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Abstract

molecule-1 (ICAM-1).

Backgrounds: Increasing evidence shows that the histone deacetylase inhibitor suberoylanilide hydroxamic acid
(SAHA) possesses potent anti-inflammatory and immunomodulatory properties. It is tempting to evaluate the
potential of SAHA as a therapeutic agent in various neuroinflammatory and neurodegenerative disorders.

Methods: We examined the effects of SAHA on interferon (IFN)-y-induced neurotoxicity of human astrocytes and
on IFN-y-induced phosphorylation of signal transducer and activator of transcription (STAT) 3 in human astrocytes.
We also studied the effects of SAHA on the astrocytic production of two representative IFN-y-inducible
inflammatory molecules, namely IFN-y-inducible T cell a chemoattractant (I-TAC) and intercellular adhesion

Results: SAHA significantly attenuated the toxicity of astrocytes activated by IFN-y towards SH-SY5Y human
neuronal cells. In the IFN-y-activated astrocytes, SAHA reduced the STAT3 phosphorylation. SAHA also inhibited the
IFN-y-induced astrocytic production of I-TAC, but not ICAM-1. These results indicate that SAHA suppresses
IFN-y-induced neurotoxicity of human astrocytes through inhibition of the STAT3 signaling pathway.

Conclusion: Due to its anti-neurotoxic and anti-inflammatory properties, SAHA appears to have the therapeutic or
preventive potential for a wide range of neuroinflammatory disorders associated with activated astrocytes.
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Background

Suberoylanilide hydroxamic acid (SAHA; also known as
vorinostat, ChemBank ID 468) is the first histone deace-
tylase (HDAC) inhibitor approved by the United States
Food and Drug Administration. It was licensed in 2006
for the treatment of cutaneous T-cell lymphoma (CTCL)
[1]. HDAC inhibitors promote the acetylation of his-
tones, which are generally associated with transcriptional
activation. HDAC inhibitors also increase the acetylation
status and modulate the activity of a wide range of non-
histone proteins. Included are inflammatory transcription
factors, such as nuclear factor-kB and signal transducer
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and activator of transcription (STAT) 3 [1,2]. While vari-
ous HDAC inhibitors have been studied and developed
for cancer therapy due to their anti-proliferative effects,
increasing evidence shows that SAHA, at lower and non-
cytotoxic concentrations, exhibits potent anti-inflammatory
and immunomodulatory activities in vitro [3-6] and in vivo
[4,7]. Furthermore, animal studies indicate that SAHA
could ameliorate inflammatory bowel disease [3], hepatitis
[4], lupus nephritis [5,6], graft versus host disease [7] and
rheumatoid arthritis [8].

A broad spectrum of neurodegenerative diseases, in-
cluding Alzheimer disease (AD), Huntington disease
(HD), Parkinson disease and multiple sclerosis, can be
considered as chronic inflammatory disorders of the
central nervous system (CNS) [9-11]. Chronic inflamma-
tion associated with neuronal damage caused by cerebral
ischemia [12] and spinal cord injury [13] could be
included. Chronic activation of astrocytes is believed to
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play an important role in the progression of neuroin-
flammation, which includes causing damage to the sur-
rounding neurons [10]. The STAT3 signaling pathway
has been shown to mediate the neurotoxic secretion of
human astrocytes induced by interferon (IFN)-y [14].

The facts mentioned above motivated us to examine
the effects of SAHA on IFN-y-induced neurotoxicity
and STAT3 activation of human astrocytes. The purpose
was to evaluate the potential of SAHA as a therapeutic
agent in various neuroinflammatory and neurodegenera-
tive disorders. In order to confirm the anti-inflammatory
properties of SAHA, we also studied the effects of
SAHA on the astrocytic production of two representative
IFN-y-inducible inflammatory molecules, IFN-y-inducible
T cell a chemoattractant (I-TAC) and intercellular adhe-
sion molecule-1 (ICAM-1).

