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Pro-inflammatory cytokines such as interleukin-1 beta (IL-1B) are considered to exert detrimental effects during
brain trauma and in neurodegenerative disorders. Consistently, it has been demonstrated that IL-18 suppresses
neurotrophin-mediated neuronal cell survival rendering neurons vulnerable to degeneration. Since neurotrophins
are also well known to strongly influence axonal plasticity, we investigated here whether IL-1 has a similar
negative impact on neurite growth. We analyzed neurite density and length of organotypic brain and spinal cord
slice cultures under the influence of the neurotrophins NGF, BDNF, NT-3 and NT-4. In brain slices, only NT-3
significantly promoted neurite density and length. Surprisingly, a similar increase of neurite growth was induced by
IL-1B. Additionally, both factors increased the number of brain slices displaying maximal neurite growth.
Furthermore, the co-administration of IL-1 and NT-3 significantly increased the number of brain slices displaying
maximal neurite growth compared to single treatments. These data indicate that these two factors synergistically
stimulate two distinct aspects of neurite outgrowth, namely neurite density and neurite length from acute
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Introduction

Interleukin-1 beta (IL-1B) is a member of the IL-1 family
of cytokines which have potent pro-inflammatory proper-
ties. It is produced in the periphery mainly by monocytes
and is a strong activator of the host immune response to
both injury and infection [1,2]. In the central nervous sys-
tem (CNS) IL-1B is primarily produced by microglia and
invading monocytes/macrophages, but other types of resi-
dent cells of the nervous system, including neurons and
astrocytes, are also capable of its production [3]. It is gen-
erally believed that inflammatory processes stimulated by
pro-inflammatory cytokines and particularly by IL-1f, are
rather detrimental and can aggravate the primary damage
caused by infection of the CNS. This has been suggested
by various in vivo studies, in line with its enhanced expres-
sion in the brain after damage or in neurodegenerative
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diseases, including Alzheimer’s disease (AD). Consistently,
IL-1 deficient mice display reduced neuronal loss and
infarct volumes after ischemic brain damage [4] and direct
application of the recombinant cytokine results in an
enhanced infarct volume [5]. In traumatic brain injury,
antibodies against IL-1f reduce the loss of hippocampal
neurons [6]. Consistently, in a mouse model of AD, an
inhibitor of pro-inflammatory cytokine production sup-
pressed neuroinflammation leading to a restoration of hip-
pocampal synaptic dysfunction markers [7]. In AD it has
also been demonstrated that members of the IL-1 family
are associated with an increased risk of contracting the
disease [8].

The findings in various in vitro models suggest a rather
elaborated mechanism. In culture, IL-1 demonstrated
neurotoxic effects towards hippocampal neurons exposed
to high concentrations (500 ng/ml) combined with long-
term exposure (three days). However, no effect was
observed in lower concentrations following short-term
exposure (one day) [9]. In other in vitro models, IL-1p
has even been seen to display beneficial effects towards
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neuronal survival in the CNS [10,11]. This has also been
observed in axonal growth in the peripheral nervous sys-
tem both in vivo following sciatic nerve injury [12,13]
and in vitro in adult dorsal root ganglion (DRG) collagen
gel explant cultures [14], but not in dissociated single
DRG neuron cultures [15].

Previously, it has been demonstrated that IL-13 impairs
neurotrophin-induced neuronal cell survival [16,17]. It has
long been hypothesized that cytokine effects on neurite
growth may be mediated at least in part by modulating
neurotrophin signalling accordingly [18]. In addition to
their positive effect on cell death, the neurotrophins Nerve
Growth Factor (NGF), Brain-derived Neurotrophic Factor
(BDNF), Neurotrophin-3 (NT-3) and NT-4 have also a
well documented impact on axon plasticity and regenera-
tion [19,20]. This is crucial in the context of CNS insult to
provide re-innervation and thus consecutive functional
recovery. Based on these observations we investigated
whether IL-1B is also a modulator of neurotrophin-
induced neurite outgrowth in the CNS in vitro, using orga-
notypic brain and spinal cord slice cultures. The present
study shows that surprisingly, IL-1 did not abrogate NT-
3-induced neurite outgrowth but conversely showed a sig-
nificant synergistic effect. These data indicate that IL-1f
differentially regulates the effect of NT-3 on neuronal sur-
vival and neurite extension.

