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Tumor necrosis factor-a synthesis inhibitor
3,6-dithiothalidomide attenuates markers of
inflammation, Alzheimer pathology and behavioral
deficits in animal models of neuroinflammation
and Alzheimer’s disease
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Abstract

Background: Neuroinflammation is associated with virtually all major neurodegenerative disorders, including Alzheimer’s
disease (AD). Although it remains unclear whether neuroinflammation is the driving force behind these disorders,
compelling evidence implicates its role in exacerbating disease progression, with a key player being the potent
proinflammatory cytokine TNF-a. Elevated TNF-a levels are commonly detected in the clinic and animal models of AD.

Methods: The potential benefits of a novel TNF-a-lowering agent, 3,6-dithiothalidomide, were investigated in cellular and
rodent models of neuroinflammation with a specific focus on AD. These included central and systemic inflammation
induced by lipopolysaccharide (LPS) and AB,_4, challenge, and biochemical and behavioral assessment of 3xTg-AD mice
following chronic 3,6-dithiothaliodmide.

Results: 3,6-Dithiothaliodmide lowered TNF-q, nitrite (an indicator of oxidative damage) and secreted amyloid precursor
protein (SAPP) levels in LPS-activated macrophage-like cells (RAW 264.7 cells). This translated into reduced central and
systemic TNF-a production in acute LPS-challenged rats, and to a reduction of neuroinflammatory markers and
restoration of neuronal plasticity following chronic central challenge of LPS. In mice centrally challenged with AB;_4>
peptide, prior systemic 3,6-dithiothalidomide suppressed AB-induced memory dysfunction, microglial activation and
neuronal degeneration. Chronic 3,6-dithiothalidomide administration to an elderly symptomatic cohort of 3xTg-AD mice
reduced multiple hallmark features of AD, including phosphorylated tau protein, APP, AR peptide and AB-plaque number
along with deficits in memory function to levels present in younger adult cognitively unimpaired 3xTg-AD mice. Levels of
the synaptic proteins, SNAP25 and synaptophysin, were found to be elevated in older symptomatic drug-treated 3xTg-AD
mice compared to vehicle-treated ones, indicative of a preservation of synaptic function during drug treatment.
Conclusions: Our data suggest a strong beneficial effect of 3,6-dithiothalidomide in the setting of neuroinflammation
and AD, supporting a role for neuroinflammation and TNF-a in disease progression and their targeting as a means of
clinical management.

Keywords: Neuroinflammation, Neurodegeneration, TNF-a, Neuroprotection, Alzheimer's disease, Mild cognitive
impairment, Amyoid-f3 peptide, Tau, Thalidomide, Lenalidomide

* Correspondence: greign@grc.nia.nih.gov

fEqual contributors

'Laboratory of Neurosciences, Intramural Research Program, National
Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
Full list of author information is available at the end of the article

- © 2012 Tweedie et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
( B|°Med Central Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.


mailto:greign@grc.nia.nih.gov
http://creativecommons.org/licenses/by/2.0

Tweedie et al. Journal of Neuroinflammation 2012, 9:106
http://www.jneuroinflammation.com/9/1/106

Background

Neuroinflammation is a critical and invariable compo-
nent of many neurodegenerative diseases. Indeed, the
co-occurrence of inflammatory markers in plasma, cere-
bral spinal fluid (CSF) and post-mortem brain tissue has
become a hallmark feature of Alzheimer’s disease (AD)
and Parkinson’s disease (PD) [1-4]. This has given rise to
the suggestion that inflammation within the CNS is an
important contributing factor in the continuum of neu-
rodegeneration, particularly in AD. The cytokine tumor
necrosis factor-alpha (TNF-a) is a major mediator of in-
flammation that is commonly upregulated in biological
samples from patients and animal models of human
neurodegenerative disease [5-12]. In brain, TNF-« is pri-
marily synthesized and released by glial cells that can be
activated by trauma, infection or the presence of en-
dogenous yet abnormal protein aggregates, such as
amyloid-p (AP) peptides in AD. Furthermore, cytokines,
including TNF-a, have been demonstrated to self-
regulate immune/glial cells to increase their expression
of amyloid-p precursor protein and AP in vitro [13].
Thus, in addition to the synthesis and release of cyto-
toxic factors, glial cells possess the ability, under appro-
priate conditions, to be an important non-neuronal,
source of abnormal APP in brain, a hallmark feature in
AD [14,15]. The existence of an altered brain micro-
environment observed in neurodegenerative disease
allows for and increases the likelihood of the generation
of an unregulated immune response that potentiates any
ongoing toxicity toward neurons.

In human post-mortem AD brain, a dramatic loss in
neurons has been observed in the medial temporal lobe
(hippocampus and entorhinal cortex). Over time, AD
patients develop classical patterns of brain pathology, as
described by Braak and Braak [16], and corresponding
cognitive impairments [14]. Early stages of dementia
may be associated with neuronal dysfunction causing the
observed cognitive impairments rather than overt cell
loss. It is possible that neuronal dysfunction is related to
the presence of inflammatory factors, as rodent models
of chronic neuroinflammation have been shown to in-
duce impaired states of learning and memory in vivo
[17,18]. In line with this, the expressions of genes asso-
ciated with learning and memory have been reported to
be altered by LPS administration in mice [19]. Addition-
ally, disturbances in biochemical and functional corre-
lates of learning at the cellular level, such as long-term
potentiation (LTP) [20] and neural network activity [21],
have been observed in models that mimic AD pathology.
These findings support the concept that inflammation
exacerbates the existing processes of neurodegeneration
observed in AD.

It is plausible that the dysfunction of viable neurons dur-
ing early stages of AD may not represent a permanent state
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and may thus be amenable to rescue, potentially providing
improved outcomes for long-term nerve cell survival and
function. Transgenic animal models are commonly used to
investigate pathological processes of neurodegenerative dis-
eases; one such model is the 3xTg-AD mouse model [22].
Data from 3xTg-AD mice suggest a clear involvement of
cytokines, particularly TNF-a at pre-symptomatic stages of
AD pathology [23]. Additionally, the use of this model has
shown that in some circumstances neurons express TNF-a
gene products [24], and that reduced TNF-« signaling [25]
and microglia activation [26] mitigated disease progression.
Herein, to further define the role of TNF-« in neuroin-
flammation, neuronal dysfunction and cognitive impair-
ment, we utilized a TNF-a synthesis-lowering agent,
3,6 '-dithiothalidomide, developed within our laboratory
[27]. This agent has been shown to effectively lower the
levels of TNF-a and nitrite, a surrogate of nitric oxide
metabolism, in LPS-treated macrophage-like cells
in vitro [28], to reverse established hippocampus-
dependent cognitive deficits induced by chronic neu-
roinflammation [29], as well as to reverse learning and
memory behavioral deficits in a rodent model of head
trauma [30]. We therefore assessed the biochemical and
behavioral actions of 3,6'-dithiothalidomide in three
models of neuroinflammation and in 3xTg-AD mice to
evaluate TNF-a as a neurological drug target in AD.

Methods and materials

Pharmacological interventions

3,6 -Dithiothalidomide was prepared in 100% tissue cul-
ture grade dimethyl sulfoxide (DMSO, Sigma-Aldrich, St
Louis, MO) for cell culture experiments, or as a suspen-
sion in a 1% carboxy methyl cellulose/saline solution
(Fluka 21901). A concentration of 56 mg/kg body weight
of drug was used for animal work unless stated other-
wise. Lipopolysaccharide (LPS) was obtained from
Escherichia coli (E coli) serotype 055:B5 (Sigma-Aldrich).
APi_4p or APyy_; peptides were from American Peptide,
Sunnyvale, CA.

Cell culture

Mouse RAW 264.7 cells were purchased from ATCC
(Manassas, VA, USA) and were grown in DMEM media
supplemented with 10% FCS, penicillin 100 U/ml and
streptomycin 100 pg/ml, and were maintained at 37°C
and 5% CO, Cells were propagated as described by
ATCC guidelines. RAW 264.7 cells were cultured as has
been previously described [28,31]. Cells were challenged
with concentrations of LPS as indicated, and 24 h later,
conditioned media was harvested and analyzed for the
quantification of secreted TNF-a protein, nitrite and
APP levels. Cellular health was assessed by use of the
CellTiter 96 AQueous One Solution Cell Proliferation
Assay (Promega, Madison, WI).
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Acute animal LPS drug study

An in vivo assessment of the effects of 3,6 -dithiothali-
domide on the biosynthesis of LPS-induced TNF-a
mRNA and protein was undertaken. The levels of hippo-
campal mRNA, plasma and CNS protein were deter-
mined. Male Fisher 344 rats (3 months of age) were
challenged with LPS (1 mg/kg body weight, via the i.p.
route). A series of blood samples were taken from the
rats over a 5-h time period: [-60, O (LPS challenge), 30,
60, 90, 120, 180 and 240 min post LPS], plasma was gen-
erated from blood by conventional means. After
240 min the CNS was harvested, and all samples were
immediately frozen to —-70°C and stored for analyses.

Chronic intracerebroventricularly animal LPS drug study
The rodents used for these experiments where male Fisher
344 rats (3 months of age). Four study groups were utilized:
(1) artificial cerebrospinal fluid (aCSF) plus drug vehicle
(aCSF-veh; n=4); (2) aCSF plus 3,6 -dithiothalidomide
(aCSE-DT; n=6); (3) LPS plus drug vehicle (LPS-veh; n=5)
and (4) LPS plus 3,6 -dithiothalidomide (LPS-DT; n=7).
The LPS or aCSF were infused directly into the brain via an
intracerebroventricular (i.c.v.) catheter (placement coordi-
nates: 2.5 mm posterior to lambda, on the mid-line and
7.0 mm ventral to the dura) into the lateral ventricle as pre-
viously described [17,18,21,29]. Animals received daily i.p.
administration of 3,6'-dithiothalidomide (56 mg/kg) or ve-
hicle for 14 days starting the day of the surgery. On day 14
after surgery, each animal was placed in an open field and
allowed to explore for 10 min. The open field environment
consisted of a circular chamber (130 cm in diameter, 25 cm
high) containing four different objects in the center. Total
distance moved and time spent in different zones of the
chamber were recorded with EthoVison XT software from
Noldus (Noldus, Nijmegen Area, The Netherlands). All ani-
mals were euthanized by anesthesia in an isoflurane cham-
ber followed by decapitation immediately after exploration.
To ensure that transcription induced by euthanasia would
not be detectable, the brain was quickly removed (between
120-150 s) and flash frozen in —80°C ice cold isopentane
[17,18,21,29]. The fresh frozen brains were stored at —70°C
until processing for in situ hybridization and fluorescence
immunostaining as previously described [17,18,21,29].