Methods

Chemicals and reagents

SAHA was purchased from BioVision (MountainView,
CA, USA). Human recombinant IFN-y was purchased
from PeproTech (Rocky Hill, NJ, USA). 3-(4,5-
dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide
(MTT) and dimethyl sulfoxide (DMSO) were obtained
from Sigma-Aldrich (St. Louis, MO, USA). SAHA was
initially dissolved in DMSO. The final concentration of
DMSO in tissue culture medium was less than 0.001%.
At this concentration, DMSO had no effect on cell
viability.

Cell cultures

The human astrocytic U-373 MG cell line was obtained
from the American Type Culture Collection (ATCC,
Manassas, VA, USA). The human neuroblastoma SH-
SY5Y cell line was a gift from Dr. Robert Ross. These
cells were grown in Dulbecco’s modified Eagle medium
(DMEM), nutrient mixture F12 Ham (DMEM-F12) sup-
plemented with 10% fetal bovine serum (FBS) and peni-
cillin (200 U/ml)/streptomycin (200 pg/ml) (all from
Invitrogen Canada, Burlington, ON, Canada). Both cell
lines were used without initial differentiation.

Human astrocytes were obtained from epileptic
patients undergoing temporal lobe surgery. The speci-
mens were from normal tissue overlying the epileptic
foci. The use of human brain materials was approved by
the Clinical Research Ethics Board for Human Subjects
of the University of British Columbia. Astrocytes were
isolated as described previously [15,16]. They were
grown in DMEM-F12 supplemented with 10% FBS and
penicillin/streptomycin. The cells were cultured for
three to four weeks. Purity of the astrocyte cultures was
estimated by immunostaining with an antibody against
the astrocytic marker glial fibrillary acidic protein
(GFAP, from Dako, Z334, Carpinteria, CA, USA). Under
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our culture conditions, more than 99% cells were posi-
tive for GFAP.

Cytotoxicity of human astrocytes and U-373 MG cells
towards SH-SY5Y cells

Human astrocytes or astrocytic U-373 MG cells were
seeded into 24-well plates at a concentration of 2 x 10°
cells/ml in 0.8 ml of DMEM-F12 medium containing 5%
EBS. The cells were treated with various drugs for 1 h
prior to the addition of activating stimulant (50 U/ml of
IEN-y). The cells in the control group were incubated
with medium only. After 24 h incubation of U-373 MG
cells or 48 h incubation of astrocytes at 37°C, 0.4 ml of
cell-free supernatants were transferred to each well con-
taining SH-SY5Y cells. At this time point, viability of U-
373 M@ or astrocytes was measured by the MTT assay.
SH-SY5Y cells had been plated 24 h earlier at a concen-
tration of 2 x 10° cells/ml in 0.4 ml of DMEM-F12
medium containing 5% FBS. After 72 h incubation at 37°
C, evaluation of surviving SH-SY5Y cells was performed
by the MTT assay. The neuronal culture media were
sampled for lactate dehydrogenase (LDH) to determine
its release from dead cells. To establish that SAHA at
the concentration, which showed anti-neurotoxic effects,
did not neutralize neurotoxins in the supernatants, the
following procedures were used. Supernatants from
astrocytes treated with IFN-y for 48 h in the absence of
the drug were collected first. One puM of SAHA was
added into the supernatants just before applying them to
the SH-SY5Y cells. After 72 h incubation at 37°C, the
SH-SY5Y cell viability was measured by the MTT assay.
LDH release from dead cells was also measured.

MTT assay

MTT reduction was measured as described previously
[17]. Briefly, the MTT reagent was added to cell cultures
to reach a final concentration of 0.5 mg/ml. Following
1 h incubation at 37°C, the dark crystals formed were
dissolved by adding to the wells an equal volume of so-
dium dodecyl sulfate/N, N-dimethylformamide (SDS/
DMEF) extraction buffer (20% SDS, 50% DME, pH 4.7).
Subsequently, plates were placed overnight at 37°C in
order to dissolve aggregates of lysed cells. Optical dens-
ity (OD) was measured at 570 nm. Viable cell values
were expressed as a percentage of the value obtained
from cells incubated in fresh medium only. The residual
value for 0% cell survival was determined by lysing the
cells with 1% Triton X-100.