Materials and methods

Animals and factors

C57BL/6 wildtype mice and IL-1B-deficient mice [21]
were housed in a conventional animal facility (Center for
Anatomy, Charité-Universititsmedizin, Berlin, Germany).
All experiments were performed in accordance with Ger-
man guidelines on the use of laboratory animals. Recombi-
nant neurotrophins NGF, BDNF, NT-3 and NT-4 were
used in a concentration of 500 ng/mL (all Tebu-Bio,
Offenbach, Germany). Recombinant IL-1f (Tebu-Bio,
Offenbach, Germany) was used in concentrations of 5, 50
and 500 ng/mL.

Acute organotypic brain slice culture

The entorhinal slice cultures were prepared from mouse
brains at postnatal day 2 as previously described [22-25].
In brief, after decapitation, the entorhinal cortex was dis-
sected in ice-cold preparation medium, containing MEM
with L-Glutamine (2 mM) and Trisbase (8 mM). Trans-
verse slices 350 pm thick were cut using a tissue chopper
(Bachhofer, Reutlingen, Germany). Collagen was pre-
pared as previously described [26]. Each entorhinal slice
was embedded in a drop of collagen matrix on glass
slides. The recombinant factors (neurotrophins and IL-
1B) were mixed into the sterile cultivation medium con-
taining MEM, 25% HBSS, 25% heat-inactivated normal
horse serum, 4 mM L-glutamine, 4 pg/ml insulin (all
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from Gibco, Karlsruhe, Germany), 2.4 mg/ml glucose
(Braun, Melsungen, Germany), 0.1 mg/ml streptomycin,
100 U/ml penicillin, and 800 pg/ml vitamin C (all Sigma-
Aldrich, Taufkirchen, Germany). The collagen co-cul-
tures were incubated at 37°C in a humidified atmosphere
with 5% CO,. After 48 h in vitro, the collagen slices were
analyzed microscopically (Olympus IX70, Hamburg,
Germany).

Neurotrophin concentrations were chosen after exten-
sive pilot experiments based on studies by the Kaptham-
mer group on age-dependent regeneration of entorhinal
fibers in mouse slice cultures [19], which showed that
substantially higher concentrations are needed for brain
slices compared to primary cell cultures.

Measurement of axonal density and length of
organotypic brain slice cultures

To evaluate the axon outgrowth from entorhinal cortex
explants, we improved a pragmatic, reliable and reproduci-
ble method, with which the axonal density and length was
evaluated after two days in culture [23,27]. Two indepen-
dent blinded investigators evaluated neurite density on a
scale from 0 (no axons) to 3 (multiple axons), at a total
magnification of 200, using a 20x Olympus LCPLANFL
objective (Olympus IX70, Hamburg, Germany). Axonal
length was quantified at a total magnification of 100, using
a 10x Olympus LCPLANFL objective and a widefield eye-
piece with a grid of 100 x 100 um (Olympus WH 10X2-H,
Hamburg, Germany) and by measuring the length of a
minimum of 10 axons growing in the same direction and
reaching the same length: grade 0 (0 - 200 pum), 1 (200 -
400 pum), 2 (400 - 800 pm) and 3 (> 800 pm). Slices with a
score equal 3 in length or density, where considered as
having “maximum growth” and were then used for further
analysis. For combined “maximum density and length”
analysis, only the slices which reached the maximum score
in both parameters were selected. All experiments were
repeated at least three times.

Acute organotypic transverse spinal cord slice cultures

Transverse spinal cord cultures were prepared from mice
at embryonic stage 13 (E13). After preparation out of the
amniotic sac, embryos were decapitated and skin and
organs were removed to isolate the spinal column, it was
immediately transferred into ice cold HBSS medium.
After dissection of the spinal cord, the remaining dorsal
root ganglia (DRG) were removed and lumbar and cervi-
cal spinal sections dismissed. The thoracic segment was
cut with a tissue chopper into 350 um slices. These slices
were divided along the sulcus medianus into two halves
and each placed into a drop of collagen (as described
above) with the cut surface of the sulcus medianus show-
ing upwards. After polymerization of the collagen, 500 pl
of medium with or without factors were added to the
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slices. The transverse spinal cord slices were incubated at
37°C in a humidified atmosphere with 5% CO,. After
48 h in vitro, the collagen slices were analyzed microsco-
pically (Olympus IX70, Hamburg, Germany).