Acute intracerebroventricular Af;_;, peptide animal drug
study

Adult male C57BL/6 mice (3 months of age) were uti-
lized in this study. Mice received 3,6 -dithiothalidomide
(56 mg/kg, i.p.) or vehicle daily for 14 days; after 7 days
of treatment with drug animals were challenged with A
peptide. APB;_4» and the reverse peptide APs_; were
reconstituted in phosphate-buffered saline (pH 7.4) and
aggregated by incubation at 37°C for 7 days prior to ad-
ministration. AB;_4, and APg_; (400 pmol) were then
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infused icwv. into the lateral ventricle as previously
described [32].

3xTg-AD animal drug study

Adult and old male 3xTg-AD mice (10 and 17 months
of age) were maintained on a 12-h light/dark cycle with
free access to water and food. Animals received adminis-
tration of either 3,6'-dithiothalidomide (42 mg/kg) or
the vehicle i.p., daily for 6 weeks. Four to five weeks after
the initiation of drug treatment, the animals were tested
in the Morris Water Maze to assess acquisition (learn-
ing) and retention of spatial memory. After the comple-
tion of the Morris Water Maze assessment, the animals
were euthanized by decapitation while under isoflurane
anesthesia. The brain was immediately removed, and
specific regions were excised and instantly frozen to
allow later quantification of levels of various cortical
proteins of interest: soluble AB;_4,, total tissue APP, tau
and phospho-tau protein, and the presynaptic proteins:
SNAP25 and synaptophysin.

All animal studies were undertaken according to pro-
tocols approved by the respective Institutional Animal
Care and Use Committee’s of the Intramural Research
Program, National Institute on Aging (331-LNS-2012,
293-LNS-2013 and NICHD # 08-011), and the Univer-
sity of California (AN082537-03A), in compliance with
the guidelines for animal experimentation of the Na-
tional Institutes of Health (Department of Health, Edu-
cation, and Welfare publication 85-23, revised, 1995).

Quantitative RT-PCR for rat TNF-a mRNA

Total mRNA was isolated from the hippocampus using
the RNeasy RNA isolation kit (Qiagen, Valencia, CA).
Various concentrations of total mRNA extracted from
rat brain were prepared for the generation of absolute
and relative standard curves. The RNA samples and ser-
ial dilutions for standard curves were reverse-transcribed
(Applied Biosystems), and PCR reactions were carried
out using primers and probe sets purchased from Ap-
plied Biosystems (Foster City, CA): the TNF-a primers
and probe set recognize exon 2-3 of TNF-«a (assay loca-
tion 391, GenBank accession NM_012675.2), and the
GAPDH primers and probe set recognize exon 3 (assay
location 295, GenBank accession NM_017008.3). The
signals from the amplified PCR products were detected
using the ABI Prism 7700 Sequence Detection System
(Applied Biosystems), and obtained Ct values were cal-
culated to the relative amount of RNA from the stand-
ard curves for each RNA transcript.

ELISA analysis

TNE-a levels were measured by species-specific ELISAs;
Mouse RAW 264.7 cell culture media TNF-a protein
were measured with a mouse ELISA, BioLegend, Mouse
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TNE-a ELISA MAX™ Deluxe. Rat plasma and CNS pro-
tein was measured with a rat ELISA, BD OptEIA Rat
TNF ELISA Kit II, BD Biosciences or an Ultrasensitive
rat TNF-q, Invitrogen, respectively. Soluble human Af;_
42, levels were measured by use of a human Af,, ELISA
kit from Invitrogen. For all ELISA measurements, sam-
ples were assayed in duplicate, and the appropriate pro-
cedures were followed according to the manufacturer’s
instructions.

Immunohistochemistry

The brains of animals that received i.c.v. administered
LPS or AP peptides were processed as previously
described for the appropriate procedure [17,18,21,29,32].
For rat i.c.v. LPS studies, tissue was labeled with the fol-
lowing primary antibodies: MHC class II marker OX-6
(Pharmigen, San Diego, CA) for activated microglia and
glial fibrillary acidic protein (GFAP; Pharmigen) for acti-
vated astrocytes; nuclei were counterstained with Sytox-
Green (molecular Probes, Eugene, OR). Arc mRNA de-
tection was performed as previously described
[17,18,21]. Activated microglia numbers were quantified
in the DG and CA3 area as previously described [18,29].
For mouse i.c.v. AP peptide studies activated microglia
were identified and labeled with rabbit anti-CD11b
(1:200; Chemicon, Temecula, CA). Fuoro-Jade B, a
fluorochrome, was used to aid in the quantification of
degenerating neurons in the dentate gyrus [33,34]. For
mouse 3xTg-AD studies activated microglial cells in the
subiculum and CA1l region were visualized using an
anti-CD68 (Serotec) primary antibody.

Morris water maze test

Spatial learning and memory were assessed using the
Morris Water Maze. The target platform was submerged
1 cm below the water surface and placed at the midpoint
of one quadrant. Visual cues were placed around the
tank to orient the mice. The acquisition training sessions
took place over 4 days (for i.c.v. AP peptide-injected
mice, 3 days after AP administration) or over 6 days (for
3xTg-AD mice, 4 to 5 weeks after initiation of drug
treatment). The memory retention assessments were
performed at 24 h (AP peptide-injected mice) or at 4
and 24 h (3xTg-AD mice) after the last training session.
The variables of interest were mouse reference memory,
the time spent in the platform area and the number of
platform crossings. These events were recorded and ana-
lyzed to determine age- and drug-related differences be-
tween the groups.

Western blotting

Secreted APP levels were measured by Western blotting of
equal volumes of harvested culture media after separation
in a 10% Bis-Tris protein gel and probed with an antibody
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that recognizes all forms of APP (22 C11; Millipore, Biller-
ica, MA). For 3xTg-AD mouse studies protein from each
sample was separated by electrophoresis in Criterion gels
(BioRad), then the transferred proteins were probed for
APP (clone 6E10, Covance, Emeryville, CA), phospho and
non-phospho tau (Thermo Scientific, Rockford, IL); SNAP
25 (Millipore), and synaptophysin (Santa Cruz Biotechnol-
ogy, Santa Cruz, CA). Protein signals were obtained by
chemiluminescence substrate methods, and signals were
normalized to B-actin (GE/Amersham) [35,36].

Statistical analysis

GraphPad Prism software was used to perform the stat-
istical analysis of the following variables: plasma and
CNS TNF-a levels; hippocampus TNF-a mRNA; Morris
Water Maze platform escape latency; time spent in
quadrants and platform crossings. A one-way ANOVA
was performed on each group followed by a Bonferroni’s
post test or a Fisher’s post-hoc test, where appropriate.
For two-group comparisons, unpaired Student’s t-tests
were carried out. One-way ANOVA was performed for
variables measured from RAW 264.7 cells, TNF-a, ni-
trite and sAPP, and were followed by Bonferroni’s post
hoc tests, where appropriate. For the immunostaining
analysis, the control and experimental groups were the
independent variable, and the percentages of neurons
expressing Arc or activated microglia from various cat-
egories were the dependent variables. When an ANOVA
was significant (p <0.001), individual between-group
comparisons were performed with Bonferroni’s post hoc
tests to correct for multiple comparisons. Statistical ana-
lyses are provided in each figure legend and, where ap-
propriate, involved one- or two-tailed t-tests for specific
comparisons.

Results

3,6-Dithiothalidomide attenuates the synthesis of
inflammatory mediators in vitro and in vivo

The lipophilic, small molecular weight (mw: 290), TNF-a
synthesis-lowering agent 3,6'-dithiothalidomide [27] was
utilized in a series of studies aimed at assessing the role of
TNF-a on neuroinflammation directed at an AD-like
phenotype. RAW 264.7 cells treated with LPS recapitulate
aspects of microglial cells observed in neurodegenerative
diseases exemplified by AD. A challenge of RAW 264.7
cells with increasing concentrations of LPS induced a dose-
dependent generation of TNF-a protein (Figure 1A), nitrite
an intermediate of nitric oxide metabolism (Figure 1A) and
the secretion of amyloid precursor protein (sAPP) into cul-
ture media, suggestive of an upregulated processing of APP
(Figure 1B). These changes occurred without loss of cell
viability (Figure 1B). Pretreatment of cells with 3,6'-
dithiothalidomide prior to LPS (10 ng/ml) administration
reduced the synthesis of each factor in a dose-dependent



Tweedie et al. Journal of Neuroinflammation 2012, 9:106 Page 5 of 16
http://www.jneuroinflammation.com/9/1/106

12000 7 s THE - 5 £ 250 =;Appmcu}
= EENitrin = Cell Viabilit
E 10000 itrite 3 _g _ 200 iability
— [
g 8000 g  Zwis
— 6000 @ 38
2 v S 100
i 4000 = B
= 1 m =
= 2000 = g 50
z o
0 < 0
CNT 03 06 1 10 30 i, CNT 03 06 1 10 30
LPS concentration (ng/ml) LPS concentration (ng/ml)
. APP (22011)
— I THE - L
g 120 -Nilrif(e é- 120 B Cell Viability
2 00 £ 100
- 58—
£ T 80 > % 8
£ 26 TS e
(1]
; S 40 ':‘ K a0
m = & s
3~ 20 2 20
£ o g o
= CNT 1 10 20 30 CNT 1 10 20 30

Drug concentration (M) Drug concentration (M)

m
9]

. eh - LPS

100000f = 0rug + LPS 15.0

125

LE 2
g B

TNF-a. / GAPDH ratio ™
(fold change)
s

Plasma TNF-a
(pe/ml)
TNF-c (% Change)

B

g

30 60 90 120 180 240 " CNT  Veh+LPS Drug+LPS CNT  VehsLPS DrugslPS
Time (min)