LDH assay

LDH activity in supernatants was measured as described
previously [17]. Briefly, 100 pl of cell culture superna-
tants were transferred into the wells of 96-well plates,
followed by the addition of 15 ul of lactate solution
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(36 mg/ml in phosphate-buffered saline (PBS)) and 15 pl
of p-iodonitrotetrazolium violet solution (2 mg/ml in
PBS). The enzymatic reaction was started by the
addition of 15 ul of NAD"/diaphorase solution (3 mg/ml
NAD"; 2.3 mg solid/ml diaphorase). OD was measured
at 490 nm. The amount of LDH that had been released
was expressed as a fraction of the value obtained in
comparative wells where the remaining cells were com-
pletely lysed by 1% Triton X-100.

Analysis of cellular morphology

In order to analyze the morphological changes of SH-
SY5Y cells, the cultures were observed with an inverted
phase-contrast microscope (Axiovert 200, Carl Zeiss,
Oberkochen, Germany) and photographed with a digital
camera (Retiga 1300, Qimaging, Surrey, BC, Canada)
72 h after transfer of supernatants from astrocytes. 40x
and 20x objectives were used.

Western blot analysis

Total protein was extracted from subconfluent human
astrocyte cultures in 10 cm culture dishes. Astrocytes
were incubated with or without SAHA for 1 h followed
by incubation with 50 U/ml of IFN-y for a further 30
minutes. Astrocytes in the control group were incubated
with medium only. The cells were washed twice with
PBS and then fixed with 10% trichloroacetic acid for 30
minutes at 4°C. Subsequently, the cells were scraped and
lysed in ice-cold RIPA buffer (50 mM Tris—HCI (pH 8.0),
150 mM NaCl, 1% deoxycholic acid, 1% TritonX100,
0.1% SDS) supplemented with complete protease inhibi-
tor cocktail (Roche Diagnostics, Mannheim, Germany).
The lysed cells were sonicated and then centrifuged at
13,000 ¢ for 5 minutes at 4°C and the supernatants were
collected. Two pg of protein were subjected to SDS-
polyacrylamide gel electrophoresis using an 8% acryl-
amide gel at 120 V for 70 minutes. The protein was
transferred to a PVDF membrane at 70 V for 2 h. The
membrane was blocked with 5% skim milk plus 3% bo-
vine serum albumin (BSA) in PBS at room temperature
(RT) for 1 h. Subsequently, the membrane was incubated
with specific rabbit antibodies against phospho-Tyr”°!-
STAT1 (1:2,000), total STAT1 (1:1,000), phospho-Tyr’>-
STAT3 (1:2,000) or total STAT3 (1:1,000) at 4°C over-
night and then treated with horseradish peroxidase-
conjugated anti-rabbit IgG antibody (1:2,000) at RT for
1 h. All antibodies used for immunoblotting were pur-
chased from Cell Signaling Technology (Danvers, MA,
USA). Blots were developed by the chemiluminescent
ECL system (Amersham, GE Healthcare, Buckingham-
shire, UK). The band intensity was quantified by densi-
tometry using the NIH Image analysis software version
1.63 (NIH, Bethesda, MD, USA). Individual expression
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level of phosphorylated STAT1 or STAT3 was normal-
ized to the corresponding level of total protein.

Measurement of I-TAC production: enzyme-linked
immunosorbent assay (ELISA)

Human astrocytes were seeded into 48-well plates at a
concentration of 2 x 10° cells/ml in 0.4 ml of DMEM-
F12 medium containing 5% FBS. The cells were incu-
bated in the presence or absence of SAHA for 1 h prior
to the addition of activating stimulant (50 U/ml of IFN-y
). Astrocytes in the control group were incubated with
medium only. After 48 h incubation at 37°C, 100 ul of
cell-free supernatants were assayed for I-TAC accumula-
tion. The concentrations of I-TAC were measured with
an ELISA development kit supplied by PeproTech. The
assay was carried out according to the protocol supplied
by the manufacturer.