Measurement of axonal outgrowth from transverse spinal
cord slices

Axonal outgrowth of the transverse spinal cord slices was
evaluated as described previously for organotypic dorsal
root ganglia cultures [28]. Slices were photographed in
PBS with two fixed exposure times to visualize the neur-
ite area and the slice, respectively. The ratio between
these two areas was calculated and matched between
slices with or without factor. All experiments were
repeated at least three times.

Statistical analysis

The results are expressed as mean + SEM. The values
from the experimental cultures were compared to control
cultures prepared in the same experiment (double treat-
ment with NT-3 and IL-1P were additionally compared to
single treatments). Subsequently, the data of each group
were pooled for statistical analysis. After confirming that
significant differences existed between the various groups
by performing a Kruskal-Wallis Test, p-values were deter-
mined, using a Mann-Whitney-U test. A Chi*-test was
used to test if the frequency of maximal neurite growth
was significantly different between the groups.

Results
Previously, IL-1P has been described as a negative modula-
tor of neurotrophin-induced neuronal survival [16,17].
Therefore, we investigated whether IL-13 has a similar
negative impact on NT-3-induced neurite growth from
organotypic brain slices and transverse spinal cord slices.
As a first step we investigated the effects of different neu-
rotrophins on neurite growth in a classical model of orga-
notypic brain slice cultures. Organotypic brain slices were
embedded in a three-dimensional collagen matrix in the
presence of 500 ng/mL NGF, BDNF, NT-3 or NT-4 or
solvent. These concentrations were chosen after extensive
pilot studies based on the landmark studies by the Kapf-
hammer group on regeneration of entorhinal fibers in
murine slice cultures [19]. Neurite density and length was
microscopically analyzed (Figure 1). Compared to control
brain slices, neurite density was significantly increased by
about 20% after cultivating with NT-3. It is important to
note that an increase of 20% is close to the maximum
increase of axon outgrowth which can be induced in brain
slices with our method of analysis.

Such an increase is not seen after administration of
the other neurotrophins (Figure 1A).

Similarly, NT-3 also significantly increased the length
of the cortical neurites when compared to untreated
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controls while the other neurotrophins had no effect on
neurite length (Figure 1B). Thus, only recombinant NT-
3 (but not NGF, BDNF or NT-4) is capable of stimulat-
ing neurite outgrowth as well as neurite length from
entorhinal cortical neurons (Figure 1E, F). A Chi® test
also revealed a significant increase in the number of
slices reaching maximal neurite density and length in
the presence of NT-3, compared to untreated controls
(Figure 1C, D).

Since the effect of the inflammation-associated cyto-
kine IL-1B on repair mechanisms in the CNS is contro-
versial, we analyzed as a second step IL-1p effects on
neurite growth from organotypic brain slices by adding it
to the medium in three different concentrations (5, 50
and 500 ng/ml) (Figure 2). The highest concentration of
IL-1p significantly stimulated and nearly doubled neurite
density compared to control treated slices (Figure 2A, E,
F). Neurite elongation was significantly increased by 50
and 500 ng/ml of IL-1p (Figure 2B). Moreover, the Chi?
test showed a significant increase in the number of slices
displaying maximal neurite density in the presence of 500
ng/ml IL-1B, compared to untreated controls (Figure 2C,
D).

In order to investigate potential differences between
the effects of IL-1B and NT-3 on cerebral and spinal cord
neurites, we further analyzed both factors in a model of
organotypic transverse spinal cord slices (Figure 3).
Spinal cord slices were embedded in a collagen matrix
similar to the brain slice model and the ratio between
outgrowth area and slice size was determined (Figure 3A,
see materials & methods section for details). Surprisingly,
the application of 500 ng/ml of NT-3 or IL-1f as well as
the combined application of both factors at the same
concentration, had no effect on the outgrowth ratio com-
pared to control slices, suggesting a cortex-specific effect
of both factors (Figure 3C). As a positive control for the
model we used 500 ng/ml of NGF, which significantly sti-
mulated the outgrowth ratio of transverse spinal cord
slices compared to untreated controls (Figure 3B, C).

