose levels dropping to
30% of sham values (0.03 ± 0.02 mmol/L vs 0.09 ± 0.04
mmol/L) (Figure 6A &6B). Glucose levels remained low
until 51 h post-injury, when values gradually increased
toward to sham levels before they dropped again below
sham levels from 69 h until the end of experiment. In
TAI+Hx rats, glucose levels in the microdialysate were
approximately 50% lower than the levels of sham or

Figure 4 Ventricular enlargement. Enlargement of the lateral ventricles following TAI and TAI with hypoxia (TAI+Hx) was quantified by
expressing the ventricle size as percentage of the entire brain section (A), at coronal plane of +1.0 mm to bregma in accordance with rat atlas
by Paxinos and Watson [61]. Coronal sections of (B) sham, (C) TAI alone and (D) TAI+Hx taken at +1 mm to bregma at 1 day after injury. *
indicates significant differences to sham group. Data shown as mean ± SEM, n = 6 per group per time point. Data was analysed by 1-way
ANOVA with Bonferroni post hoc test, with a p-value of < 0.05 considered significant.
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TAI rats at 21 h (0.04 ± 0.02 mmol/L vs 0.09 ± 0.06
mmol/L and 0.09 ± 0.04 mmol/L, respectively) (Figure
6A &6B), with these low values subsisting until 51 h.
While the TAI rats showed some elevation in glucose

levels after 51 h, TAI+Hx rats had the opposite pattern,
with values further decreasing to less than 10% of those
observed in sham, (0.005 ± 0.002 mmol/L), and remain-
ing under 10% of sham values for the study period.
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Figure 5 Cytokines IL-6, IL-1b and TNF are increased in rats after traumatic axonal injury with additional hypoxia. The concentration
(pg/mg protein) of cytokines (A) IL-6, (B) IL-1b, (C) TNF, (D) IL-2, (E) IL-4 and (F) IL-10 was measured in cortical homogenates of sham (S), TAI
alone, and TAI with hypoxia (TAI+Hx) animals by multiplex assay over 4 days. * indicates significant differences between groups. Note the
significant increases of IL-6 and IL-1b in TAI+Hx vs TAI rats. TNF did not increase after TAI alone, and was only evident at 2 h in TAI+Hx rats.
Data shown as mean ± SEM, n = 6 per group per time point. Data was analysed by 1-way ANOVA with Bonferroni post hoc test, with a p-value
of < 0.05 considered significant.
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Figure 6 Metabolic alterations are exacerbated in rats exposed to traumatic axonal injury with additional hypoxia. Cerebral
microdialysis samples were analysed between 21 h and 99 h after sham surgery, TAI and TAI with 30 min hypoxia (TAI+Hx). Data are expressed
as both raw values and percentage changes from sham values for glucose (A, raw values; B, % change from sham levels), lactate (C, raw values;
D, % change from sham levels) and glutamate (E, raw values; F, % change from sham). Shaded area in (C) and (D) represents the peak period of
edema, which correlated with maximal lactate production. Overall a significant hypoglycaemic response was observed in both the TAI and TAI
+Hx groups compared to shams (2-way repeated measures ANOVA, p < 0.05). Data shown as mean ± SEM, n = 5 per group per time point.
Data was analysed by 2-way ANOVA repeated measures, with a p-value of < 0.05 considered significant.
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Lactate is elevated after TAI+Hx and coincides with the
peak period of edema
Lactate levels in the microdialysates of sham-treated ani-
mals remained low for the duration of the study. Lactate
measurements for TAI animals were similar to sham
levels from 21 h until 51 h, when a substantial decrease
was observed to values less than 60% of sham (Figure
6C &6D). Values in TAI rats remained lower than sham
until 87 h, when lactate levels recovered to sham-level
were observations. Although not statistically significant,
TAI+Hx rats had lactate levels which were 400% higher
at 21 h when compared to sham or TAI (0.31 ± 0.2
mmol/L vs 0.08 ± 0.03 mmol/L and 0.09 ± 0.05 mmol/
L, respectively; Figure 6C &6D). The lactate levels in
TAI+Hx rats increased until 51 h correlating with the
peak period of edema observed in this study (shaded
area, Figure 6C &6D), then rapidly decreased to 10% of
sham levels at 75 h before recovering to sham- and
TAI-levels by 87 h (0.05 ± 0.01 mmol/L vs 0.05 ± 0.02
mmol/L and 0.01 ± 0.01 mmol/L, respectively).