Measurement of ICAM-1 expression

Human astrocytes were seeded into 48-well plates at a
concentration of 2 x 10° cells/ml in 0.4 ml of DMEM-
F12 medium containing 5% FBS. The cells were incu-
bated in the presence or absence of SAHA for 1 h prior
to the addition of activating stimulant (50 U/ml of IFN-y
). Astrocytes in the control group were incubated with
medium only. After 48 h incubation at 37°C, the cells
were fixed in 4% paraformaldehyde at 4°C for 5 minutes
and then incubated with PBS containing 0.1% Triton X-
100 at RT for 5 minutes. After blocking with 5% BSA in
PBS for 1 h at RT, the cells were incubated with mono-
clonal anti-ICAM-1 antibody (1:1,000; MU326-UC,
1 H4, Biogenex, San Ramon, CA, USA) at RT for 2 h fol-
lowed by incubation with alkaline phosphatase-
conjugated goat anti-mouse IgG (1:3,000; Sigma-Aldrich
) at RT for 2 h. After washing with PBS, they were incu-
bated with 1 mg/ml of phosphate substrate (Sigma-
Aldrich) in 0.1 M diethanolamine buffer (pH 9.8) at RT
for 1 h. Subsequently, OD was measured at 405 nm.

Statistics

All values are expressed as the means + standard error of
mean (S.E.M.). Comparisons were made with a one-way
analysis of variance (ANOVA) followed by the post hoc
Tukey-Kramer test using StatView 5.0 software (SAS
Institute Inc., Cary, USA). The significance was estab-
lished at a level of P <0.05.

Results

Effects of SAHA on IFN-y-induced neurotoxicity of human
astrocytes and astrocytoma cells

We first investigated the effects of SAHA on IFN-
y-induced neurotoxicity of human astrocytic U-373 MG
cells. The MTT assay revealed that SAHA did not affect
the U-373 MG cell viability in the 0.1 to 1 pM range
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(Figure 1A). U-373 MG cells caused significant toxicity to-
wards SH-SY5Y cells after 24 h incubation with 50 U/ml
of IFN-y as shown by both the MTT (Figure 1B) and
LDH assays (Figure 1C). Pretreatment of U-373 MG cells
with 1 pM of SAHA for 1 h significantly prevented the
IFN-y-induced neurotoxicity according to the MTT assay
(Figure 1B). The LDH assay also showed significant reduc-
tion of the IFN-y-induced neurotoxicity by SAHA at 0.3
and 1 pM (Figure 1C). In our preliminary studies, we con-
firmed that 50 U/ml of IFN-y when added directly to SH-
SY5Y cells had no effect on their viability according to the
MTT assay (data not shown).

We further established the SAHA neuroprotection by
using primary human astrocytes. The MTT assay
demonstrated that SAHA did not affect the viability of
human astrocytes in the 0.1 to 1 pM range (Figure 2A).
Human astrocytes caused significant toxicity towards
SH-SY5Y cells after 48 h incubation with 50 U/ml of
IEN-y (Figure 2B, C). Similar to the results with U-373
MG cells, 1 uM of SAHA significantly decreased the
IFN-y-induced neurotoxicity of human astrocytes
(Figure 2B, C). To establish that SAHA acts directly on
astrocytes and to rule out the possibility that it neutra-
lizes neurotoxins, we collected supernatants from astro-
cytes that had been stimulated with IFN-y for 48 h
without any drug treatment. We then added 1 pM of
SAHA into the supernatants just before applying them
to SH-SY5Y cells. Addition of 1 uM SAHA did not affect
the SH-SY5Y cell viability compared with supernatants
without such additions (Figure 2B, C, right bars), sug-
gesting that SAHA does not act by neutralizing neuro-
toxins following their secretion into the supernatants.

The morphology of SH-SY5Y cells incubated in super-
natants of human astrocytes was also analyzed. The
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supernatants of astrocytes stimulated with IFN-y caused
significant changes in cellular morphology (Figure 2E).
The majority of the cells showed bright and circularly
shrunk cytoplasm in contrast to the typical healthy
morphology presented in the control group (Figure 2D).
This change was considerably attenuated by pretreat-
ment with 1 pM SAHA (Figure 2F). These observations
were in line with the results obtained by both the MTT
and LDH assay (Figure 2B, C).