Figure 1 Pretreatment with 3,6"-dithiothalidomide significantly attenuates LPS-induced elevations in TNF-a in vitro and in vivo. (A)
Increasing concentration of LPS in RAW 264.7 cells induced a dose-dependent elevation in TNF-a and nitrite levels. (B) In the same cells, LPS
induced increases in media sAPP levels (n=3); no cell toxicity was observed. (C) Pretreatment of cells with 3,6-dithiothalidomide lowered the
levels of TNF-a and nitrite-induced by LPS (n=3-4). (D) Likewise, in the absence of toxicity the drug reduced the levels of sAPP. (E) The effects of
intraperitoneal administration of LPS + pretreatment with 3,6"-dithiothalidomide on rat plasma TNF-a levels over a 4-h time course are shown. LPS
induced a marked elevation of plasma TNF-a protein (n=7-9), which was significantly reduced by drug (n=4-5). (F) Compared to control (n=6),
at 4 h, there was a marked LPS-induced increase in the levels of hippocampus TNF-a mRNA (n=9). Pretreatment with drug significantly
attenuated the LPS-induced expression of TNF-a mRNA (n=5). (G) In line with LPS-induced systemic elevations in TNF-a, CNS TNF-a levels were
likewise significantly elevated. 3,6"-Dithiothalidomide fully ameliorated this increase and restored CNS TNF-a levels to baseline. Data are expressed
as mean + SEM of n observations; levels of statistical significance are indicated as follows: *P < 0.05, **P < 0.01, ***P < 0.001.

manner (Figure 1C and D), likewise without loss of cell via-  assessed. To recreate the hostile brain microenvironment
bility (Figure 1D). The action of 3,6'-dithiothalidomide was  associated with chronic neuroinflammation, we utilized the
additionally assessed in an acute in vivo rodent LPS model.  properties associated with direct chronic CNS infusion of a
Rats challenged with systemic LPS (i.p.) displayed a marked  small quantity of LPS in rats. This infusion, with and with-
time-dependent increase in plasma TNF-a protein that was  out systemic 3,6 -dithiothalidomide treatment, was well tol-
significantly attenuated by pretreatment with the agent erated. When animals were allowed to explore an open
(Figure 1E). Notably within the CNS, hippocampal TNF-a  field arena for 10 min, no differences were observed in ei-
mRNA levels (Figure 1F) were elevated by LPS and mark-  ther speed or exploration pattern (Figure 2A), indicating
edly suppressed by drug treatment, as were TNF-a protein  that such treatments had no impact on levels of anxiety or

levels (Figure 1G). motility of animals. However, chronic i.c.v. LPS did induce

a significant increase in the number of granule cells expres-
3,6"-Dithiothalidomide treatment reduces LPS-induced sing the plasticity-related immediate early gene (IEG) Arc
chronic neuroinflammation and restores LPS-mediated within the suprapyramidal blade of the dentate gyrus
abnormal hippocampal neuronal plasticity (Figures 2B and 3) compared to aCSF animals. No differ-

The potential benefits of lowering TNF-a levels on ences were observed within the infrapyramidal blade (not
neuroinflammation-induced altered neuroplasticity were  shown). The IEG Arc is required for synaptic plasticity and
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Figure 2 Fourteen days after chronic intracerebroventricular
infusion of LPS in rats, an altered state of neuronal plasticity
and an elevated number of OX-6 positive microglial cells were
observed in the hippocampus. Co-administration of 3,6
dithiothalidomide suppressed these effects of LPS. (A) After

14 days co-administration of LPS (i.c.v. [40]) with 3,6™
dithiothalidomide (i.p), no differences in the time spent in the outer
and inner zone of an exploration chamber were observed between
the treatment groups. In each animal cohort the rodents displayed a
preference for the outer zone rather than the inner zone. The mean
time spent in the two zones over the first 3 min of a 10-min
exploratory period is shown (aCSF + Veh n=1; n=4-9). (B) The
effects of the 10-min behavioral assessment on the immediate early
gene. Activity regulated cytoskeletal protein (Arc) gene expression in
the upper blade of the hippocampal neurons is presented; in situ
hybridization data indicate that there was an increase in the number
of neurons expressing Arc mRNA in LPS + vehicle-treated animals.
The behavior-LPS-induced elevation was prevented by treatment
with 3,6"-dithiothalidomide (n=4-9). See Figure 3 for representative
images of Arc staining. (C) LPS administration induced a significant
increase in numbers of OX-6 positive microglial cells, while
treatment with 3,6"-dithiothalidomide prevented this effect of LPS.
See Figure 4 for representative images of activated microglia
staining. Data are expressed as mean + SEM of n observations; levels
of statistical significance are indicated as follows: *P < 0.05.

Arc mRNA expression
aCSF + vehicle

LPS + vehicle

LPS + 3,6’ -dithiothalidomide

Figure 3 3,6'-Dithiothalidomide (56 mg/kg i.p.) treatment
attenuates the aberrant expression of Arc mRNA induced by
intercerebroventricular administration of LPS after a uniform
level of behavioral activity. Representative flat images of neurons
labeled for Arc mRNA (red) within the DG, after behavioral
exploration of a novel environment for 10 min. Nuclei are
counterstained in green. The upper panel illustrates the numbers of
Arc positive (+ve) cells in animals infused with aCSF and treated
with drug vehicle. The middle panel displays the numbers of Arc +
ve cells in LPS-infused, vehicle-treated animals. The lower panel
shows the numbers of Arc + ve cells in LPS-infused, drug-treated
animals. The scale bar indicates 100 pm.

is essential for memory processing [37,38]; behaviorally
induced Arc expression within the hippocampus is signifi-
cantly modified by chronic inflammation [39]. Notably, the
centrally mediated LPS-induced disturbances in Arc ex-
pression were abolished by systemically administered 3,6'-
dithiothalidomide. In parallel with Arc mRNA levels, the
number of OX-6 positive (MHC class II) microglial cells
was markedly elevated in LPS-treated animals, whereas
drug treatment prevented this rise (Figures 2C and 4). Fur-
thermore, GFAP immunofluorescence staining indicated a
marked upregulation in both the number and activated
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Activated microglial cells
(OX-6 +ve cells)

LPS + vehicle

LPS + 3,6’-dithiothalidomide

Figure 4 3,6"-Dithiothalidomide (56 mg/kg i.p.) treatment
suppresses the activation of microglial cells induced by the
intercerebroventricular administration of LPS. Representative flat
images of staining for activated microglial cells in the dentate gyrus
(DG) and CA3 areas of rat hippocampus are shown. The upper panel
illustrates high numbers of activated microglial cells after treatment
with LPS. The lower panel illustrates that drug treatment attenuates
the numbers of LPS-induced activated microglia. Microglia are
stained red; nuclei are counterstained green. The scale bar indicates
100 pm.

\

morphology of astrocytes in response to LPS treatment;
these effects likewise were significantly attenuated by 3,6'-
dithiothalidomide (Figure 5).

3,6"-Dithiothalidomide treatment attenuates the effects of
central administration of toxic AB,_4, peptide on
behavior, cell viability and microglia activation

The direct administration of aged AP peptide, allowing
its oligomerization, into the CNS of wild-type (wt) mice,
was undertaken to emulate the inflammatory micro-
environment of the AD brain. In our study, a single i.c.v.
administration of AP;_ 4, was undertaken 7 days after
the initiation of a daily schedule of systemic (i.p.) 3,6'-
dithiothaliomide, utilizing a dose determined to be ef-
fective to ameliorate LPS-induced CNS elevations in
TNF-a in the prior studies. Control animals were

GFAP staining

LPS + vehicle

X20

LPS + 3,6’-dithiothalidomide

X20

Figure 5 3,6-Dithiothalidomide (56 mg/kg i.p.) treatment
reduces the activation of astrocyte cells induced by the
intercerebroventricular administration of LPS. Representative
images of GFAP + ve cells in a field of view of the granule cell layer
of the hippocampus are shown. The upper left panel (x20 objective
magnification for both treatments) illustrates the highly activated
numbers and morphology of astrocytes after the administration of
LPS; the smaller image is a higher magnification of a section from
the same image (x63 objective magnification, for both treatments).
The lower panel illustrates how drug treatment markedly reduces the
activated morphology of astrocytes after treatment with LPS;
similarly to the above, this effect is further illustrated in the higher
magnification side image. Astrocytes are stained red, whereas nuclei

are counterstained green.

administered reverse peptide (with or without similar
3,6 -dithiothalidomide treatment). As illustrated in
Figures 6A and B, AP, 4, alone induced a marked deficit
in the learning ability of mice in the Morris Water Maze
paradigm (for both acquisition and retention). This was
accompanied by neuronal degeneration (assessed by
Fluoro-Jade B staining) and an increased presence of
CD11b-positive staining microglial cells within the den-
tate gyrus (DG) of the same animals (Figure 6C, D and
E). Treatment of mice with 3,6'-dithiothalidomide, prior
to AP;_4p, markedly mitigated the actions of this toxic
peptide. Specifically, drug-treated animals performed at
a level similar to control mice in the Morris Water
Maze, and showed evidence of reduced levels of both
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Figure 6 3,6-Dithiothalidomide (56 mg/kg i.p.) prevented AB,_;, peptide-induced memory defects, neuronal cell degeneration and
associated elevated CD11b staining of microglial cells. After 7 days of drug administration, aggregated AB;_,, peptide was administered
directly into the CNS (and reverse peptide AB4,-; was utilized as a control) (for aggregation/aging process, see [32,41]). Mouse memory function
was assessed by the Morris Water Maze; escape latencies measured over a 4-day trial period (A) and the final assessment undertaken 24 h after
the last training session are shown (B, n=28). (C) After the completion of behavioral assessments mice were euthanized, and the levels of
neuronal degeneration were indicated by determining the level of Fluoro-Jade B labeling in the dentate gyrus; AB;_4, peptide induced a
significant degree of dye incorporation that was attenuated by 3,6'-dithiothalidomide (n=3-4). (D) Numbers of CD11b-positive cells in the CA3
hippocampus region were determined to be elevated only in the vehicle + AB;_4, group (n=3-4). (E) Representative photomicrographs of
Fluoro-Jade B-positive neurons in the dentate gyrus of control (vehicle-treated AB,4,_;-injected) mice, vehicle-treated AB;_4,-injected mice and
3,6-dithiothalidomide-treated AB;_4>-injected mice. *Indicates comparisons with control (vehicle-treated AP4,_j-injected) mice; #indicates
comparisons with 3,6-dithiothalidomide-treated AB;_4»-injected mice (n=3-4). Data are expressed as mean + SEM of n observations; levels of
statistical significance are indicated as follows: * or #P < 0.05, ** or ##P < 0.01, *** or ###P < 0.001.