Glutamate level is depressed after TAI and TAI+Hx
Glutamate levels in TAI animals at 21 h were approxi-
mately 40% less than those observed in sham animals
(4.58 ± 2.21 μmol/L vs 8.02 ± 2.74 μmol/L; Figure 6E
&6F), and remained low until 45 h, at which point the
microdialysate levels returned to sham levels until 87 h,
when another decrease was observed. TAI+Hx rats had
glutamate levels of approximately 50% of sham at 21 h,
and though not significant, a peak was observed at 39 h
to more than 200% of sham values (11.84 ± 8.54 μmol/L
vs 5.71 ± 1.64 μmol/L; Figure 6E &6F). From this time
onwards, glutamate levels in TAI+Hx rats decreased
again to 50% of sham values, and remained at between
30-60% of shams for the remainder of the experimental
period.

Discussion
Cerebral hypoxia, along with hypotension, is one of the
most critical factors worsening secondary brain damage
after TBI, and particularly following diffuse TBI [6,13].
Despite this clinical relevance, the underlying mechan-
isms by which hypoxia aggravates neurological outcome
following TBI have not been studied adequately.
Using focal or mixed focal-diffuse models, systemic

hypoxia following TBI in rats exacerbates neurological
deficit [32,37] and increases the lesion size, neuronal
death [33,34,37,64] and brain edema, while reducing cer-
ebral blood flow [35,51]. However, the role of post-trau-
matic hypoxia elicited after diffuse brain injury has
rarely been addressed. Therefore, we explored the
impact of hypoxia using a model of diffuse TAI
[40,65,66] followed by a 30-min hypoxic ventilation.
Using this combinatorial insult model, we previously

reported enhanced axonal damage and macrophage
infiltration within the corpus callosum and the brain
stem [55]. Thus, in this follow-up study we further
investigated changes in neurological outcome, brain
edema, ventricle enlargement, cerebral cytokines, and
energy metabolism.
We found that in comparison to TAI alone, an addi-

tional hypoxic insult enhanced sensorimotor deficits on
the Rotarod, beam walk and tape removal tests, reduced
spontaneous exploratory behavior, and delayed recovery.
These data closely relate to clinical studies on TBI
patients showing that post-traumatic hypoxia worsens
neurological outcome and prolongs the recovery period
[7,8,67]. The behavioural data in this model of TAI are
consistent with similar deficits shown at day 1 in pre-
vious studies using diffuse or focal TBI models in com-
bination with hypoxia [32,34,36-38,68]. However, in
extension of this early work, our results show that an
additional hypoxic insult has a detrimental effect on
behaviour, inflammatory and metabolic outcomes for an
extended period of time.
Brain swelling is a major contributor for the develop-

ment of secondary ischemia causing raised ICP and
decreased cerebral perfusion pressure [69]. Enlargement
of the brain due to edema [70] and/or obstruction of
CSF flow [71] is a common event in severe TBI patients
and a frequent cause of death. Cytotoxic edema results
from excessive accumulation of ion and water within
the cell, while vasogenic edema is caused by increased
vascular permeability and subsequent fluid extravasation
into the parenchyma. Here, we demonstrated that at 2 h
after TAI, brain water content was similar to sham ani-
mals, but it increased to a peak between 24 and 48 h,
and remained elevated until 72 h. Although hypoxia fol-
lowing TAI exacerbated sensorimotor deficit, it did not
further increase cerebral edema when compared with
TAI only animals, corroborating previous observations
using diffuse-weighted imaging [35]. Interestingly, using
MRI, others demonstrated that acute brain swelling
after TAI (both with and without hypoxia), as early as
60 min post-injury, was associated with increased extra-
cellular fluid and BBB dysfunction, indicative of vaso-
genic edema [72-75]. This early brain swelling was
transient, with values quickly returning to sham levels
[53,58,75]. Since the earliest timepoint examined in our
study was 2 h, it is likely that we missed this initial peak
in edema, as no differences were detected between TAI,
TAI+Hx and sham rats later on. However, other studies
have also demonstrated that a modest, widespread sec-
ond edematous response occurs at 24 h after TAI
despite the intact BBB, which suggests ongoing cytotoxic
edema [58,75]. Our results are consistent with this mod-
est yet significant increase of edema at 24 h, which was
maintained until 48 h. It is possible that the peak in
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brain water content observed at 24 h in both the TAI
and TAI+Hx rats (approximately 79.3%) reflects a sort
of saturation level, with the brain unable to tolerate any
further water accumulation. Other studies also demon-
strated peak edema of similar degree after TBI
[59,76,77].
An interesting observation was the enlargement of the