Effects of SAHA on IFN-y-induced phosphorylation of
STAT3 in human astrocytes

Our recent studies have indicated that STAT3 signaling,
but not STAT1 signaling, mediates IFN-y-induced
neurotoxicity of human astrocytes [14]. Therefore, we
investigated the effects of SAHA on the IFN-y-induced
phosphorylation of Tyr’®'-STAT1 and Tyr’*>-STAT3 in
human astrocytes. Treatment of astrocytes with 50 U/ml
of IFN-y for 30 minutes phosphorylated both Tyr’!-
STAT1 (Figure 3A) and Tyr’®>-STAT3 (Figure 3C).
Densitometry revealed that 1 h pretreatment with 1 uM
of SAHA significantly inhibited the STAT3 phosphoryl-
ation (Figure 3D), while the drug did not affect the
STAT1 phosphorylation (Figure 3B). These results sug-
gest that SAHA reduces IFN-y-induced neurotoxicity of
human astrocytes via inhibition of STAT3 phosphorylation.

Effects of SAHA on IFN-y-induced I-TAC production and
ICAM-1 expression by human astrocytes

We finally examined the effect of SAHA on production
of the inflammatory chemokine I-TAC and on expres-
sion of the inflammatory adhesion molecule ICAM-1 by
human astrocytes stimulated with IFN-y. Incubation of
astrocytes with 50 U/ml of IFN-y for 48 h significantly
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increased the I-TAC production (Figure 4A) and ICAM-
1 expression (Figure 4B). SAHA significantly reduced
the  IFN-y-induced I-TAC  production in a
concentration-dependent manner (Figure 4A). SAHA, in
the same concentration range, did not suppress the IFN-
y-induced ICAM-1 expression (Figure 4B).

Discussion

There were three major findings in the present study.
First, SAHA significantly reduced the IFN-y-induced
neurotoxicity of human astrocytes and U-373 MG cells
at non-cytotoxic concentrations. Second, SAHA inhib-
ited the phosphorylation of Tyr’°>-STAT3 in human
astrocytes stimulated with IFN-y. Third, SAHA signifi-
cantly suppressed the I-TAC production, but not ICAM-
1 expression, by IFN-y-activated human astrocytes.

The inhibitory effect of SAHA on human astrocyte
neurotoxicity is compatible with emerging data from
several in vitro studies using various stimulated immune
cells, which show anti-inflammatory properties of
SAHA. Specifically, treatment of SAHA has been shown
to down-regulate the cellular production of inflamma-
tory mediators, such as tumor necrosis factor (TNF)-a,
interleukin (IL)-1pB, IL-6, IL-12, IEN-y and nitric oxide
(NO), which are all potentially neurotoxic [3-6,18].

Moreover, the anti-inflammatory activities of SAHA
have also been established in vivo. Administration of
SAHA has been demonstrated to reduce serum levels of
pro-inflammatory cytokines, including TNF-«, IL-1f and
IFN-y, in mice injected with lipopolysaccharide (LPS) [4]
or mice transplanted with allogenic bone marrow [7,18].
Therefore, SAHA appears to have therapeutic or pre-
ventive potential for a wide range of neuroinflammatory
and neurodegenerative disorders. In fact, recent preclin-
ical studies have shown that SAHA administration res-
cues cognitive deficits in the APPswe/PS1dE9 transgenic
mouse model of AD [19] and that SAHA administration
improves motor impairments in the R6/2 transgenic
mouse model of HD [20]. SAHA has been also demon-
strated to decrease ischemic injury in the mouse brain
subjected to middle cerebral artery occlusion [21].
Reduction of IFN-y-induced STAT3 phosphorylation
in human astrocytes by SAHA is consistent with recent
in vitro studies, which showed that SAHA treatment
decreased STAT3 phosphorylation in human CTCL
HuT?78 cells transfected with a STAT3-specific reporter
construct [22] and in murine splenocytes stimulated
with LPS [18]. Furthermore, HDAC inhibitors other than
SAHA, such as trichostatin A (TSA) [23] and AR-42
[24], have also been reported to suppress STAT3
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phosphorylation in various cancer cells. On the other
hand, it was reported that SAHA did not affect protein
levels of phosphorylated STAT3 in HuT78 cells [25,26].
We currently have no clear rationale for the discrepancy
and consider that the effects of HDAC inhibition on the