The importance of endogenous IL-1B on spontaneous
neurite growth from organotypic brain slices was then
determined by cultivating slices from IL-1f knock out
mice (Figure 4A and 4B). We compared the neurite den-
sity and neurite length from wildtype animals with het-
erozygous and homozygous IL-13-deficient animals, all
derived from the same litter and differentiated by PCR
after evaluating the experiments. We found no significant
difference between the groups; thus, neurite density as
well as neurite length of organotypic brain slices is inde-
pendent of endogenous IL-1P.

To elucidate whether IL-1B has a suppressive effect
not only on neurotrophin-induced neuron survival, but
also on neurite growth we co-administrated IL-1p and
NT3 to acute brain slices (Figure 4C-E). As shown in
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Figure 1 Recombinant NT-3 stimulates neurite density and length of organotypic brain slices. The neurotrophins NGF, BDNF, NT-3 and
NT-4 (500 ng/ml) were added to the culture medium immediately after preparation of the organotypic brain slices. NT-3, but not the other
neurotrophins significantly increases neurite density (A), neurite length (B), the amount of slices reaching the maximum outgrowth (C) and the
amount of slices reaching the maximum length (D). E + F: representative photomicrograph showing the increase in outgrowth of NT-3 treated
EC slices compared to control. n = 50 slices. A + B: *: Statistically significant difference to control; p < 0.05 (Mann Whitney U test). C + D: *:
Statistically significant difference; p < 0.05 (Chi-square analysis). EC = enthorinal cortex. Arrows indicate outgrowing neuritis. Scale bar: 100 um.

Figure 1 and 2, both factors alone stimulated neurite
density and extension from organotypic brain slices and
the combined administration of IL-1f and NT-3 (both
500 ng/ml) could not further promote the mean neurite
density and neurite length (Figure 4C, D). However, the
Chi” test showed that the combination of both factors
resulted in a significantly higher number of slices

reaching maximal neurite density compared to controls
and slices treated only with IL-1B. Additionally, the
combination of both factors exerts a similar effect on
maximal neurite length when compared to controls and
slices treated only with NT-3. Finally, a significantly
higher number of slices treated with both factors
reached maximal levels of both parameters, i. e.
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Figure 2 IL-1pB stimulates neurite density and length in organotypic brain slices. A dose-response curve revealed that high doses of IL-18
(500 ng/ml) added to the culture medium, stimulate neurite density (A) of organotypic brain slices and the amount of slices reaching the
maximum outgrowth (C). A lower dose (50 ng/ml) is still able to stimulate the average length of neuritis (B) but neither 500 ng/ml nor 50 ng/ml
of IL-1B were able to significantly increase the amount of slices presenting maximum length (D). E + F: representative photomicrograph showing
the increase in outgrowth of IL-1B treated EC compared to control. n = 17 slices. A + B: *: Statistically significant difference to control; p < 0.05
(Mann Whitney U test). C + D: *: Statistically significant difference; p < 0.05 (Chi-square analysis) EC = enthorinal cortex. Arrows indicate neuritis.

combined maximal density and length, when compared
to control and NT-3 treated slices (Figure 4E). Thus,
the combined application of NT-3 and IL-1f allowed
higher numbers of slices to reach maximum values of
density and/or length which was not achieved by the
application of the single factors.

In summary, IL-1B promotes increased neurite density
and length from organotypic brain slices and does not
inhibit NT-3-induced neurite growth, but conversely, it

shows a synergistic effect in contrast to its suppressive
effect on NT-3-induced neuronal survival [16,17].