lateral ventricles after TAI, and even greater following
TAI+Hx. Recent clinical neuroimaging studies have
shown correlations between ventricular enlargement and
long-term neurological impairment [78-80]. The prog-
nostic value of ventricular dilatation had high sensitivity
and specificity for the prediction of cognitive outcome
[80-83]. In this study, we showed that the lateral ventri-
cles are markedly enlarged at 1 day post-injury after
TAI and even larger in TAI+Hx animals, when com-
pared to sham or rats with isolated hypoxia. Although
we did not examine the mechanism leading to ventricu-
lar enlargement after TAI, imaging studies on TBI
patients suggested that white matter degeneration
around the lateral ventricle may be a contributing factor
[84]. However, since ventricular enlargement in TAI rats
was an early and transient effect, it could be most likely
attributed to the onset of post-traumatic hydrocephalus,
caused by impaired CSF circulation due to edema com-
pressing the aqueduct of sylvius.
Neuroinflammation has been extensively investigated

in hypoxia-ischemia and TBI in both humans and ani-
mal models [85] and all these studies have reported a
robust elevation of cytokines in the central nervous sys-
tem [19,28,86-89]. More relevant for this study, our pre-
liminary data on severe TBI patients with additional
hypoxic insult have shown enhanced and prolonged pro-
duction of cytokines in the CSF (Yan et al: Neuroinflam-
mation and brain injury markers in TBI patients:
Differences in focal and diffuse brain damage, and nor-
moxic or hypoxic status on neurological outcome;
manuscript in preparation). Consistently, here we
demonstrated exacerbated production of IL-6, IL-1b,
and TNF in the brains after TAI with additional
hypoxia.
IL-1b is a key mediator of the inflammatory response,

which exacerbates neuronal injury and induces BBB dys-
function by stimulating matrix metalloproteinases [90].
IL-1b mRNA is upregulated within minutes after TBI,
and increased protein levels are detectable within an
hour after TBI [21,91-93]. In this study, IL-1b increased
early after TAI alone, peaking at 2 h. Post-TAI hypoxia
significantly enhanced IL-1b concentration at 2 h com-
pared to TAI-only rats. In addition, whilst the elevation
of IL-1b in TAI-only rats appeared to be transient, in
TAI+Hx rats IL-1b was still significantly elevated at 24
h, suggesting that the addition of hypoxia prolongs
neuroinflammation.

The neurotoxic effects of IL-1b are synergistically
enhanced in the presence of TNF [94], as both share
many of the same physiologic effects. However, the role
of TNF following TBI is controversial, neuronal toxicity
of TNF has been demonstrated with local TNF adminis-
tration inducing breakdown down of the BBB and
increased leukocyte recruitment [95-98]. Clinically, high
levels of TNF in the CSF of brain-injured patients corre-
lated with BBB dysfunction [99]. TNF inhibition also
reduced cerebral ischemia/reperfusion injury [100],
decreased TBI induced neuronal damage [101], and
ameliorated BBB dysfunction after closed head injury
[102]. However, studies on TNF deficient mice demon-
strated an early functional improvement between 24-48
h after TBI, but failed to produce further amelioration
at 4 weeks [103]. Taken together, these studies suggest
that TNF may be deleterious in the acute phase post-
injury, but beneficial for long-term recovery. In accor-
dance with Kamm et al. [93], no changes in TNF levels
were detected in rats subjected to TAI alone, whereas
the combination of TAI and hypoxia elicited a signifi-
cant early increase in TNF at 2 h post-injury, lasting up
to 72 h post-injury. These early enhancement in the
TAI+Hx rats possibly reflects a more severe brain
damage in this combined insult model.
Similar to IL-1b and TNF, at 24 h IL-6 was signifi-

cantly higher in TAI+Hx rats compared to TAI alone.
IL-1b is an early mediator inducing the production of
IL-6 at both mRNA and protein levels [21]. IL-6 displays
pleiotropic functions with both deleterious and benefi-
cial effects in the injured brain [104-106]. Using the
mild severity (250 g/2 m) of the Marmarou model, we
showed that IL-6 increased in rat CSF within 24 h and
IL-6 protein and mRNA was found expressed on neu-
rons [95]. Studies of IL-6 gene-deficient mice have pro-
vided more information in regards to the protective
function of IL-6, by having a compromised immune
response, increased oxidative stress and neurodegenera-
tion [107]. In this study, we demonstrate significantly
heightened IL-6 levels in the TAI+Hx rats at 24 h,
which remained elevated above TAI levels until 96 h.
Altogether, the increased acute production of IL-1b and
TNF may be associated with disruption of BBB integrity
and consequently formation of cerebral edema, while
late elevation of IL-6 may trigger repair mechanisms
[24,99].
We also investigated changes in energy metabolism in