E
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neuronal degeneration and CD11b positive microglial These two age ranges were selected based on prior stud-
cells in comparison to AP;_4, alone mice. No differences  ies [36,42] demonstrating that the line of 3xTg-AD mice
were evident between mice administered Af,,_; with or utilized in our study, which had been backcrossed onto a
without drug treatment in any of the measured C57BL/6 background for seven generations, presented

parameters. with brain AD pathology at 16 months age. Our chosen
age groups hence can be considered to be prior to and

3,6"-Dithiothaliomide, administered daily for 6 weeks, post the onset of evident significant AD pathology, and

normalized age-associated biochemical, cellular and these 3xTg-AD mice were administered 3,6'-dithiothali-

behavioral features of AD observed in the 3xTg-AD domide or vehicle for 6 weeks thereafter.

mouse model Following the final assessment of mouse learning and

Mice containing three transgenes (APPgye+ PSly46v+  memory, animals were euthanized and various brain bio-
taupsoyr) associated with AD [15] were utilized to assess  chemical measures were undertaken. As assessed in the
the effects of 3,6 -dithiothalidomide on two distinct age  cerebral cortex, a trend to an elevated level in total APP
groups of animals, of 10 and 17 months age at study (6E10) was evident when comparing adult vehicle with
onset, referred to here as adult and old, respectively. old vehicle animals (Figure 7A). 3,6 -Dithiothalidomide
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Figure 7 3,6-Dithiothalidomide (42 mg/kg i.p. once daily x 6 weeks) attenuated age-associated changes in hallmark features of AD in
old 3xTg-AD animals. Two cohorts of 3xTg-AD mice, adult and old, were evaluated after a 6-week regimen with daily administration of 3,6™
dithiothalidomide or vehicle. After completion of the Morris Water Maze assessment animals were euthanized, and the levels of hallmark features
of Alzheimer's disease were assessed. (A) Treatment with drug (n=9) significantly reduced the levels of total APP in the old animals vs. old
control animals (n=7). (B) Cortical soluble AB; 4, levels were increased in the old + control animals compared to younger adult + control (n=7-
9, P<0.01). Drug treatment reduced the soluble AB;_4, in the old mice (n=8), but not in younger adult ones. (C) Levels of total tau protein were
lower in old control animals compared to younger adult control mice; however, drug treatment had no effect on total tau levels in either age
group. (D) Phosphorylated tau protein levels were elevated in old animals compared to younger adult animals (n =8-9). Treatment of the old
animals with drug reduced levels of phosphorylated tau protein. The levels of SNAP 25 (E) and synaptophysin (F) were elevated in old drug-
treated mice (P<0.01 and P < 0.05, both n=7-9, respectively), compared to old vehicle animals. Data are presented in percent change from
appropriate control terms and are expressed as mean + SEM of n observations; levels of statistical significance are indicated as follows: *P < 0.05,
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proved to be well tolerated by 3xTg-AD mice, and low-
ered total APP levels by 19% and 43% in adult and old
mice compared to their respective vehicle controls
(Figure 7A). Examination of soluble AB;_4, levels indi-
cated a marked age effect (Figure 7B), with old vehicle
controls expressing levels 143% of adult ones. This ele-
vation was fully inhibited by 3,6'-dithiothalidomide,
whose levels were similar to adult control and drug-
treated mice (Figure 7B). Total tau protein levels were
reduced (23%) in old vehicle animals compared to adult
ones, and were unaffected by drug treatment
(Figure 7C). However, levels of phosphorylated tau pro-
tein presented a strong age-associated rise (176% of
adult controls) that, similarly to soluble AB;_4, protein,

was attenuated by drug treatment in the older group
(Figure 7D). Interestingly, the levels of two synaptic mar-
kers, SNAP25 and synaptophysin, which showed a trend
to decline in the old vehicle control group (90% and 93%
of respective adult vehicle levels) were found to be sig-
nificantly elevated (19% and 37%, respectively) in old
drug-treated mice compared to old vehicle ones
(Figures 7E and F).

Immunohistochemical staining of insoluble A plaques
indicated marked plaque formation only in the old
3xTg-AD mice; this AP plaque staining was dramatically
reduced by drug treatment (Figure 8A). Memory func-
tion, assessed by the Morris Water Maze, illustrated a
deficit in learning and acquisition of the location of the



Tweedie et al. Journal of Neuroinflammation 2012, 9:106
http://www.jneuroinflammation.com/9/1/106

Page 10 of 16

Adult Control

A

Old Control

20 { 5 Adult Control
&= pdult Drug

10 { ~@-old Control
—#-0ld Drug

Latency (seconds)
w
(=]

a5
a.04

3.54 T
3.01 T
2.54

2.04
1.54
1.01 *

0.54
0.0

Number of platform crossings )

Icof'ltml Dr'ugl Control  Drug,
Adult old

Figure 8 3,6-Dithiothalidomide (42 mg/kg i.p. once daily x 6 weeks) attenuated age-associated AR plaque deposition, memory deficits
and indices of neuroinflammation in the subiculum and CA1 region of the hippocampus in the elder of two cohorts of 3xTg-AD mice.
(A) Male 3xTg-AD mice displayed an age-dependent increase in AR plaque deposition; drug treatment reduced the numbers of AR plaques in
the older (old) animals. Upper panel: in younger adult (adult) animals (approximately 11.5 months of age at the time of death) few if any AR
plaques were detectable by immunohistochemical methods. However, in old animals (approximately 18.5 months of age at the time of death)
male 3xTg-AD mice presented marked deposition of AR plaques that were markedly reduced by drug treatment. Representative brain sections
illustrating the levels of AR plague formation detected in the adult and old animals and the effects of 6 weeks of 3,6-dithiothalidomide on
plagques are shown. (B) Morris Water Maze training over 6 days with four trials per day revealed a significant interaction between age and
treatment (F(1,33)=4.77; P < 0.0360). In addition a main effect of treatment was observed F(1,33)=5.34; P < 0.0272 (n=7-9); specific comparisons
showed that drug treatment attenuated the learning deficits observed in the old group. (C and D) Probe trial performed 4 h after the last
training session on day 6 showed an interaction between age and drug treatment F(1,33) =4.60; P < 0.0393. Treatment: F(1,33) =4.26; P < 0.0468.
This indicated that drug-treated old mice were able to remember the location of the submerged platform more akin to that of the adult mice,
age and treatment for time in target zone: F(1,33)=4.60; P < 0.0393; treatment: F(1,33) =4.26; P < 0.0468. (E) The numbers of CD68 positive
microglial cells were significantly elevated in the old vehicle-treated mice compared to the drug-treated old and both sets of adult mice. Data are
expressed as mean + SEM of n observations; levels of statistical significance are indicated as follows: *P < 0.05, **P < 0.01, ***P < 0.001.
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hidden platform in old vehicle control mice during train-
ing (Figure 8B and C). Probe trial data obtained 4 h fol-
lowing their final training session indicated that these
old vehicle control animals failed to remember the loca-
tion of the platform, as illustrated by the low time spent
within the target zone as well as by the low number of
platform  crossings (Figure 8C and D). 3,6'-

Dithiothalidomide abolished this age-associated memory
deficit (Figure 8B, C and D), with treated mice perform-
ing on par with adult vehicle control and drug-treated
animals.

The levels of CD68-positive microglial cells within the
subiculum and CA1l brain region were quantified as a
marker of the inflammatory microenvironment in the
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hippocampus, as these regions are among those showing
the highest concentration of AP plaque staining
(Figure 8A). CD68-positive microglial cells were signifi-
cantly elevated in number (three-fold) only within old
vehicle control mice, and this rise was fully abolished by
the drug (Figure 8E). Hence, treatment with 3,6'-
dithiothalidomide induced a marked normalization of
key biochemical, learning and memory features of AD in
old 3xTg-AD mice.

Discussion

Here we demonstrate that the TNF-a-lowering agent,
3,6 -dithiothalidomide, ameliorates key aspects of neu-
roinflammation in multiple acute and longer term CNS
rodent models. Importantly, several of these models
emulate specific cardinal characteristics of AD, and high-
light the complex cyclic interaction among the synthesis
of TNF-q«, the development of neuroinflammation and
impact on disease progression, inducing its advance-
ment. Our data suggest that breaking this cycle by low-
ering TNF-a generation and neuroinflammation can
favorably impact AD, as assessed at both a behavioral
and biochemical level, even late during the disease
course. Our studies hence reinforce the significant role
of neuroinflammation in AD and other degenerative
neurological disorders, and highlight the potential for
targeting TNF-a.