Discussion

Interleukin-1 beta (IL-1f) is a pluripotent cytokine and
a main component of many inflammatory pathways. It
is overexpressed after central nervous system (CNS)
insult, primarily by microglia and macrophages, as part
of the local tissue reaction [3,29,30]. Increased levels of
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Figure 3 NT-3 and IL-1beta do not increase neurite outgrowth
of transverse spinal cord slices. A: Transverse spinal cord slices
were prepared from E13 spinal cords and the ratio between neurite
area and slice area were compared. B: representative
photomicrograph showing the increase in outgrowth of NGF
treated EC compared to control. NGF (500 ng/ml) serves as positive
control. C: NT-3 and IL-1B (500 ng/ml) were added to the culture
medium of organotypic transverse spinal cord slices. Only NGF
significantly increases neurite density, while NT-3, IL-18 or a
combination of these factors does not influence neurite outgrowth.
n = 9-11 slices. *: Statistically significant difference to control; p <
0.05 (Mann Whitney U test). Arrow heads indicate outgrowing
neuritis. Scale bar: 50 pm.
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the cytokine are documented both in chronic neurode-
generative disease and after acute mechanical injury. To
examine its effect on neurodegeneration, studies have
focused mainly over the last two decades, on Alzhei-
mer’s disease (AD) [31]. Elevated plasma levels of IL-1
had been reported in patients with AD (almost 40-fold
higher than in the healthy brain)[32] and there is evi-
dence of a correlation between IL-1B gene polymorph-
ism and the risk of contracting the disease [33,34]. It is
currently under investigation as a marker of ongoing
brain neurodegeneration, even though levels are also
elevated in the healthy aging brain [35]. In line with the
documented negative effect on survival, it has been
demonstrated that IL-1p impairs NT-3- and BDNF-
mediated trophic support of cortical neurons by inter-
fering with the Akt and MAPK/ERK intracellular path-
way [16,17], therefore abrogating their neuroprotective
properties.

However, there is increasing evidence that inflamma-
tion-associated cytokines can play a key role in stimulat-
ing neurite growth and regeneration [18,36]. As
mentioned before, aside from neurodegenerative dis-
eases, IL-1PB levels are elevated after mechanical damage
to the CNS. Notoriously after mechanical damage in the
CNS, two major events occur that slow down or even
inhibit regenerative processes. The first is the secondary
damage of primarily unharmed neurons, with the second
being the intrinsic inhibition of neurite plasticity and
reestablishment of a proper neurite network [37-39].
Pro-inflammatory cytokines produced after mechanical
damage to the CNS are considered as being negative for
neuronal survival and regeneration [40]. However, the
role of IL-1 is still controversial, with conflicting in
vivo and in vitro data published in the literature [40].
To our knowledge - there is very little literature about
the role of IL-1B in axon regeneration in the CNS. In
contrast, there is extensive literature about the implica-
tion of the neurotrophins Nerve Growth Factor (NGF),
Brain-derived Neurotrophic Factor (BDNF), Neurotro-
phin-3 (NT-3) and NT-4, in traumatic CNS lesions.
These are well known for their neuroprotective effects
as well as their ability to promote neurite growth via
independent mechanisms [41-44]. The focus of the pre-
sent study was then to outline whether IL-1f is also
able to abrogate neutrophin-induced effects on CNS
plasticity, as shown for neutrophin-dependent trophic
support for neuronal cell survival.

We started our study by investigating the effect of
neurotrophins in a well established model of outgrowth
from organotypic brain slices. Surprisingly, only recom-
binant NT-3 (but not NGF, BDNF or NT-4) was able to
stimulate neurite outgrowth as well as neurite length
from organotypic brain slices, also increasing the num-
ber of slices displaying maximal outgrowth. This is in
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Figure 4 Neurite outgrowth is independent on endogenous IL-1beta and is synergistically stimulated by combined application of NT-
3 and IL-1beta. A + B: Neurite outgrowth (neurite density A and neurite length B) was not influenced in the absence of endogenous IL-1B in
IL-1B-deficient mice. Heterozygous IL-1B-deficient and wildtype mice served as controls. n: 50 slices. C + D: The combined administration of NT-3
and IL-1B shows only a slight increase in neurite density and length, if compared to single treatments. n = 84 slices. *: Statistically significant
difference to control; p < 0.05 (Mann Whitney U test). Error bars represent SEM. E: Chi-square analysis reveals a significant difference in the
frequency of brain slices with maximal outgrowth between single treatments with NT3 or IL-1f and the combined administration of both
factors. Particularly double treatment presents a significant increase in the number of slices reaching maximum density if compared to control
and single treatment with IL-1B, and in length if compared to single treatment with NT3. Additionally, combination of the two factors is also
characterized by a significantly higher number of slices which hit the maximum in both parameters, if compared to control condition or single
treatment with NT3 (to increase the readability of the graph only the significances relative to the double treatment have been included). *:

Statistically significant difference; p < 0.05 (Chi-square).
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contrast to several single cell studies in which neurotro-
phins are highly efficient in promoting axonal growth
[45-47]. However, brain slices should be considered as
an organotypic model of brain trauma, and therefore
appear to be closer to the in vivo situation than single
cell cultures [48-50], since the organotypic environment
of neurons is composed of astrocytes, microglia cells
and other immune cells [25,51,52].