this combinatorial insult model. Due to the nature of
the impact acceleration injury, it is impractical to
implant a microdialysis probe prior to injury without
compromising the integrity of the trauma. It is also diffi-
cult to implant the probe directly after trauma as it
resulted in higher mortality rate. Carré and colleagues
implanted the probe 2 weeks prior to injury, but without
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success [108]. We therefore allowed the rats to recover
for 4 hours after TAI before implanting the microdialy-
sis probe. In accordance with others [63], our study has
shown that in sham rats energy metabolism is altered
during the first 24 h following microdialysis probe
implantation, therefore we chose to examine only the
data from 20 h onwards to reduce the “probe effect”.
At 21 h, the glucose values for TAI+Hx rats were

substantially lower compared to TAI or sham rats, and
dropped to extremely low levels from 57 h onwards.
These low levels of cerebral glucose could be the result
of low glucose availability and/or hyperglycolysis in the
acute post-injury phase. Hyperglycolysis has previously
been shown as common early event following neuro-
trauma both experimentally and in the clinic [109,110].
It is often followed by a prolonged period of metabolic
depression beginning as early as 6 h post-injury,
remaining for as long as 5 days [111,112], a phenom-
enon which has also been demonstrated in the present
study. Interestingly, rats subjected to TAI experienced
only a brief period of glucose depletion between 39 h
and 57 h, at which time glucose levels returned to
sham values for the remaining duration of monitoring.
It is possible that the additional hypoxic insult
depleted available glucose stores in the TAI+Hx ani-
mals, and thus a prolonged compensatory period of
anaerobic respiration occurred to provide essential
ATP and generate lactate as by-product. Our experi-
ments have demonstrated that this is a protracted pro-
cess, lasting for 51 h after TAI. Lactate may be utilized
by the brain during periods of increased brain energy
requirements in which ATP and glucose stores are
exhausted, such as following TBI [113,114]. In a situa-
tion of prolonged glucose depletion, high concentra-
tions of lactate and high-level energy usage for
neuronal repair or alternative metabolic pathways may
further reduce the ATP reserves, with a subsequent
mismatch between glucose transport, uptake and ATP
production [115,116]. This may explain the further
drop in glucose concentrations at 57 h post TAI, in
that the restoration of aerobic metabolism decreases
lactate concentration but further reduces glucose.
Post-traumatic impairment in energy metabolism is a
major contributor to cytotoxic edema, and interest-
ingly, the period of elevated lactate in the TAI+Hx rats
between 21 h and 57 h overlaps with the peak of
increased brain water content. As edema begins to
reside, lactate levels in these rats return to sham
values. This prolonged period of metabolic crisis also
extends to glutamate production, which was depressed
below sham levels for TAI, and particularly TAI+Hx
rats, for the duration of the monitoring by
microdialysis.

Conclusion
In this study, we reproduced a frequent debilitating con-
dition contributing to poor neurological outcome in
humans by using a rat a model of diffuse TAI combined
with an hypoxic insult. Consistent with our hypothesis,
we demonstrated exacerbation of sensorimotor deficits
and delayed neurological recovery in TAI+Hx rats, as
well as a significant enlargement of the lateral ventricles
after TAI and TAI+Hx. However, no differences were
detected in brain edema, which was similarly increased
in both TAI and TAI+Hx injury groups. Enhanced neu-
roinflammation via amplified cerebral production of IL-
1b, TNF and IL-6 corroborates our previous findings of
exacerbated macrophage/microglial accumulation in
regions of axonal pathology in the corpus callosum and
brainstem of TAI+Hx animals [55]. Interestingly, while
TAI rats had a gradual recovery in glucose levels, meta-
bolic depression was sustained in TAI+Hx rats, showing
elevated lactate in microdialysates coinciding with the
period of increased brain edema. Overall, the morpholo-
gical and behavioural changes of this combined model
of diffuse TBI and hypoxia has similar characteristic of
the reported severe brain damage and poor outcomes in
patients with diffuse brain injury and hypoxia.
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