TNEF-a has been implicated in the pathogenesis of a
wide number of neurological disorders, including AD,
PD, stroke and head trauma [5-12]. Indeed, TNF-a levels
have been found to be elevated within the CSF of AD
patients by as much as 25-fold [43], in line with substan-
tial elevations in TNF-a synthesis that were rapidly
induced in RAW 264.7 cells and animals challenged with
LPS (Figure 1A,E,FG). Studies in subjects with mild cog-
nitive impairment (MCI) that progress to develop AD
suggest that increased CSF TNF-a levels are an early
event, and their rise correlates with disease progression
[44]. In accord with this, Janelsins and colleagues [23]
noted an elevated expression of TNF-a transcripts
within the entorhinal cortex of 3xTg-AD mice at
2 months, prior to the appearance of amyloid and tau
pathology, and this increase correlated with the onset of
cognitive deficits in these mice [45]. These studies, to-
gether with others demonstrating that (1) TNF-a poly-
morphisms that elevate TNF-a production may increase
AD risk, particularly in patients carrying one or more
apolipoprotein E €4 alleles [46-49], and that (2) genetic
ablation of TNF-a receptor 1 (TNFR1) in APP23 AD
mice [50] or a selective lowering of soluble TNF-a brain
levels in 3xTg-AD mice [25] reduces AD progression,
support the concept of TNF-a inhibition strategies for
treatment of AD [10,51,52].
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Protein-based TNF-a inhibitors (etanercept and inflixi-
mab) that can effectively regulate circulating TNF-a
levels by binding them [53] have provided a means to
initially target brain TNF-a in AD, and perispinal etaner-
cept administration followed by Trendelenburg position-
ing in a small prospective open-label pilot study has
been reported to provide a rapid onset of cognitive im-
provement [54]. TNF-a levels can also be regulated at
the level of synthesis, which is tightly controlled at the
level of mRNA stability to facilitate rapid responses to
exogenous and endogenous stimuli [55], as occurs with
LPS and AP challenge, respectively, and hence is amen-
able to regulation by small-molecular-weight drugs. The
presence of adenylate-uridylate-rich elements (AREs)
within the 3"-UTR of TNF-a« mRNA supports the poten-
tial for post-transcriptional repression, targeting it for
rapid degradation or inhibition of translation. This is
mediated through interactions with RNA-binding pro-
teins (RBPs), epitomized by HuR, which binds and stabi-
lizes ARE-containing transcripts and conveys them to
translational machinery to upregulate protein synthesis
and, conversely, by tristetraprolin, which aids the accel-
eration and degradation of bound mRNAs [56-59].

Exogenous signals, as arise from exposure to bacterial
proteins, potently induce inflammatory responses within
the CNS in a manner mimicked by RAW 264.7 cells
challenged with LPS [28]. The resulting elevation in
TNF-a derives from an LPS-mediated increase in the
half-life of TNF-a mRNA, allowing release of its transla-
tional repression. By contrast, translational blockade can
be induced by small-molecular-weight compounds, such
as thalidomide, which induce a shortening of the TNF-a
mRNA half-life [55]. In this regard, 3,6 -dithiothalido-
mide is a more potent TNF-a-lowering thalidomide
analogue that acts at the level of the 3'UTR of TNF-a
[27,60]. As is evident in Figure 1, LPS challenge to RAW
264.7 cells or animals activated toll-like receptors (TLR),
and induced the generation of TNF-a and nitrite, a
stable surrogate marker of highly unstable nitric oxide
production. APP levels also were elevated, in line with
prior studies [61] that additionally describe rises in inter-
leukin (IL)-1, 6 and 12, and cyclooxygenase-2 [62]. 3,6'-
Dithiothalidomide dose-dependently lowered LPS-
induced TNF-q, nitrite and APP levels in the absence of
cellular toxicity in RAW 264.7 cells, in contrast to thal-
idomide, which proved ineffective at concentrations up
to 30 uM (not shown), but has been reported to lower
APP levels in PC12 and SH-SY5Y neuronal cell lines
[63]. This action of 3,6'dithiothalidomide effectively
translated to both a systemic LPS challenge in vivo, low-
ering systemic and central TNF-a expression (Figure 1E-
@), as well as to a central LPS challenge.

Administered to brain, LPS reliably induces chronic
neuroinflammation associated with the activation of
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microglia, which is allied to impaired hippocampal-
dependent spatial cognitive function [17,18,21]. In the
present study this was achieved by the slow continuous
infusion of a low dose of LPS into the fourth ventricle of
the brain, which produced microglia activation within
the hippocampus and, importantly, induced abnormal
Arc expression in response to a simple behavioral task
(Figures 2 and 3). The activity-regulated, cytoskeleton-
associated IEG Arc is a key regulator of protein
synthesis-dependent forms of synaptic plasticity, which
are fundamental to memory formation [37,64,65]. In
healthy brain, Arc protein functions in a transient man-
ner, and its abnormally elevated sustained expression, as
occurs during neuroinflammation, may generate synaptic
noise and thereby impair long-term memory formation
[64]. Co-administration of systemic 3,6'-dithiothalido-
mide, which has been reported to readily enter the brain
(brain/plasma ratio 1.34) [30] and reversed an acute
LPS-mediated  increase in  TNF-a  expression
(Figure 1G), fully inhibited LPS-induced activation of
microglia and the resulting altered coupling of neural ac-
tivity with de novo synthesis of Arc (Figures 4 and 3, re-
spectively). A similar dose of 3,6'-dithiothalidomide has
recently been described to normalize the expression of
Arc and to restore the acquisition and consolidation of
spatial memory impairments in a fully established model
of neuroinflammation [29], in which LPS was adminis-
tered to rodents for a full 28 days prior to drug treat-
ment (rather than in parallel with drug treatment, as in
the present study). In this study by Belarbi et al. [29],
3,6 -dithiothalidomide normalized LPS-induced eleva-
tions in brain TNF-a expression, but not IL-1, and add-
itionally normalized the expression of specific genes
involved within the TLR-mediated signaling pathways
(in particular, TLR2, TLR4, Hmgb1 and IRAK1) that are
established to lead to elevated TNF-« expression [66].
Ap, particularly in the form of soluble oligomeric as-
semblies or AP-derived diffusible ligands (ADDLs) [67-
69], has been described to target synapses, induce neur-
onal dysfunction and impair cognition. Its administra-
tion into the lateral ventricle of mice has been widely
used to model neuroinflammation and induce these AD-
related impairments [32,70-72], which in the present
study resulted in the activation of microglia and neur-
onal degeneration within the DG, accompanied by a
learning impairment in the Morris Water Maze para-
digm (Figure 6). Pretreatment of animals with 3,6'-
dithiothalidomide markedly inhibited each of these
aspects and, together with our prior studies, suggested
that the agent could prove of value in Tg models of AD
that, like the human condition, increasingly develop neu-
roinflammation during disease progression [23,24]. This
hypothesis was tested in two cohorts of 3xTg-AD mice
of 10 and 17 months age, chosen to represent times that
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in our specific line coincided with the pre- and post-
development of amyloid plaques and neurofibrillary tan-
gles, as the presence of activated microglia in close prox-
imity to amyloid plaques is a cardinal feature of AD-
afflicted brain [73].

The pre-pathological upregulation of TNF-« and asso-
ciated enhancement of activated microglia have been
reported in the 3xTg-AD mouse model [23,25], and it
has been postulated that these activated immune cells
are key in the process of clearing extracellular Ap [62].
A potential consequence of heightened AB exposure,
however, is microglia TLR4 stimulation and a resultant
upregulation of cytokine production and release [74].
TNF-a as well as IL-1p can correspondingly elevate A
generation by stimulating y-secretase activity [24,75], po-
tentially spawning a self-propagating positive feedback
loop of AP induction of inflammation and TNF-a signal-
ing that, in turn, may provoke further AB generation
[5,6,9,10,62]. In our study, in accord with the literature
[24], activated microglia were markedly elevated in old
versus adult vehicle-treated 3xTg-AD mice (Figure 8E),
which additionally presented with a significant elevation
in brain AB;_4» and phosphorylated tau levels, a decline
in total tau and a trend towards elevation of APP levels
(Figure 7). A substantial accumulation of extracellular
amyloid plaques was clearly evident within the cerebral
cortex and hippocampus of old versus adult 3xTg-AD
mice, which was accompanied by deficits in learning and
memory, as assessed within the Morris Water Maze
paradigm (Figure 8). The administration of 3,6'-
dithiothalidomide to old 3xTg-AD mice reversed each of
these parameters, significantly reducing AP;_4», phos-
phorylated tau and APP levels, lowering levels of acti-
vated microglia and fully ameliorating memory deficits
(Figures 7 and 8), which were accompanied by an eleva-
tion in synaptic protein markers (Figures 7E and F).
These drug-induced changes are in line with studies by
McAlpine and colleagues [25], demonstrating that block-
ade of TNF-a signaling (either by viral vector-mediated
expression of TNFR constructs or by crossing 3xTg-AD
mice with TNFR1 knockout mice) significantly sup-
pressed AD pathology. Importantly, our studies add-
itionally demonstrate that cognitive deficits that
accompany the classical pathology of AD appear to be
reversible, at least in the 3xTg-AD mouse model.

A caveat with this 3xTg-AD mouse model, like all such
models, is that it provides a partial model of the human dis-
ease. APP and tau expressions (specifically, human APPg;,.
and human taupsg;r) are driven in the 3xTg-AD model by
the unnatural mouse Thyl.2 regulatory element [22].
Hence, the possibility that some actions of 3,6’-dithiothali-
domide may be mediated via suppression of this unnatural
transgene promoter cannot be ruled out. Importantly, how-
ever, the action of 3,6'-dithiothalidomide to favorably lower
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APP levels as well as neuroinflammation in cellular studies
(Figure 1) occurred in cells controlled by their natural en-
dogenous regulatory elements, and wt rodents were used in
all other studies.

TNE-a has been shown to regulate numerous cellular
processes, not only inflammation and cell death, but also
cellular differentiation and survival, and achieves this by
binding and activating two cognate receptors, TNFR1
(p55) and TNFR2 (p75) [76]. TNFR1, expressed ubiqui-
tously including on neurons, astrocytes and microglia,
possesses an intracellular death domain and contributes
to neuronal dysfunction and death following activation
by soluble TNF-a ([77], whereas TNFR2, principally
expressed on cells of hematopoietic origin but also on
neurons, has been associated with cell survival [76,78-
80] and chiefly responds to membrane-bound TNF-a
[81,82]. The engagement of homotrimeric TNF-a to ei-
ther receptor can activate three major signaling path-
ways: an apoptotic cascade initiated via the TNF-«
receptor-associated death domain, a nuclear factor kappa
B (NFxB) signaling pro-survival pathway implemented
via NFkB-mediated gene transcriptional actions, and a
JNK (c-Jun N-terminal kinase) cascade involved in cellu-
lar differentiation and proliferation that is generally pro-
apoptotic [62]. In large part, although the contrasting
pro-survival versus death-inducing actions of TNF-a
plausibly rely on the TNF-a receptor subtype activation,
the target cell types involved and their expression ratio
of TNFR1/2 and associated coupling proteins, the tem-
poral levels of available soluble and membrane-bound
TNF-a [79], and the scale and duration of neuroinflam-
mation combine in determining the eventual physio-
logical consequences of TNF-a receptor activation
[5,6,9,10,62]. Consequent to the diverse actions of TNEF-
a and the influence of the brain microenvironment in
which they occur, it is hence not always clear under
which conditions TNF-a promotes beneficial versus
deleterious neuronal actions, and this, in large part,
accounts for how an initially pro-survival response may
develop into a pro-apoptotic one.