Interestingly, we also showed that administration of
IL-1B at varying concentrations to the brain slices lead
to a significant increase in density and neurite length,
when compared to untreated control slices. Key effects
of IL-1B in this context include the induction of IL-6,
tumor necrosis factor (TNF)-a and nitric oxide [53] and
increased proliferation of macrophages [54] and astro-
cytes [55-57]in vitro and in vivo. Both IL-6 and TNF-a
are associated with stimulating properties of neurite
growth. It was demonstrated that TNF-a can support
glia-dependent neurite growth in organotypic mesence-
phalic brain slices [58] and is a key factor in the
hypothermia induced neurite outgrowth, also as a
recombinant factor [24]. The neuropoietic cytokine IL-6
is known to be a potent stimulating factor of neurite
growth and regeneration in organotypic hippocampal
slices [59] as well as in dorsal root ganglion cells [28].
Furthermore, IL-1f is capable of activating the produc-
tion of growth factors in CNS-derived cells. It induces
NGF [60-62], fibroblast growth factor (FGF)-2 and
S100B production from astrocytes. FGF-2 can be a
trophic factor for motor neurons or basal forebrain neu-
rons [63,64] and IL-1B-induced S100B overexpression is
likely to be responsible for the excessive growth of dys-
trophic neuritis in AD plaques [65]. It was also demon-
strated that IL-1B can promote neurite outgrowth from
DRGs and cerebellar granule neurons (CGNs) by deacti-
vating the myelin-associated glycoprotein (MAG) RhoA
pathway via p38 MAPK activation [12,13].

In the spinal cord, IL-1p has been implicated in exten-
sive inflammation and progressive neurodegeneration
after ischemic and traumatic injury [66,67]. That is sup-
ported by the finding that administration of an IL-1
receptor antagonist reduced both neuronal necrosis and
apoptosis in a model of spinal cord ischemic-reperfusion
injury in rabbits [68]. Since IL-1B had the capacity to
stimulate neurite growth in brain slices, we tested if the
same effect could be achieved in a de novo organotypic
spinal cord slice model. Surprisingly neither the single
administration of IL-1f or NT-3, nor the combined
administration of both factors had an influence on the
measured neurite growth from the spinal cord slices.
These findings may suggest that potent NT-3 effects on
neuronal regeneration in the injured spinal cord [69-71]
are not the result of modulating segmental spinal cord
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neurons but rather direct or indirect effects on axons
deriving from the motorcortex.

Another difference from the brain situation is that
NGF had a stimulating effect on neurite outgrowth from
the spinal cord slices which was not present in the
entorhinal cortex. This might be due to the time and
location dependent regulation of the Trk receptors,
influencing the effectiveness of the neurotrophins
[72,73].

As described above, in 2008 the Cotman group pre-
sented two publications demonstrating that IL-1f is a
negative regulator of neuronal survival, due to its inter-
ference with the trophic signalling of NT-3 and BDNF.
Previous work of our group indicated that neuronal sur-
vival and neurite growth can be two independent phe-
nomena; e.g. while hypothermia has a negative effect on
the neuronal survival [74], we demonstrated that in the
same conditions neurite outgrowth is substantially
increased and is dependent on tumor necrosis factor
(TNF)-a [24]. To test the effect of IL-1p on NT-3-
induced neurite growth, we applied both factors on
enthorinal cortex slices. Interestingly, even without evi-
dent further stimulation in mean density and length
compared to the single administration, a Chi square
analysis revealed that the double administration leads to
a significantly higher number of slices reaching the max-
imum level of outgrowth (density or length), when com-
pared to the single treatments.

In conclusion, our results demonstrate that NT-3, but
not the other neurotrophins, can stimulate neurite
growth in organotypic brain slices. In contrast, neither
NT-3 nor IL-1B are capable of enhancing neurite
growth from spinal cord slices. Furthermore, we were
able to demonstrate that the pro-inflammatory cytokine
IL-1B has a positive effect on neurite growth from corti-
cal slices and does not abolish the stimulating effect of
NT-3, having instead a synergistic effect. As a result
anti-inflammatory treatments for AD or mechanical
brain damage may have a positive effect on neuronal
cell death, with the risk of limiting neurite regrowth.
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