intracellular STAT3 phosphorylation remain inconclu-
sive. Nevertheless, histone acetylation induced by HDAC
inhibitors may reduce STAT3 phosphorylation by up-
regulating expression of suppressors of cytokine signaling
(SOCS) 1 and SOCS3, which are negative regulators of the
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Janus kinase/STAT signaling, as demonstrated by Xiong et
al. (2012) [23].

The finding that SAHA attenuates both IFN-y-induced
neurotoxicity and IFN-y-induced STAT3 phosphoryl-
ation of human astrocytes is in line with our recent
study which demonstrated that IFN-y-induced neurotox-
icity of human astrocytes is mediated, at least in part, by
the STAT3 signaling pathway [14]. Proton pump inhibi-
tors [27] and L-type calcium channel blockers [28] have
also been demonstrated to suppress IFN-y-induced
astrocytic neurotoxicity and STAT3 activation in human
astrocytes. These emerging data further support our hy-
pothesis that neuroprotective activity of many reagents
that reduce IFN-y-induced neurotoxicity of human
astrocytes is exerted through inhibition of the STAT3
signaling pathway in these cells.

HDAC inhibitors have been shown to confer neuro-
protection in experimental models of various neurode-
generative diseases, including HD [29], amyotrophic
lateral sclerosis [30] and multiple sclerosis [31], even
though the exact mechanisms underlying their neuro-
protective actions are still elusive. As we demonstrated
in this study using SAHA, inhibition of activated astro-
cytes by decreasing intracellular STAT3 phosphorylation
seems to be one of the mechanisms. Effects of HDAC
inhibitors on astrocytes have not been studied well.
SAHA is shown to inhibit the increased amount of
TNE-a and NO secretion from Abcd1/2-silenced murine
astrocytes, which are associated with inflammatory
responses [32]. TSA is indicated to alleviate 1-methyl-4
-phenylpyridinium-induced impairment of glutamate up-
take by rat astrocytes [33]. HDAC inhibitors are also
reported to increase gene expression of the neurotro-
phins glial cell line-derived neurotrophic factor and
brain-derived neurotrophic factor in rat astrocytes
[34,35]. All these astrocytic events could contribute to
the HDAC inhibitor neuroprotection. The exploration of
the relationship between HDAC inhibitor-elicited neuro-
protection and astrocytic functions affected by HDAC
inhibitors appears to be still in its infancy.

To the best of our knowledge, this is the first study to
determine the effects of SAHA on the cellular produc-
tion of I-TAC. Our results showed that SAHA sup-
pressed the IFN-y-induced astrocytic production of I-
TAC, a non-ELR CXC chemokine which attracts acti-
vated T cells during immune and inflammatory
responses. This finding is in agreement with a number
of previous studies, which have established that various
HDAC inhibitors exert anti-inflammatory effects via
inhibiting levels of chemokines [36-39] as well as pro-
inflammatory cytokines [37,40].

We observed no influence of SAHA on the IFN-
y-induced astrocytic expression of ICAM-1, which con-
trasts the data obtained by Takada ez al. (2006) [41]
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demonstrating that SAHA represses the levels of ICAM-
1 expressed by KBM-5 human myeloid cells stimulated
with TNF-a. Further studies exploring this discrepancy
are clearly warranted.

SAHA may be suitable for a clinical intervention tar-
geting the CNS due to its safety and permeability across
the blood—brain barrier (BBB). SAHA is generally well
tolerated in clinical trials involving lymphoma patients
[1,2] and is reported to cross the BBB and cause bio-
logical responses in the mouse brain [20]. The above
observations combined with the major findings of the
present study identify SAHA as an excellent candidate
drug for preclinical testing in a wide range of neuroin-
flammatory disorders associated with activated astrocytes.
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