Under appropriate conditions TNF-«a signaling, pri-
marily via TNFR2, can mediate homeostatic actions, epi-
tomized by its role in AMPA receptor surface expression
and synaptic scaling to impact LTP [83], as well as neu-
roprotective ones [9,10]. The genetic ablation of TNFR1
and -R2 in 3xTg-AD mice has been described to increase
the progression of AD pathology [84]. Furthermore,
TNF-a has a reported role in hippocampal development
and function [85] and, with the expression of both
TNEFR1 and -R2 on neuronal progenitor cells, it can
modulate neurogenesis within the hippocampal neurons
under pathological conditions [86-89]. The finding that
adult 3xTg-AD mice were not detrimentally impacted by
3,6 -dithiothalidomide suggests that such homeostatic
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actions of TNF-a signaling were largely unimpaired, al-
though clearly substantial classical preclinical toxico-
logical studies are warranted before the agent can be
considered for clinical use.

Conclusion

In synopsis, the present data demonstrate the key role of
TNF-a in acute and chronic neuroinflammatory models
that have relevance to neurodegeneration and, in par-
ticular, to AD and its progression. The TNF-a synthesis
inhibitor 3,6’-dithiothalidomide, administered at doses
that compare favorably to those of thalidomide in
human studies (100 to 1,200 mg daily [90]), appears to
advantageously reset the delicate balance between the
pro- versus anti-apoptotic actions of this signaling cas-
cade in the brain. This resulted in an inhibition of neu-
roinflammation and reduced AD progression in 3xTg-
AD mice, and thereby supports the feasibility of target-
ing TNF-a as a potential treatment strategy for AD and
other neurological disorders involving a neuroinflamma-
tory component.

Abbreviations

AREs: adenylate-uridylate-rich elements; AD: Alzheimer’s disease; ADDLs: amyloid-
B-derived diffusible ligands; AB: amyloid-f peptide; aCSF: artificial cerebrospinal
fluid; CSF: cerebral spinal fluid; CNS: central nervous system; DG: dentate gyrus;
DMSO: dimethy! sulfoxide; GFAP: glial fibrillary acidic protein; IEG: immediate early
gene; IL: interleukin; IP: interperitoneal; ICV: intracerebroventricularly; JNK: c-Jun N-
terminal kinase; LPS: lipopolysaccharide; LTP: long-term potentiation; MCl: mild
cognitive impairment; MW: molecular weight; NFkB: nuclear factor kappa B;

PD: Parkinson’s disease; RBPs: RNA-binding proteins; SAPP: secreted amyloid
precursor protein; TNF-a: tumor necrosis factor-alpha; TNFR1: TNF-a receptor 1;
TNFR2: TNF-a receptor 2; TLR: Toll-like receptors; WT: wild type.

Competing interests

NHG and HWH declare that they are co-inventors of the original 3,6™
dithiothalidomide patent. Having assigned all their rights to the US
government, they declare that they have no ownership, financial interest or
any other competing interests. All other authors declare no competing
interests.

Acknowledgements

This manuscript is dedicated to our friend, mentor and colleague, Arnold
Brossi (1923-2011), a godfather of alkaloid chemistry who provided
significant input into this project. This research was supported in part by the
(1) Intramural Research Program of NIA, NIH, (2) the Alzheimer's Association
grants NIRG-08-90589 (SR) and IRG-11- 202064 (SR), and (3) the National
Institutes of Health grants ROTCA133216 (SR), R01-AG18379 (DKL) and RO1-
AG18884 (DKL).

Author details

"Laboratory of Neurosciences, Intramural Research Program, National
Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
?Brain and Spinal Injury Center, University of California, San Francisco, CA
94143, USA. *Molecular Neuroscience Unit, Brain Physiology and Metabolism
Section, Intramural Research Program, National Institute on Aging, National
Institutes of Health, Bethesda, MD 20892, USA. *Division of Biology &
Genetics, Department of Biomedical Sciences and Biotechnologies & National
Institute of Neuroscience, University of Brescia, Brescia 25123, Italy.
®Laboratory of Molecular Neurogenetics, Department of Psychiatry, Institute
of Psychiatric Research Indiana University School of Medicine, Indianapolis, IN
46202, USA. ®National Institute of Neurological Disorders and Stroke, National
Institutes of Health, Bethesda, MD 20892, USA. “Departments of Physical
Therapy Rehabilitation Science and Neurological Surgery, University of
California, San Francisco, CA, USA.



Tweedie et al. Journal of Neuroinflammation 2012, 9:106
http://www.jneuroinflammation.com/9/1/106

Authors’ contributions

DT contributed to the design of the study, and undertook experimental
studies and biochemical analyses in Figures 1, 7 and 8, and the associated
statistical analyses. RAF and KF contributed to the experimental studies and
analyses in Figures 2, 3, 4 and 5. KAF, HVP, HWH and YL contributed to the
experimental design, and experimental studies and analyses in Figures 1, 7
and 8. WL undertook synthetic chemistry, chemical characterization and
stability assessments. LC, IR, SB and FB contributed to the experimental
design and undertook experimental studies and analyses in Figure 6. BR and
DKL undertook tissue preparations, Western blot and ELISA analyses in
Figure 7. FB, DKL, SR and NHG contributed to the study conception and
design, and experimental studies, and wrote the manuscript. All the authors
read and approved the final manuscript.

Received: 14 March 2012 Accepted: 29 May 2012
Published: 29 May 2012

References

1. McGeer PL, Itagaki S, Boyes BE, McGeer EG: Reactive microglia are positive
for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s
disease brains. Neurology 1988, 38:1285-1291.

2. Hirsch EC, Hunot S, Damier P, Faucheux B: Glial cells and inflammation in
Parkinson’s disease: a role in neurodegeneration? Ann Neurol 1988, 44:
S115-5120.

3. Nagatsu T, Mogi M, Ichinose H, Togari A: Cytokines in Parkinson’s disease.
J Neural Transm Suppl 2000, 58:143-151.

4. Liu B, Hong JS: Role of microglia in inflammation-mediated
neurodegenerative diseases: mechanisms and strategies for therapeutic
intervention. J Pharmacol Exp Ther 2003, 304:1-7.

5. Tweedie D, Sambamurti K, Greig NH: TNF-a inhibition as a treatment
strategy for neurodegenerative disorders: New drug candidates and
targets. Curr Alzheimer Res 2007, 4:378-385.

6.  Frankola KA, Greig NH, Luo W, Tweedie D: Targeting TNF-a to elucidate
and ameliorate neuroinflammation in neurodegenerative diseases. CNS
Neurol Disord Drug Targets 2011, 10:391-403.

7. Hirsch EC, Breidert T, Rousselet E, Hunot S, Hartmann A, Michel PP: The role
of glial reaction and inflammation in Parkinson’s disease. Ann NY Acad Sci
2003, 991:214-228.

8. Sawada M, Imamura K, Nagatsu T: Role of cytokines in inflammatory
process in Parkinson'’s disease. J Neural Transm Suppl 2006, 70:373-381.

9. Tansey MG, Frank-Cannon TC, McCoy MK, Lee JK, Martinez TN, McAlpine FE,
Ruhn KA, Tran TA: Neuroinflammation in Parkinson’s disease: is there
sufficient evidence for mechanism-based interventional therapy? front
Biosci 2008, 13:709-717.

10.  McCoy MK, Tansey MG: TNF signaling inhibition in the CNS: implications
for normal brain function and neurodegenerative disease. J/
Neuroinflammation 2008, 5:45.

11. Watters O, O'Connor JJ: A role for tumor necrosis factor-a in ischemia and
ischemic preconditioning. J Neuroinflammation 2011, 8:87.

12. Hallenbeck JM: The many faces of tumor necrosis factor in stroke. Nat
Med 2002, 8:1363-1368.

13.  Lahiri DK, Chen D, Vivien D, Ge YW, Greig NH, Rogers JT: Role of cytokines
in the gene expression of amyloid beta-protein precursor: identification
of a 5-UTR-binding nuclear factor and its implications in Alzheimer's
disease. J Alzheimers Dis 2003, 5:81-90.

4. Sambamurti K, Greig NH, Lahiri DK: Advances in the cellular and molecular
biology of the beta-amyloid protein in Alzheimer’s disease.
Neuromolecular Med 2002, 1:1-31.

15. Sastre M, Richardson JC, Gentleman SM, Brooks DJ: Inflammatory risk
factors and pathologies associated with Alzheimer's disease. Curr
Alzheimer Res 2011, 8:132-141.

16.  Braak H, Braak E: Neuropathological staging of Alzheimer-related
changes. Acta Neuropathol 1991, 82:239-259.

17. Rosi S, Ramirez-Amaya V, Vazdarjanova A, Worley PF, Barnes CA, Wenk GL:
Neuroinflammation alters the hippocampal pattern of behaviorally
induced Arc expression. J Neurosci 2005, 25:723-731.

18. Rosi S, Vazdarjanova A, Ramirez-Amaya V, Worley PF, Barnes CA, Wenk GL:
Memantine protects against LPS-induced neuroinflammation, restores
behaviorally-induced gene expression and spatial learning in the rat.
Neuroscience 2006, 142:1303-1315.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Page 14 of 16

Bonow RH, Aid S, Zhang Y, Becker KG, Bosetti F: The brain expression of
genes involved in inflammatory response, the ribosome, and learning
and memory is altered by centrally injected lipopolysaccharide in mice.
Pharmacogenomics J 2009, 9:116-126.

Hauss-Wegrzyniak B, Lynch MA, Vraniak PD, Wenk GL: Chronic brain
inflammation results in cell loss in the entorhinal cortex and impaired
LTP in perforant path-granule cell synapses. Exp Neurol 2002, 176:336-
341,

Rosi S, Ramirez-Amaya V, Vazdarjanova A, Esparza EE, Larkin PB, Fike JR,
Wenk GL, Barnes CA: Accuracy of hippocampal network activity is
disrupted by neuroinflammation: rescue by memantine. Brain 2009,
132:2464-2477.

Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R,
Metherate R, Mattson MP, Akbari Y, LaFerla FM: Triple-transgenic model of
Alzheimer’s disease with plaques and tangles: intracellular Abeta and
synaptic dysfunction. Neuron 2003, 39:409-421.

Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ, Bowers WJ:
Early correlation of microglial activation with enhanced tumor necrosis
factor-alpha and monocyte chemoattractant protein-1 expression
specifically within the entorhinal cortex of triple transgenic Alzheimer’s
disease mice. J Neuroinflammation 2005, 2:23.

Janelsins MC, Mastrangelo MA, Park KM, Sudol KL, Narrow WC, Oddo S,
LaFerla FM, Callahan LM, Federoff HJ, Bowers WJ: Chronic neuron-specific
tumor necrosis factor-alpha expression enhances the local inflammatory
environment ultimately leading to neuronal death in 3xTg-AD mice. Am
J Pathol 2008, 173:1768-1782.

McAlpine FE, Lee JK, Harms AS, Ruhn KA, Blurton-Jones M, Hong J, Das P,
Golde TE, LaFerla FM, Oddo S, Blesch A, Tansey MG: Inhibition of soluble
TNF signaling in a mouse model of Alzheimer’s disease prevents pre-
plaque amyloid-associated neuropathology. Neurobiol Dis 2009,
34:163-177.

Fonseca MI, Ager RR, Chu SH, Yazan O, Sanderson SD, LaFerla FM, Taylor
SM, Woodruff TM, Tenner AJ: Treatment with a C5aR antagonist decreases
pathology and enhances behavioral performance in murine models of
Alzheimer's disease. J Immunol 2009, 183:1375-1383.

Zhu X, Giordano T, Yu Q-S, Holloway HW, Perry T, Lahiri DK, Brossi A, Greig
NH: Thiothalidomides: Novel isosteric analogs of thalidomide with
enhanced TNF-a inhibitory activity. J/ Med Chem 2003, 46:5222-5229.
Tweedie D, Frankola KA, Luo W, Li Y, Greig NH: Thalidomide analogues
suppress lipopolysaccharide-induced synthesis of TNF-a and nitrite, an
intermediate of nitric oxide, in a cellular model of inflammation. Open
Biochem J 2011, 5:37-44.

Belarbi K, Jopson T, Tweedie D, Arellano C, Luo W, Greig NH, Rosi S:
TNF-alpha protein synthesis inhibitor restores neuronal function and
reverses cognitive deficits induced by chronic neuroinflammation. J
Neuroinflammation 2012, 9:23.

Baratz R, Tweedie D, Rubovitch V, Luo W, Yoon JS, Hoffer BJ, Greig NH, Pick
CG: Tumor necrosis factor-a synthesis inhibitor, 3,6"-dithiothalidomide,
reverses behavioral impairments induced by minimal traumatic brain
injury in mice. J Neurochem 2011, 118:1032-1042.

Tweedie D, Luo W, Short RG, Brossi A, Holloway HW, Li Y, Yu QS, Greig NH:
A cellular model of inflammation for identifying TNF-alpha synthesis
inhibitors. J Neurosci Methods 2009, 183:182-187.

Choi SH, Bosetti F: Cyclooxygenase-1 null mice show reduced
neuroinflammation in response to beta-amyloid. Aging 2009, 1:234-244.
Schmued LC, Hopkins KJ: Fluoro-Jade: novel fluorochromes for detecting
toxicant-induced neuronal degeneration. Toxicol Pathol 2000, 28:91-99.

El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C, Luster AD:
Ccr2 deficiency impairs microglial accumulation and accelerates
progression of Alzheimer-like disease. Nat Med 2007, 13:432-438.

Bailey JA, Ray B, Greig NH, Lahiri DK: Rivastigmine lowers AB and increases
sAPPa levels, which parallel elevated synaptic markers and metabolic
activity in degenerating primary rat neurons. PLoS One 2011, 6(7):e21954.
Li Y, Duffy KB, Ottinger MA, Ray B, Bailey JA, Holloway HW, Tweedie D, Perry
T, Mattson MP, Kapogiannis D, Sambamurti K, Lahiri DK, Greig NH: GLP-1
receptor stimulation reduces amyloid-beta peptide accumulation and
cytotoxicity in cellular and animal models of Alzheimer's disease. J
Alzheimers Dis 2010, 19:1205-1219.

Guzowski JF, Lyford GL, Stevenson GD, Houston FP, McGaugh JL, Worley PF,
Barnes CA: Inhibition of activity-dependent arc protein expression in the
rat hippocampus impairs the maintenance of long-term potentiation



Tweedie et al. Journal of Neuroinflammation 2012, 9:106
http://www.jneuroinflammation.com/9/1/106

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

and the consolidation of long-term memory. J Neurosci 2000,
20:3993-4001.

Plath N, Ohana O, Dammermann B, Errington ML, Schmitz D, Gross C, Mao
X, Engelsberg A, Mahlke C, Welzl H, Kobalz U, Stawrakakis A, Fernandez E,
Waltereit R, Bick-Sander A, Therstappen E, Cooke SF, Blanquet V, Wurst W,
Salmen B, Bosl MR, Lipp HP, Grant SG, Bliss TV, Wolfer DP, Kuhl D: Arc/
Arg3.1 is essential for the consolidation of synaptic plasticity and
memories. Neuron 2006, 52:437-444.

Rosi S: Neuroinflammation and the plasticity-related immediate-early
gene Arc. Brain Behav Immun 2011, 1(Suppl):539-549.

Rosi S, Ramirez-Amaya V, Hauss-Wegrzyniak B, Wenk GL: Chronic brain
inflammation leads to a decline in hippocampal NMDA-R1 receptors. J
Neuroinflammation 2004, 1:12.

Maurice T, Lockhart BP, Privat A: Amnesia induced in mice by centrally
administered beta-amyloid peptides involves cholinergic dysfunction.
Brain Res 1996, 706:181-193.

Hirata-Fukae C, Li HF, Hoe HS, Gray AJ, Minami SS, Hamada K, Niikura T, Hua
F, Tsukagoshi-Nagai H, Horikoshi-Sakuraba Y, Mughal M, Rebeck GW, LaFerla
FM, Mattson MP, Iwata N, Saido TC, Klein WL, Duff KE, Aisen PS, Matsuoka Y:
Females exhibit more extensive amyloid, but not tau, pathology in an
Alzheimer transgenic model. Brain Res 2008, 1216:92-103.

Tarkowski E, Blennow K, Wallin A, Tarkowski A: Intracerebral production of
tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer
disease and vascular dementia. J Clin Immunol 1999, 19:223-230.
Tarkowski E, Andreasen N, Tarkowski A, Blennow K: Intrathecal
inflammation precedes development of Alzheimer’s disease. J Neurol
Neurosurg Psychiatry 2003, 74:1200-1205.

Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM: Intraneuronal
Abeta causes the onset of early Alzheimer’s disease-related cognitive
deficits in transgenic mice. Neuron 2005, 45:675-688.

Perry RT, Collins JS, Wiener H, Acton R, Go RC: The role of TNF and its
receptors in Alzheimer's disease. Neurobiol Aging 2001, 22:873-883.

Laws SM, Perneczky R, Wagenpfeil S, Mdller U, Forstl H, Martins RN, Kurz A,
Riemenschneider M: TNF polymorphisms in Alzheimer disease and
functional implications on CSF beta-amyloid levels. Hum Mutat 2005,
26:29-35.

Ramos EM, Lin MT, Larson EB, Maezawa |, Tseng LH, Edwards KL,
Schellenberg GD, Hansen JA, Kukull WA, Jin LW: Tumor necrosis factor
alpha and interleukin 10 promoter region polymorphisms and risk of
late-onset Alzheimer disease. Arch Neurol 2006, 63:1165-1169.

Aleong R, Blain JF, Poirier J: Pro-inflammatory cytokines modulate glial
apolipoprotein E secretion. Curr Alzheimer Res 2008, 5:33-37.

He P, Zhong Z, Lindholm K, Berning L, Lee W, Lemere C, Staufenbiel M, Li R,
Shen Y: Deletion of tumor necrosis factor death receptor inhibits
amyloid-p generation and prevents learning and memory deficits in
Alzheimer’s mice. J Cell Biol 2007, 178:829-841.

Tobinick E: Tumour necrosis factor modulation for treatment of
Alzheimer's disease: rationale and current evidence. CNS Drugs 2009,
23:713-725.

Tobinick E: Deciphering the physiology underlying the rapid clinical
effects of perispinal etanercept in Alzheimer’s disease. Curr Alzheimer Res
2012, 9:99-109.

Lin J, Ziring D, Desai S, Kim S, Wong M, Korin Y, Braun J, Reed E, Gjertson D,
Singh RR: TNF-a blockade in human diseases: an overview of efficacy
and safety. Clin Immunol 2008, 126:13-30.

Tobinick EL, Gross H: Rapid cognitive improvement in Alzheimer’s disease
following perispinal etanercept administration. J Neuroinflammation 2008,
5:2.

Moreira AL, Sampaio EP, Zmuidzinas A, Frindt P, Smith KA, Kaplan G:
Thalidomide exerts its inhibitory action on tumor necrosis factor alpha
by enhancing mRNA degradation. J Exp Med 1993, 177:1675-1680.
Abdelmohsen K, Kuwano Y, Kim HH, Gorospe M: Posttranscriptional gene
regulation by RNA-binding proteins during oxidative stress: implications
for cellular senescence. Biol Chem 2008, 389:243-255.

Stamou P, Kontoyiannis DL: Posttranscriptional regulation of TNF mRNA: a
paradigm of signal-dependent mRNA utilization and its relevance to
pathology. Curr Dir Autoimmun 2010, 11:61-79.

Patil CS, Liu M, Zhao W, Coatney DD, Li F, VanTubergen EA, D'Silva NJ,
Kirkwood KL: Targeting mRNA stability arrests inflammatory bone loss.
Mol Ther 2008, 16:1657-1664.

59.

60.

62.

63.

64.

65.

66.

67.

69.

70.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Page 15 of 16

Khera TK, Dick AD, Nicholson LB: Mechanisms of TNFalpha regulation in
uveitis: focus on RNA-binding proteins. Prog Retin Eye Res 2010,
29:610-621.

Greig NH, Giordano T, Zhu X, Yu QS, Perry TA, Holloway HW, Brossi A,
Rogers JT, Sambamurti K, Lahiri DK: Thalidomide-based TNF-alpha
inhibitors for neurodegenerative diseases. Acta Neurobiol Exp

2004, 64:1-9.

Monning U, Sandbrink R, Banati RB, Masters CL, Beyreuther K: Transforming
growth factor beta mediates increase of mature transmembrane
amyloid precursor protein in microglial cells. FEBS Lett 1994, 342:267-272.
Park KM, Bowers WJ: Tumor necrosis factor-alpha mediated signaling in
neuronal homeostasis and dysfunction. Cell Signal 2010, 22:977-983.
Avramovich Y, Amit T, Youdim MB: Non-steroidal anti-inflammatory drugs
stimulate secretion of non-amyloidogenic precursor protein. J Biol Chem
2002, 277:31466-31473.

Rosi S: Neuroinflammation and the plasticity-related immediate-early
gene Arc. Brain Behav Immun 2011, 25(Suppl 1):539-549.

Korb E, Finkbeiner S: Arc in synaptic plasticity: from gene to behavior.
Trends Neurosci 2011, 34:591-598.

Kawai T, Adachi O, Ogawa T, Takeda K, Akira S: Unresponsiveness of
MyD88- deficient mice to endotoxin. Immunity 1999, 11:115-122.

Shankar GM, Li S, Mehta TH, Garcia-Munoz A, Shepardson NE, Smith |, Brett
FM, Farrell MA, Rowan MJ, Lemere CA, Regan CM, Walsh DM, Sabatini BL,
Selkoe DJ: Amyloid-beta protein dimers isolated directly from Alzheimer’s
brains impair synaptic plasticity and memory. Nat Med 2008, 14:837-842.
Ashe KH, Zahs KR: Probing the biology of Alzheimer’s disease in mice.
Neuron 2010, 66:631-645.

Lacor PN, Buniel MC, Furlow PW, Clemente AS, Velasco PT, Wood M, Viola
KL, Klein WL: Abeta oligomer-induced aberrations in synapse
composition, shape, and density provide a molecular basis for loss of
connectivity in Alzheimer’s disease. J Neurosci 2007, 27:796-807.

Yankner BA: The pathogenesis of Alzheimer's disease. Is amyloid beta-
protein the beginning or the end? Ann N Y Acad Sci 2000, 924:26-28.
Qiao X, Cummins DJ, Paul SM: Neuroinflammation-induced acceleration of
amyloid deposition in the APPV717F transgenic mouse. Eur J Neurosci
2001, 14:474-482.

Yamada M, Chiba T, Sasabe J, Nawa M, Tajima H, Niikura T, Terashita K, Aiso
S, Kita Y, Matsuoka M, Nishimoto I: Implanted cannula-mediated repetitive
administration of Abeta25-35 into the mouse cerebral ventricle
effectively impairs spatial working memory. Behav Brain Res 2005,
164:139-146.

McGeer PL, Itagaki S, Tago H, McGeer EG: Reactive microglia in patients
with senile dementia of the Alzheimer type are positive for the
histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987, 79:195-200.
Jin JJ, Kim HD, Maxwell JA, Li L, Fukuchi K: Toll-like receptor 4-dependent
upregulation of cytokines in a transgenic mouse model of Alzheimer’s
disease. J Neuroinflammation 2008, 5:23.

Liao YF, Wang BJ, Cheng HT, Kuo LH, Wolfe MS: Tumor necrosis factor-
alpha, interleukin-1beta, and interferon-gamma stimulate gamma-
secretase-mediated cleavage of amyloid precursor protein through a
JNK-dependent MAPK pathway. J Biol Chem 2004, 279:49523-49532.
Wajant H, Pfizenmaier K, Scheurich P: Tumor necrosis factor signaling. Cell
Death Differ 2003, 10:45-65.

Grell M, Wajant H, Zimmermann G, Scheurich P: The type 1 receptor
(CD120a) is the high-affinity receptor for soluble tumor necrosis factor.
Proc Natl Acad Sci USA 1998, 95:570-575.

Fontaine V, Mohand-Said S, Hanoteau N, Fuchs C, Pfizenmaier K, Eisel U:
Neurodegenerative and neuroprotective effects of tumor Necrosis factor
(TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF
receptor 2. J Neurosci 2002, 22:RC216.

Yang L, Lindholm K, Konishi Y, Li R, Shen Y: Target depletion of distinct
tumor necrosis factor receptor subtypes reveals hippocampal neuron
death and survival through different signal transduction pathways. J
Neurosci 2002, 22:3025-3032.

Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel UL: Tumor necrosis
factor (TNF)-mediated neuroprotection against glutamate-induced
excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation.
Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-
kinase-dependent NF-kappa B pathway. J Bio/ Chem 2004, 279:32869—
32881.



Tweedie et al. Journal of Neuroinflammation 2012, 9:106
http://www.jneuroinflammation.com/9/1/106

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

Grell M, Douni E, Wajant H, Léhden M, Clauss M, Maxeiner B, Georgopoulos
S, Lesslauer W, Kollias G, Pfizenmaier K, Scheurich P: The transmembrane
form of tumor necrosis factor is the prime activating ligand of the

80 kDa tumor necrosis factor receptor. Cell 1995, 83:793-802.

Grell M: Tumor necrosis factor (TNF) receptors in cellular signaling of
soluble and membrane-expressed TNF. J Inflammation 1995-1996,
47:8-17.

Stellwagen D, Malenka RC: Synaptic scaling mediated by glial TNF-alpha.
Nature 2006, 440(7087):1054-1059.

Montgomery SL, Mastrangelo MA, Habib D, Narrow WC, Knowlden SA,
Wright TW, Bowers WJ: Ablation of TNF-RI/RIl expression in Alzheimer’s
disease mice leads to an unexpected enhancement of pathology:
implications for chronic pan-TNF-a suppressive therapeutic strategies in
the brain. Am J Pathol 2011, 179:2053-2070.

Golan H, Levav T, Mendelsohn A, Huleihel M: Involvement of tumor
necrosis factor alpha in hippocampal development and function. Cereb
Cortex 2004, 14:97-105.

Bernardino L, Agasse F, Silva B, Ferreira R, Grade S, Malva JO: Tumor
necrosis factor-alpha modulates survival, proliferation, and neuronal
differentiation in neonatal subventricular zone cell cultures. Stem Cells
2008, 26:2361-2371.

losif RE, Ekdahl CT, Ahlenius H, Pronk CJ, Bonde S, Kokaia Z, Jacobsen SE,
Lindvall O: Tumor necrosis factor receptor 1 is a negative regulator of
progenitor proliferation in adult hippocampal neurogenesis. J Neurosci
2006, 26:9703-9712.

Fioravanzo L, Venturini M, Liddo RD, Marchi F, Grandi C, Parnigotto PP, Folin
M: Involvement of rat hippocampal astrocytes in 3-amyloid-induced
angiogenesis and neuroinflammation. Curr Alzheimer Res 2010, 7:591-601.
Belarbi K, Arellano C, Ferguson R, Jopson T, Rosi S: Chronic
neuroinflammation impacts the recruitment of adult-born neurons into
behaviorally relevant hippocampal networks. Brain Behav Immun 2012,
26:18-23.

Eleutherakis-Papaiakovou V, Bamias A, Dimopoulos MA: Thalidomide in
cancer medicine. Ann Oncol 2004, 15:1151-1160.

doi:10.1186/1742-2094-9-106

Cite this article as: Tweedie et al: Tumor necrosis factor-a synthesis
inhibitor 3,6-dithiothalidomide attenuates markers of inflammation,
Alzheimer pathology and behavioral deficits in animal models of
neuroinflammation and Alzheimer’s disease. Journal of Neuroinflammation
2012 9:106.

Page 16 of 16

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( ) BiolVied Central




	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods and materials
	Pharmacological interventions
	Cell culture
	Acute animal LPS drug study
	Chronic intracerebroventricularly animal LPS drug study
	Acute intracerebroventricular A&beta;1&ndash;42 peptide animal drug study
	3xTg-AD animal drug study
	Quantitative RT-PCR for rat TNF-&alpha; mRNA
	ELISA analysis
	Immunohistochemistry
	Morris water maze test
	Western blotting
	Statistical analysis

	Results
	3,6&prime;-Dithiothalidomide attenuates the synthesis of inflammatory mediators in�vitro and in�vivo
	3,6&prime;-Dithiothalidomide treatment reduces LPS-induced chronic neuroinflammation and restores LPS-mediated abnormal hippocampal neuronal plasticity

	link_Fig1
	link_Fig2
	link_Fig3
	3,6&prime;-Dithiothalidomide treatment attenuates the effects of central administration of toxic A&beta;1&ndash;42 peptide on behavior, cell viability and microglia activation

	link_Fig4
	link_Fig5
	3,6&prime;-Dithiothaliomide, administered daily for 6&nbsp;weeks, normalized age-associated biochemical, cellular and behavioral features of AD observed in the 3xTg-AD mouse model

	link_Fig6
	link_Fig7
	link_Fig8
	Discussion
	Conclusion
	Competing interests
	Acknowledgements
	Author details
	Authors&rsquo; contributions
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49
	link_CR50
	link_CR51
	link_CR52
	link_CR53
	link_CR54
	link_CR55
	link_CR56
	link_CR57
	link_CR58
	link_CR59
	link_CR60
	link_CR61
	link_CR62
	link_CR63
	link_CR64
	link_CR65
	link_CR66
	link_CR67
	link_CR68
	link_CR69
	link_CR70
	link_CR71
	link_CR72
	link_CR73
	link_CR74
	link_CR75
	link_CR76
	link_CR77
	link_CR78
	link_CR79
	link_CR80
	link_CR81
	link_CR82
	link_CR83
	link_CR84
	link_CR85
	link_CR86
	link_CR87
	link_CR88
	link_CR89
	link_CR90

